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a b s t r a c t

Although attempts have been made to solve time-dependent differential equations using
homotopy perturbation method (HPM), none of the researchers have provided a universal
homotopy equation. In this paper, going one step forward, we intend to make some
guidelines for beginners whowant to use the homotopy perturbation technique for solving
their equations. These guidelines are based on the L part of the homotopy equation and
the initial guess. Afterwards, for solving time-dependent differential equations, we suggest
a universal L and v0 in the homotopy equation. Examples assuring the efficiency and
convenience of the suggested homotopy equation are comparatively presented.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the homotopy perturbation method (HPM), first proposed by Dr. Ji Huan He [1,2], has successfully been
applied to solve many types of linear and nonlinear functional equations. This method, which is a combination of homotopy
in topology and classic perturbation techniques, provides us with a convenient way to obtain analytic or approximate
solutions for a wide variety of problems arising in different fields.
Dr. He used HPM to solve Lighthill equation [1], Duffing equation [3] and Blasius equation [4], and then the idea
found its way in sciences and has been used to solve nonlinear wave equations [5], boundary value problems [6,7],
quadratic Riccati differential equations [8], integral equations [9–11], Klein–Gordon and sine–Gordon equations
[12,13], initial value problems [14,15], Schrödinger equation [16], Emden–Fowler type equations [17], nonlinear evolution
equations [18], differential-difference equations [19], modified KdV equation [20] and many other problems. This wide
variety of applications show the power of HPM in solving functional equations (although we know it has limitations, that
will be mentioned later on).
Studying the method, we understand that the idea is straightforward, but everyone has solved his/her own problem,

heuristically, using some tricks. Although this shows the flexibility of the method, a beginner confronts problems using
it . In this paper, we intend to somehow generalize the idea and make some guidelines. These guidelines may have been
discovered by other researchers but no one has presented them as general guidelines. After this general discussion, we
restrict ourselves to the case of time-dependent differential equations and suggest a quite simple technique for using HPM.
Comparatively speaking, even thoughwe don’t claim that the suggested technique is the best one, this is a reliable technique
which one can simply use without having much experience and understanding of HPM.
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2. Basic ideas of homotopy perturbation method

For a good understanding of the homotopy perturbation method, the reader is referred to Dr. He’s works [1,2], where
more developments could be found in [21,22]. Also Liao’s works [23,24] would be a good reference for this development,
because this method is quite similar to the method proposed by Liao, known as homotopy analysis method (HAM).
To describe the basic ideas, consider the time-dependent differential equation in the following general form

A(y(r, t))− f (r, t) = 0, (1)

where A is a differential operator, y(r, t) is an unknown function, r and t denote spatial and temporal independent variables,
respectively, and f (r, t) is a known analytic function. A, generally speaking, can be divided into two parts, L and N ,

A = L+ N, (2)

where L is a simple part which is easy to handle and N contains the remaining parts of A. Using homotopy technique one
can construct a homotopy φ(r, t; q) satisfying

H(φ(r, t; q), q) = (1− q){L(φ(r, t; q))− L(v0(r, t))} + q{A(φ(r, t; q))− f (r, t)} = 0, (3)

where q ∈ [0, 1] is an embedding parameter and v0(r, t) is an initial guess for Eq. (1), which satisfies initial/boundary
condition(s). Eq. (3) is called homotopy equation. Equivalently it can be written as follows:

L(φ(r, t; q))− L(v0(r, t))+ q{N(φ(r, t; q))+ L(v0(r, t))− f (r, t)} = 0. (4)

Clearly we have

q = 0⇒ H(φ(r, t; 0), 0) = L(φ(r, t; 0))− L(v0(r, t)) = 0, (5)

q = 1⇒ H(φ(r, t; 1), 1) = A(φ(r, t; 1))− f (r, t) = 0, (6)

which the latter is actually Eq. (1) with solution y(r, t). Eq. (5) has v0(r, t) as one of its solutions and in the case where L is
assumed to be linear, v0(r, t) is the only solution. So we have

φ(r, t; 0) = v0(r, t),
φ(r, t; 1) = y(r, t).

