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h i g h l i g h t s

• A tag-based model is proposed to explain the mechanism on the growth of social groups.
• In the model, social groups expand on a friendship network based on users’ tags of interest.
• Users’ activity in joining group is related to their degree of friendship network.
• Various distributions of the simulated group network are in agreement with empirical findings.
• Our model throws light on the reconstruction of institute-based relationships.
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a b s t r a c t

Social group is a type of mesoscopic structure that connects human individuals in
microscopic level and the global structure of society. In this paper, we propose a tag-based
model considering that social groups expand along the edge that connects two neighbors
with a similar tag of interest. The model runs on a real-world friendship network, and its
simulation results show that various properties of simulated group network canwell fit the
empirical analysis on real-world social groups, indicating that themodel catches themajor
mechanism driving the evolution of social groups and successfully reconstructs the social
group network from a friendship network and throws light on digging of relationships
between social functional organizations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Gathering groups is widespread in societies covering different cultures and different historical periods [1]. Human
individuals form associations, organizations and institutions, and there are usually relatively stable members, clear social
tags and boundaries in each of these social institutes. In this paper, this type of social institutes is termed as ‘‘social
groups’’. Generally, different from the widely-discussed implicit structure termed as ‘‘community’’ [2,3], social group is a
type of explicit mesoscopic structure of society because of their clear tags and boundaries. Since these tags usually come
from the real-world social functional institutes/organizations, social groups will have strong coincidence with these social
institutes/organizations. For example, a user usually would like to join a groupwhosemajormembers are his/her colleagues
or teammates. This correlation actually provides a possible way to investigate the relationships and effective organizations
between real-world functional institutes from the group information of online societies. And also, online groups usually are
widely used to be a place for information releasing and public discussing, and they therefore play an important role in the
spreading of online information and the formation of public opinions.
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Previous researches mainly focus on the implicit communities in social networks [2,3]. In this issue, topology properties
of networks have aroused concerns [4–7], and serials of methods to identify and define communities in networks, as well
as some confinement [8], have been proposed [9–14]. Community extraction arouses the greatest interest in the domain
of social network analysis as well. In Ref. [15], the studies of community structures are allowed to promote further to in a
general setting encompassing networks that evolve over time, havemultiple types of links (multiplexity), and havemultiple
scales. Furthermore, finding communities among the system users opens the new possibilities and can be utilized in such
disciplines as sociology, biology, and computer science [2] and others [12]. And also, some works explored the evolution of
communities from social networks [16–20].

Nevertheless, the research on social groups is still rare. It is partially because of the lack of real-world datasets relating to
social groups. Recently, You et al. [21] empirically analyzed the real-world online social groups using Tencent QQdataset and
reported many anomalous properties, including sudden growth of group size, wide-spread scaling anomalies on group size,
degree and weight of connection network between groups, and special age effects and gender differences. Similar findings
recently were also reported by the analysis for the group information on Tencent Wechat [22]. These findings indicate that
there will be rich anomalous patterns hidden in real-world social groups, and raise the questions that what mechanism
drives the emergence of these patterns and what impacts of social groups on social dynamics. Furthermore, these empirical
findings will uncover some features of the organization of real-world social functional institutes/organizations because of
the strong coincidence of social groups. In this sense, themechanism studies on the evolution of social groupswill be helpful
for the understanding for the structure of real-world social institutes/organizations.

In this paper, we propose a model based on tag-driven expanding on social networks to mimic the expansion of social
groups and reconstruct their connections from friendship networks. Numerical simulations of the model generate rich
properties that can generally cover the empirical observations, indicating that the model successfully explains the origin
of these anomalous properties of real-world social groups.

2. The model

Since the relevant empirical studies are mainly aimed at the online social groups, the rules of our model also are in the
light of the online cases. Generally, a social group has a clear tag, and users who are interested in the tag or belong to the
institution attaching to the one tag will join the group. For example, a tag naming ‘‘Complex networks’’ will attract many
researchers studying complex networks. After a group is created by a user, its information will spread in his/her circles, and
the group will spring from the creator to his/her friends and then extend to their further neighbors if the tag of the group
can well fit their interests. This expansion is similar to the spreading of meme in society [23,24]. Actually, in a sense, social
groups also can be considered to be a type of meme.