The changing process of q, from zero to unity, is just that of φ(r, t; q) from v0(r, t) to y(r, t), this is called deformation. If
the embedding parameter q (0 ≤ q ≤ 1) is considered as a ‘‘small parameter ’’, applying the classic perturbation technique,
we can naturally assume that the solution to Eqs. (5) and (6) can be given as a power series in q, i.e.

φ(r, t; q) = u0(r, t)+ u1(r, t)q+ u2(r, t)q2 + · · · . (7)

Using (7) for q = 1, one has

y(r, t) = u0(r, t)+ u1(r, t)+ u2(r, t)+ · · · (8)

which is the approximate solution to Eq. (1) (see, e.g. [1,2]). In most cases the series (8) is a convergent one which leads to
the exact solution of Eq. (1). One can take the closed form or truncate the series for obtaining approximate solutions. As this
method is an iterative method, so the Banach’s fixed point theorem can be applied for convergence study of the series (8).
The interested reader can refer to [25].

3. Guidelines for choosing homotopy equation

In a homotopy equation, what we are mainly concerned about are the auxiliary operator L and the initial guess v0.
Once one chooses these parts, the homotopy equation is completely determined, because the remaining part is actually
the original equation (see (4)) and we have less freedom to change it. Here we discuss some general rules that should be
noted in choosing L and v0.

3.1. Discussion on L

According to the steps of the homotopy perturbation procedure, L should be:
(i) ‘‘Easy to handle’’.

We mean that it must be chosen in such a way that one has no difficulty in subsequently solving systems of resulting
equations. It should be noted that this condition doesn’t restrict L to be linear. In some cases, as was done by He in [1] to
solve the Lighthill equation, a nonlinear choice of Lmay be more suitable. But, it’s strongly recommended for beginners to
take a linear operator as L.
(ii) ‘‘Closely related to the original equation’’.

Strictly speaking, in constructing L, it’s better to use some part of the original equation. We can see the effectiveness of this
view in [17] where Chowdhury and Hashim have gained very good results with technically choosing the L part (later on we
will show that they could choose other operators as L).

Altin
Highlight

Altin
Highlight



E. Babolian et al. / Mathematical and Computer Modelling 50 (2009) 213–224 215

3.2. Discussion on initial guess

There is no universal technique for choosing the initial guess in iterativemethods, but from previousworks done on HPM
and our own experiences, we can conclude the following facts:
(i) ‘‘It should be obtained from the original equation’’.

For example, it can be chosen to be the solution to some part of the original equation, or it can be chosen from
initial/boundary conditions.
(ii) ‘‘It should reduce complexity of the resulting equations’’.

Although this condition only can be checked after solving some of the first few equations of the resulting system, this is the
criteria that has been used by many authors when they encountered different choices as an initial guess.

4. The classic view on HPM

As done by many authors, in order to obtain a good approximation, one has to test different choices of L and v0 and then
choose the most suitable of all. This is the classic approach in using HPM and there is no general rule to choose L and v0.
Here we present two comparative examples to review this classic view.

Example 4.1. Consider the time-dependent Emden–Fowler equation

yxx +
2
x
yx − (6+ 4x2 − cos(t))y = yt ,

with the initial condition y(x, 0) = ex
2
, the boundary conditions y(0, t) = esin(t) and yx(0, t) = 0.We solve this equation

via HPM using different L and v0.

(i) We choose Lφ = ∂2φ
∂x2
+
2
x
∂φ

∂x and v0(x, t) = y(0, t) = e
sin(t), as used by Chowdhury and Hashim [17], this gives the

homotopy equation as follows:

φxx +
2
x
φx − v0xx −

2
x
v0x + q

{
v0xx +

2
x
v0x − (6+ 4x2 − cos(t))φ − φt

}
= 0.

Using (7), then equating the terms with identical powers of q, we have the following system of equations

u0xx +
2
x
u0x − v0xx −

2
x
v0x = 0, u0(0, t) = esin(t), u0x(0, t) = 0,

u1xx +
2
x
u1x − v0xx −

2
x
v0x − (6+ 4x2 − cos(t))u0 − u0t = 0, u1(0, t) = 0, u1x(0, t) = 0,

u2xx +
2
x
u2x − (6+ 4x2 − cos(t))u1 − u1t = 0, u2(0, t) = 0, u2x(0, t) = 0,

...
...

Subsequently solving the above equations we have

u0(x, t) = esin(t),

u1(x, t) = esin(t)
{
x2 +

1
5
x4

}
,

u2(x, t) = esin(t)
{
3
10
x4 +

13
105
x6 +

1
90
x8

}
,

u3(x, t) = esin(t)
{
3
70
x6 +

17
360
x8 +

59
11 550

x10 +
1
3510

x12
}
,

...

Finally, the approximate solution in a series form, according to (8) is

y(x, t) = esin(t)
{
1+ x2 +

x4

2!
+
x6

3!
+
x8

4!
+ · · ·

}
,

leading to the closed form y(x, t) = esin(t)+x
2
, which is the exact solution.

(ii) We choose Lφ = 2
x
∂φ

∂x and v0(x, t) = 0.
So we have the homotopy equation as follows:

2
x
φx + q{φxx − (6+ 4x2 − cos(t))φ − φt} = 0.
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Applying (7), then equating the terms with identical powers of q, we have the following system of equations

2
x
u0x = 0, u0(0, t) = esin(t),
2
x
u1x − (6+ 4x2 − cos(t))u0 − u0t = 0, u1(0, t) = 0,
2
x
u2x − (6+ 4x2 − cos(t))u1 − u1t = 0, u2(0, t) = 0,

...
...

which yields to

u0(x, t) = esin(t),

u1(x, t) = esin(t)
{
3
2
x2 +

1
2
x4

}
,

u2(x, t) = esin(t)
{
−3
4
x2 +

3
8
x4 +

9
12
x6 +

1
8
x8

}
,

u3(x, t) = esin(t)
{
3
8
x2 −

9
8
x4 −

93
48
x6 −

1
16
x8 +

15
80
x10 +

1
48
x12

}
,

...

Employing (8) we have

y(x, t) = esin(t)
{
1+ 3

(
1
2
−
1
4
+
1
8
−
1
16
+ · · ·

)
x2 +

(
1
2
+
3
8
−
9
8
+ · · ·

)
x4 + · · ·

}
,

which yields y(x, t) = esin(t){1 + x2 + x4
2! + · · ·}, leading to the closed form y(x, t) = e

sin(t)+x2 , which is also the exact
solution.
(iii) Our choice is Lφ = ∂φ

∂t and v0(x, t) = 0.
We have the homotopy equation as follows:

φt + q
{
φxx −

2
x
φx + (6+ 4x2 − cos(t))φ

}
= 0.

Using (7) and then equating the terms with identical powers of q, and then solving the resulting equations one has

u0(x, t) = ex
2
,

u1(x, t) = sin(t)ex
2
,

u2(x, t) =
1
2
sin2(t)ex

2
,

u2(x, t) =
1
6
sin3(t)ex

2
,

...

Again employing (8) the approximate solution is

y(x, t) = ex
2
{
1+ sin(t)+

sin2(t)
2!
+
sin3(t)
3!
+ · · ·

}
,

leading to the closed form y(x, t) = esin(t)+x
2
, which is the exact solution.