Actually, besides the groups that can well fit the real-world social organizations or institutes and mainly contain strong
social contacts, for example, the members in a club or a research team often build groups in social societies, from the daily
life experience by the using of online social group, there is another type of group that usually has a tag of common interests
(e.g. music, pop stars, etc.) and contains many weak ties. Similar two types of groups have been observed in other group-
like online societies, like Tencent Wechat [22]. Empirical studies are difficult to distinguish the two types of groups and we
do not know the real-world proportions of the two types directly. Nevertheless, Ref. [21] reported that real-world groups
globally have the property of sudden growth, indicating that users usually would like to join a group that they have already
intended to join or been interested in before the creation of the group, and thus the strong-tie-driven groups are the vast
majority. We therefore construct our model from the tag-driven contacts between users and their neighboring groups.

Moreover, even though our datasets neither support the comparative study in individual level and nor provide direct
evidence, it is natural in turn to suppose that users with more social contacts have more possibilities to join groups.

From the perceptions above, our model is therefore based on real-world social networks with the tag-driven growing
process and various activities for group joining. For the coincidencewith the empirical results of social groups of Tencent QQ,
the friendship network of Tencent QQ users is used to be as a background network. The detailed description and sampling
method of the dataset of both social groups and friendship networks can be found in the Appendix. With the friendship
network, we run the model with the following rules:

(i) Each user (node) in the friendship network is granted anN dimensional binary tag vectorH = (h1, h2, . . . , hN)T , hi = 0
or 1, i = 1, 2, . . . ,N . Here, each hi represents a tag in the node’s interests, and hi = 1 if the user has the corresponding
tag and hi = 0 if the user has not the corresponding tag, and N represents the total types of tags. Since each user is
assumed to own at least one tag of interest, one randomly chosen component of its tag vector H is set as nonzero for
each node at first. As for each of the rest components ofH, it is randomly to be nonzero with a probability ω (see Fig. 1).

(ii) The total number of groups that will be created in the model is MG = 3,432,642, which is the total number of groups
averaged by 10 independently-sampled group sets (see Appendix). The creating method is as follows: each node (user)
in the friendship network firstly creates a group, and here we have MU groups (MU = 1,052,199 is the total number
of nodes in the friendship network). For each of the remainingMG − MU groups, with probability ρ, we randomly pick
an edge from the friendship network and randomly choose a node on the edge to be the creator of the group; or with
probability 1 − ρ, we randomly pick a node to be the creator.
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Fig. 1. (color online) Illustration of the possible expansion range of groups on friendship network. For the concision of the illustration, we suppose each
user (denoted by solid blue circles) has 5 tags, i.e. N = 5. The violet dots and the white dots in the graph corresponding to hi = 1 and hi = 0, respectively.
Here, the 3 dashed circles symbolize that there are 3 potential groups to be created by user A and F, which are, respectively, based on the first tag of interest
of user A and the third and fifth tag of user F. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

(iii) We randomly pick a nonzero tag from the creator’s tag vector to be the only nonzero element for the tag vector of the
group. For example, for a node’s H, if hi = 1, it will get possibilities, to create a group with tag hi.

(iv) With the definition that a user–group pair is created once a node joins a group, we set the total number of user–group
pairs is NG = 3,709,712, which is the number of real-world user–group pairs averaged by 10 independently-sampled
group sets.MG user–group pairs have been created in the procedures above, and the remaining NG −MG pairs is created
by the method similar to the above creator-picking: with probability ρ, we randomly choose a node from a randomly-
picking edge of the friendship network; or with probability 1 − ρ we just randomly pick a node; then we connect the
node to a group, which is randomly picked from the groups that the nodes’ neighbors has joined and have a same tag of
interest with the node, to create the user–group pair. If none of neighbors’ group satisfies the same-tag condition, we
repeat this selection till another pair is created.

There is not any dataset of social groups including the information of both social relationships and group institutes
released so far. Due to the absence of correspondences between the user information in the two datasets, we have to
compare the model running on a sampled friendship network with the empirical findings for sampled social groups. To
keep comparability, the total of joined users in each of sampled social group is kept to be equal to the user number of the
friendship network. More detailed sampledmethod is introduced in Appendix. Actually, this model describes amethod that
reconstructs relationships between social groups or social institutes from a friendship network.