Example 4.2. Consider the Cauchy reaction-diffusion equation

yt = yxx − y,

with the initial condition y(x, 0) = e−x + x, the boundary conditions y(0, t) = 1 and yx(0, t) = e−t − 1.We solve this
equation via HPM using different L and v0.
(i) Our choice is Lφ = ∂φ

∂t and v0(x, t) = 0.
So we have the following homotopy equation

φt + q{−φxx + φ} = 0.
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Using (7), then equating the terms with identical powers of q, and then solving the resulting system of equations one has

u0(x, t) = e−x + x,
u1(x, t) = −xt,

u2(x, t) = x
t2

2!
,

u3(x, t) = −x
t3

3!
,

...

So we have the approximate solution

y(x, t) = e−x + x
(
1− t +

t2

2!
−
t3

3!
+ · · ·

)
,

yielding the closed form y(x, t) = e−x + xe−t , which is the exact solution.
(ii) We choose Lφ = ∂φ

∂t and v0(x, t) = y(x, 0) = e
−x
+ x, note that here we set our initial guess to be the initial condition

of the equation. In this case, we obtain the same terms as in (i).

(iii) We choose Lφ = −∂
2φ

∂x2
and v0(x, t) = 0.

So we have the homotopy equation

−φxx + q{φt + φ} = 0.

Using (7), then equating the terms with identical powers of q, and then subsequently solving the resulting equations we
have

u0(x, t) = 1+ x(e−t − 1),

u1(x, t) =
x2

2!
−
x3

3!
,

u2(x, t) =
x4

4!
−
x5

5!
,

...

Employing (8) leads to the exact solution

y(x, t) = xe−t +
(
1− x+

x2

2!
−
x3

3!
+
x4

4!
−
x5

5!
+ · · ·

)
= xe−t + e−x.

(iv)We choose Lφ = −∂2φ
∂x2

and v0(x, t) = y(0, t) + xyx(0, t) = 1 + x(e−t − 1), here we used the boundary conditions of
the problem to construct an initial guess (see. e.g, [26]).
In this case we come exactly to the terms obtained in (iii).
These comparative examples show the efficiency and flexibility of HPM in solving equations. We should note that HPM

has some limitations, for example when the equation under study contains terms like ln(y), sin(y), ey, cosh(y), . . . where
y is the unknown function. In such cases, we have to use Taylor’s expansion or some other approximations before applying
HPM, so it needs some tricks to obtain an analytic or approximate solution (see, e.g. [13,27,28]).

5. Proposed choices for L and v0

In time-dependent differential equations we propose to choose the L part using the highest order of derivative with
respect to (only) t , i.e.

Lφ =
∂φ

∂t
, Lφ =

∂2φ

∂t2
, . . . ,

depending on the appearance of them in the equation under consideration.
Also, we suggest to put

v0 = 0, i.e. the zero function.

In time-dependent differential equations there always exist derivatives with respect to time which have simple forms like
yt , ytt , . . . (not depending on the spatial variables of the equation). So according to discussion in Section 3.1, the L part can
be chosen as Lφ = ∂φ

∂t or Lφ =
∂2φ
∂t2
, . . . .
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When we set the initial guess (v0) as the zero function, applying (7), our first equation would be, e.g.
u0t = 0 with the initial condition u0(x, 0) = y(x, 0).

This equation always has u0(x, t) = y(x, 0) as its solution. Since u0(x, t) is the first term of our approximation, (8), so in this
way we automatically allow the initial conditions of the problem to play their role and efficiently take part in construction
of the solution. As an example, consider Cauchy reaction-diffusion equation, Example 4.2(i). If we choose the initial guess to
be v0(x, t) = y(0, t) + yx(0, t), as proposed in [26], we can’t solve the resulting equations easily, so the HPM fails to solve
the equation. Therefore, choosing v0 = 0, in an indirect manner we use the rules suggested in Section 3.2. Besides, in this
way, we escape from extra terms which may possibly destroy our analytic approximation (this comment is quite heuristic).
In [3] Dr. He eliminates the secular terms heuristically and Liao in [24] gets rid of them by employing the rule of coefficient
ergodicity. Our choice prevents their appearance.

6. Examples

6.1. Evolution equations

Ganji et al. [18] have solved three examples of evolution equations byHPMusing Lφ = ∂φ

∂t and, taking the initial condition
as the initial guess. We present here these three examples and solve them by choosing Lφ = ∂φ

∂t and v0(x, t) = 0 as the
initial guess.

Example 6.1.1. Consider the equation yt − yxxt + ( y
2

2 )x = 0 with the initial condition y(x, 0) = x.We have the homotopy
equation

φt + q
{
−φxxt +

(
φ2

2

)
x

}
= 0.

Employing (7) and then equating the terms with identical powers of q, then solving the resulting equations one has

u0(x, t) = x,
u1(x, t) = −xt,
u2(x, t) = xt2,
u3(x, t) = −xt3,
...

So we have the approximate solution as follows:

y(x, t) = x(1− t + t2 − t3 + · · ·) =
x
1+ t

,

which has less complexity in comparison with the solution given in [18].

Example 6.1.2. Consider the equation yt + yx = 2yxxt with the initial condition y(x, 0) = e−x. We have the following
homotopy equation

φt + q{φx − 2φxxt} = 0.

Using (7) and then equating the terms with identical powers of q, then solving the resulting system of equations one has

u0(x, t) = te−x,

u1(x, t) =
(
t2

2
+ 2t

)
e−x,

u2(x, t) =
(
t3

3!
+ 2t2 + 4t

)
e−x,

u3(x, t) =
(
t4

4!
+ t3 + 6t2 + 8t

)
e−x,

...

So the 7-term approximation is(
1+ 63 t +

129
2
t2 +

37
2
t3 +

49
24
t4 +

11
120

t5 +
1
720

t6
)
e−x

which is the same approximation obtained via variational iteration method (VIM) and HPM in [18].
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Example 6.1.3. Consider the equation yt − yxxxx = 0 with the initial condition y(x, 0) = sin(x). We have the following
homotopy equation

φt + q{−φxxxx} = 0.

Using (7), then equating the terms with identical powers of q, then solving the resulting system of equations one can see

u0(x, t) = sin(x),
u1(x, t) = −t sin(x),

u2(x, t) =
t2

2!
sin(x),

u3(x, t) = −
t3

3!
sin(x),

...

So we have the approximate solution as follows:

y(x, t) = sin(x)
(
1− t +

t2

2!
−
t3

3!
+ · · ·

)
=
sin(x)
1+ t

,

which is the exact solution and it is much easier to guess the closed form than that of [18].

6.2. Cauchy reaction-diffusion equations

Cauchy reaction-diffusion equations have been solved by various methods [26]. In Example 4.2, we solved one equation
of this type. Here we present some other examples of this family and compare our approximations with solutions obtained
via HAM in [26].

Example 6.2.1. We consider the equation yt = yxx + 2ty with the initial condition y(x, 0) = ex. We have the following
homotopy equation

φt + q{−φxx − 2tφ} = 0.

Applying (7) and then equating the termswith identical powers of q, then solving the resulting system of equations we have

u0(x, t) = ex,
u1(x, t) = (t + t2)ex,

u2(x, t) =
(t + t2)2

2!
ex,

u3(x, t) =
(t + t2)3

3!
ex,

...

So we have the approximate solution as follows:

y(x, t) = ex
(
1+ t + t2 +

(t + t2)2

2!
+
(t + t2)3

3!
+ · · ·

)
,

yielding the closed form y(x, t) = ex+t+t
2
, which is the exact solution as obtained via HAM in [26].

Example 6.2.2. We consider the equation yt = yxx − (1 + 4x2)y with the initial condition y(x, 0) = ex
2
. We have the

following homotopy equation

φt + q{−φxx + (1+ 4x2)φ} = 0.