3. Modeling results

Due to the limitation of datasets’ information, it has some difficulties in the discussion at individual level. What we
concerned here is the topological properties between different social groups. A natural connection between different social
groups is by their common members. We therefore construct a network to describe the relationship between different
groups using the following method that was used in the empirical analysis of social group reported by Ref. [21]: each group
is a node of the group network, and each pair of groups is connected by an edge if they have at least one common member,
and the number of common member is the weight, denoted as w, of the edge. In the following discussions, this network is
called ‘‘group network’’ and symbolized by G.

Empirical findings indicate that the real-world group network is scale-free and has heterogeneous weighted degree
distribution [21], therefore the following distributions of the modeling group network are mainly compared: (i) the group
size distribution p(S); (ii) the distribution p(kH) of the number of joined groups by individual users; (iii) the degree
distribution p(kG) of group network G; (iv) the distribution p(kGW ) for the weighted degree of group network G, here for
each node (node j, say), its weight degree kGW is defined as the total of edgeweight of all its connected edges: kGW = ΣkGwG.

During the simulation of our model, we have found that many similar statistical characteristics between the empirical
findings and our modeling results come up. As shown in Fig. 2, with suitable parameter settings, the major region in the
modeling distributions generally can be well parallel to the empirical curves, indicating that our model indeed catches the
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Fig. 2. (color online) Statistical patterns of the simulated group network for different ρ settings. Panels (a), (b), (c) and (d), respectively, are the group
size distribution p(S), the distribution p(kH ) of the number of joined groups by individual users, the degree distribution p(kG) and the weighted degree
distribution p(kGW ) of group network G. The black spheres show the empirical results, and other data points are the simulation results, and parameters
ω = 0.5, N = 20. The red dashed lines in panels (b), (c) and (d), respectively, show the power laws with exponent−3.8,−2.8 and−2.9. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

underlying mechanism driving the growth of social groups. Since our model do not consider the impact of limitation rules
of Tencent QQ on group size, the tails of the modeling group size distribution are higher than the one of empirical results,
as shown in Fig. 2(a).

The model is driven by a hybrid mechanism including various activities on group-joining and tag-based expanding and
has three major parameters: ρ, ω and N . For larger ρ, users with more social contacts have more certain probability to join
groups. Fig. 2(a) shows that the modeling group size distributions p(S) trend to close to the empirical results under the
setting with larger ρ. As shown in Fig. 2(b), the modeling distribution p(kH) decays in the same tail slope as the empirical
curve. The tail slope is about −3.8 and is insensitive to the value of ρ, however, the bump on the head of p(kH) is stronger
with a larger ρ setting, since p(kH) is mainly dependent on the degree distribution p(kF ) of the friendship network and the
bump on p(kF ) (see Fig. A.5 in Appendix) will also impact on p(kH) when ρ is large. Similar properties are also observed in
the degree distribution p(kG) and the weighted degree distribution p(kGW ) of group network G (Fig. 2(c) and (d)).

Parameters ω and N determine the number of common tags of interests between two neighboring nodes. Our model
limits the expanding of groups along the edges with common tag of interests. Larger ω means each pair of neighboring
users have more possibility to have a common tag of interest, and in this case groups generally easily expand in social
circles. However, simulations find out that all the distributions are insensitive to ω (Fig. 3), which partially results from that
only a little part of potential user–group pairs can be created with the limitationMG on the total of user–group pairs, as well
as the selection rule for the creating of user–group pairs in the model. We therefore compare the simulation results under
different limitation on the total of user–group pairs. Obviously, a fat tail on the group size distributions p(S) emerges under
a larger limitation 2MG (see Fig. 3(a)). As shown in Fig. 3(b), since the dependence on the degree distribution of friendship
network, p(kH) keeps slope for different limitations. Nevertheless, the slope of p(kG) and p(kGW ) obviously reduces when
the limitation grows, along with the relaxation on the bump on curves (Fig. 3(c) and (d)), indicating that the consistency
between the simulated p(kG) and p(kGW ) and empirical curves is based on the condition of the same total of user–group pairs.
In addition, it implies that the origin of the bump on p(kG) and p(kGW ) is not only because of the impact of the bimodal-like
degree distribution of friendship network, but also the insufficient group-joining of users.