Using (7) and then equating the terms with identical powers of q, then solving the resulting system of equations one can see

u0(x, t) = ex
2
,

u1(x, t) = ex
2
t,

u2(x, t) = ex
2 t2

2!
,



220 E. Babolian et al. / Mathematical and Computer Modelling 50 (2009) 213–224

u3(x, t) = ex
2 t3

3!
,

...

So we have the approximate solution as follows:

y(x, t) = ex
2
(
1+ t +

t2

2!
+
t3

3!
+ · · ·

)
,

yielding the closed form y(x, t) = ex
2
+t , which is the exact solution as obtained via HAM in [26].

Example 6.2.3. Consider the equation yt = yxx − (4x2 − 2t + 2)y with the initial condition y(x, 0) = ex
2
. We have the

following homotopy equation

φt + q{−φxx + (4x2 − 2t + 2)φ} = 0.

Using (7) and then equating the terms with identical powers of q, then solving the resulting system of equations we have

u0(x, t) = ex
2
,

u1(x, t) = ex
2
t2,

u2(x, t) = ex
2 t4

2!
,

u3(x, t) = ex
2 t6

3!
,

...

So we have the approximate solution as follows:

y(x, t) = ex
2
(
1+ t2 +

t4

2!
+
t6

3!
+ · · ·

)
,

yielding the closed form y(x, t) = ex
2
+t2 , which is the exact solution as obtained via HAM in [26].

6.3. Emden–Fowler type equations

Chowdhury and Hashim have solved the time-dependent Emden–Fowler type equations via HPM in [17]. Also Sami
Bataineh et al. [27] solved this type of equations using HAM.We presented one example of this family in Example 4.1. Here,
comparatively, we give three more examples in question.

Example 6.3.1. Consider the equation yxx+ 2x yx−(5+4x
2)y = yt+(6−5x2−4x4)with the initial condition y(x, 0) = x2+ex

2
.

Applying our method we have the following homotopy equation

φt + q
{
−φxx −

2
x
φx + (5+ 4x2)φ + (6− 5x2 − 4x4)

}
= 0.

Applying (7) and then equating the terms with identical powers of q, then solving the resulting equations we have

u0(x, t) = x2 + ex
2
,

u1(x, t) = ex
2
t,

u2(x, t) = ex
2 t2

2!
,

u2(x, t) = ex
2 t3

3!
,

...

So according to (8), the approximate solution is

y(x, t) = x2 + ex
2
(
1+ t +

t2

2!
+
t3

3!
+ · · ·

)
,
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leading to the closed form y(x, t) = x2+et+x
2
, which is the exact solution and has less complexity in its terms in comparison

with [17].

Example 6.3.2. Consider the equation yxx + 2
x yx − (5 + 4x

2)y = ytt + (12x − 5x3 − 4x5) with the initial condition
y(x, 0) = x3 + ex

2
. Applying our method we have the following homotopy equation

φtt + q
{
−φxx −

2
x
φx + (5+ 4x2)φ + (12− 5x3 − 4x5)

}
= 0.

Using (7) and then equating the terms with identical powers of q, then solving the resulting equations we have

u0(x, t) = x3 + (1− t)ex
2
,

u1(x, t) = ex
2
(
t2

2!
−
t3

3!

)
,

u2(x, t) = ex
2
(
t4

4!
−
t5

5!

)
,

...

So according to (8), the approximate solution is

y(x, t) = x3 + ex
2
(
1− t +

t2

2!
−
t3

3!
+
t4

4!
−
t5

5!
+ · · ·

)
,

leading to the closed form y(x, t) = x3 + ex
2
−t , which is also the exact solution. Our choice, in comparison with [17], has

less complexity to guess the closed form.

Example 6.3.3. Consider the equation yxx + 4
x yx − (18 + 9x

4)y = ytt − 2 − (18x + 9x4)t2 with the initial conditions
y(x, 0) = ex

3
and yt(x, 0) = 0.