Moreover, setting the limitation on the total of user–group pairs at 2MG, the effect of ω is more obvious: small ω causes
more heterogeneous form on the three structural distributions (Fig. 3(b), (c) and (d)), because in this case the hubs of
friendship network still keep a higher possibility in successfully joining in a group under a situation with more frequent
reselection at individual level, but thehigher failure probability ismainly takenby thenodes in periphery under thematching
condition of tag. The reselection probability λ for different ω can be found in the inset of Fig. 3(d). It is important to notice
the condition where the comparison between the modeling results and empirical findings is MG, the limitation of total
user–group pairs, even though in the above discussions we also show the case with a different limitation to discuss the
detailed dynamics in the model. At last, keeping other parameters’ setting constant, the total type N of tags does not show
significant impact in the model (Fig. 4).

4. Discussions

The core of the proposed model is the hypothesis that, active users will have more possibilities to join groups, and every
user in the friendship network has some tags of interest more or less, and they will create or join groups within their tags
of interest. As a minimummodel, neglecting several realistic cases that users possibly withdraw from groups, or groups can
be dismissed is inevitably only an approximation for the process of real emergence. Nonetheless, to do this would introduce
more parameters and cloud the basic result: the tendency of an individual to join a group is not only influenced by its tags of
interest, but also crucially related to its current external state in the social environment. The basic hypothesis of the model
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Fig. 3. (color online) Statistical patterns of the simulated group network for different ω settings and different settings on total of user–group pairs. Panels
(a), (b), (c) and (d), respectively, are the group size distribution p(S), the distribution p(kH ) of the number of joined groups by individual users, the degree
distribution p(kG) and the weighted degree distribution p(kGW ) of group network G. The black spheres show the empirical results, and other data points
are the simulation results, where ω settings, respectively, are 0.05, 0.20 and 0.50, and the limitations on the total of user–group pairs, respectively, areMG
and 2MG , and parameters ρ = 0.5,N = 20. The red dashed lines in panels (b), (c) and (d), respectively, show the power lawswith exponent−3.8,−2.8 and
−2.9. The inset in panel (d) shows the probability λ of reselection of a node in group joining vs. the value ofω, where the spheres and squares, respectively,
show the global averaged λ with different limitationMg and 2Mg , and the blue and pink circles/blocks, respectively, show the averaged λ for large degree
nodes (kF > 10) and small degree nodes (kF ≤ 10) with limitationMg (circles) and 2Mg (block) on the total of user–group pairs. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. (color online) Statistical patterns of the simulated group network for different N settings. Panels (a), (b), (c) and (d), respectively, are the group
size distribution p(S), the distribution p(kH ) of the number of joined groups by individual users, the degree distribution p(kG) and the weighted degree
distribution p(kGW ) of group network G. The black spheres show the empirical results, and other data points are the simulation results, and parameters
ρ = 0.5,ω = 0.5. The red dashed lines in panels (b), (c) and (d), respectively, show the power lawswith exponent−3.8,−2.8 and−2.9. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

is verified by the high consistency between the simulation results and the empirical findings. This mechanism provides a
heuristic insight to the understanding for both the emergence and the growth of social groups and the reconstruction of
social group network from friendship network.

Moreover, with another perspective, because online social groups usually correspond to offline functional social
institutes/organizations, our model actually provides a method to reconstruct the relationships between these social
institutes/organizations from friendship networks. Obviously, these institute-based relationships are important for social
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functional mechanism. However, partially because of large number of non-occupational social contacts in many online
societies, it is often difficult to directly analyze these institute-based relationships. Our model thus throws light on this
problem: we can firstly reconstruct a basic network using our model to represent the relationships between institutes from
friendship network, and then amendment its detailed connections with the supporting information.

And also, as a major platform for information publishing and public discussing, social groups and their background
functional social institutes/organizations play an important role in the online information spreading and the public opinion.
With the understanding of community topology properties and overlapping community structure of complex networks in
nature and society [25], the issues about public opinion emergence, information spreading and the co-evolution with social
structures or identifiable social tags [26–30] are becoming more prominent and more relaxable to analyze. Similarly, it is
expected that the properties and the mechanism can supply some heuristic sight to these issues. Consequently, our model
also shows a profitable significance for the research of these issues.

In summary, our study uncovers the underlyingmechanism driving the emergence and growth of social groups and finds
a way to statistically reconstruct social group networks from a friendship network, and bridges the gap between the action
of microscopic individuals and the emergence of macroscopic structures of social networks by social groups in mesoscopic
level.
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Appendix. Datasets description and sampling

Tencent QQ (the website of Tencent QQ: http://www.qq.com) is an instant communication tool developed by Tencent
Holdings Limited. It now has over 700 million active users and has become the largest online society in China.

The real-world social group dataset of Tencent QQ was released from the online open database: http://qun.col.pw. It
covers more than 58,523,079 groups and 274,335,183 users, of which 48,676,355 groups has the information with all ID,
member list, and date. The detailed analysis of this dataset can be found in Ref. [21].

In this paper, the model runs on a background friendship network. To be comparable, the friendship network of Tencent
QQ users is used here. The dataset of this friendship network, with 1,052,129 anonymous users and 8,022,535 friendship
edges, was released from the CCF-Tencent Open Research project (http://ur.tencent.com) in 2014.

This friendship networkwas sampled from the global Tencent database using the followingmethod: (i) 10,000 randomly
picked users was assumed as seed nodes, which were within active users, as was defined as those who had logged at least
one time within 30 days before this extraction time and whose registration time had been more than 1 year; (ii) add all
the friends of those seed users into the dataset; (iii) supplement the edges having been in the global database among these
nodes in the dataset yet not included in the dataset. And the network we are adopting is the largest connected component.

The average node clustering coefficient and the average distance of this sampled friendship network are 0.609 and 4.167,
respectively. Its degree distribution is heterogeneous and bimodal-like, and the latter region can bewell fitted by power law
with slope −1.69, as shown in Fig. A.5.

It is noticed that the release of the dataset of friendship network is independent with the dataset of QQ group, i.e., the
former is not the subset extracted from the latter. Therefore we are unable to know the corresponding relations between
users’ information in the two datasets. In our discussions, we use the simulated results to compare with the average
distributions of 10 independent group samples with same user size.

The sampling method of real-world social groups includes the following steps:

(i) we randomly pick MU users from the social group datasets as a sample of user set, and we assume these MU users are
‘‘known’’ users, whereMU = 1,052,199 is the total number of users in the friendship network;

(ii) all the groups that theseMU users joined to construct a sample of real-world social groups;
(iii) remove all the group members that are not among the set ofMU users from the sample of groups.

In thisway, the sampled group set contains all the groups that related to the sampled user set and has none of ‘‘unknown’’
users, which can be comparable with the modeling results that reconstructed from the friendship network with same size
of user set. However, some global distributions of the sampled group set have differences with the patterns of total groups.
Due to the sampled groups only keep the members in the set of MU users, the average size of the sampled groups is largely
reduced, and thus the group size distribution p(S) of the sampled groups is much narrower than the one of population, and
the deep bumps on the population distribution p(S) caused by the limitation rule of Tencent QQ on group size are no longer
obvious, as shown Fig. A.6(a). The distributions of p(kH) are well matched together (Fig. A.6(b)), and the middle region of
p(kG) and p(kGW ) of the sampled group set keeps parallel to the one of total groups (see Fig. A.6(c) and (d)). The obvious
branches in the tail of p(kG) and p(kGW ) of the sampled group set appear since few users in the sampled set join a large
number of groups.

http://www.qq.com
http://qun.col.pw
http://ur.tencent.com
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Fig. A.5. (Color online) The degree distribution p(kF ) of the QQ friendship network.

Fig. A.6. (color online) Comparison of four distributions of the population of QQ groups and group samples. Panels (a), (b), (c) and (d), respectively, are the
group size distribution p(S), the distribution P(kH ) of the number of joined groups by individual users, the degree distribution P(kG) of group network, and
the weighted degree distribution P(kGW ) of group network. The statistics of group samples are averaged by 10 independent samplings (blue data points).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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