In this examplewe use themodifiedHPM, proposed byOdibat in [29], sowe have themodified homotopy equation as follows:

φtt + q
{
−φxx −

4
x
φx + (18x+ 9x4)φ − (18x+ 9x4)t2

}
= 2.

Applying (7) and then equating the terms with identical powers of q, then solving the resulting equations we have

u0(x, t) = t2 + ex
3
,

u1(x, t) = 0,
u2(x, t) = 0,
u3(x, t) = 0,
...

Employing (8), we simply have the exact solution

y(x, t) = t2 + ex
3
.

6.4. Klein–Gordon equations

Klein–Gordon equations have been solved using HPM by Chowdhury and Hashim in [13], where they used a technical
initial guess and obtained very good approximations. Also Odibat and Momani in [12] have solved this problems via HPM.
Here, we test the efficiency of our choice on this family.

Example 6.4.1. We consider the linear Klein–Gordon equation ytt − yxx = ywith the initial conditions y(x, 0) = 1+ sin(x)
and yt(x, 0) = 0.
Our choice leads to the following homotopy equation

φtt + q{−φxx − φ} = 0.
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Using (7), then equating the terms with identical powers of q, then solving the resulting equations, we have

u0(x, t) = 1+ sin(x),

u1(x, t) =
t2

2!
,

u2(x, t) =
t4

4!
,

u3(x, t) =
t6

6!
,

...

So according to (8), the approximate solution is

y(x, t) = sin(x)+
(
1+

t2

2!
+
t4

4!
+
t6

6!
+ · · ·

)
,

which yields the closed form y(x, t) = sin(x)+ cosh(t). So we have the same terms as obtained in [13].

Example 6.4.2. We consider the nonlinear nonhomogeneous Klein–Gordon equation ytt − yxx−2y = −2 sin(x) sin(t)with
the initial conditions y(x, 0) = 0 and yt(x, 0) = sin(x). Our choice leads to the following homotopy equation

φtt + q{−φxx − 2φ + 2 sin(x) sin(t)} = 0.

Applying (7), equating the terms with identical powers of q, then solving the resulting equations one can see

u0(x, t) = t sin(x),

u1(x, t) = sin(x)
{
2 sin(t)− 2t +

t3

6

}
,

u2(x, t) = sin(x)
{
−2 sin(t)+ 2t −

t3

3
+
t5

120

}
,

u3(x, t) = sin(x)
{
+2 sin(t)− 2t +

t3

3
−
t5

60
+
t7

7!

}
,

u4(x, t) = sin(x)
{
−2 sin(t)+ 2t −

t3

3
+
t5

60
−

t7

2× 6!
+
t9

9!

}
,

...

Using (8), for obtaining an approximate solution, some terms that appear in u2i−1 are canceled out with the terms
appearing in u2i, then an approximate solution is

y(x, t) = sin(x)
{
t −
t3

3!
+
t5

5!
− · · ·

}
,

which implies the closed form y(x, t) = sin(x) sin(t).
Chowdhury and Hashim in [13] have obtained the exact solution of the aforementioned equation in the first iteration. Our
choice also gives a convergent series and this is worthy of note because we use a general approach.

Example 6.4.3. We consider the nonlinear nonhomogeneous Klein–Gordon equation ytt−yxx+y2 = −x cos(t)+x2 cos2(t)
with the initial conditions y(x, 0) = x and yt(x, 0) = 0, which has the exact solution y(x, t) = x cos(t). Our analytic
approximation seems complicated but still converges to the exact solution.The 4-term approximation is

yapp4(x, t) = u0(x, t)+ u1(x, t)+ u2(x, t)+ u3(x, t)

= cos(t)
{
1
32
t2 cos2(t)+

5
192
t4 −

33
256

cos2(t)−
23
256
t2 +

1
256

cos4(t)

+
1
8
−

7
1440

t6 −
1
16
t cos(t) sin(t)

}
x4

+ cos(t)
{
−64
9
+ 2t sin(t)+

43
6
cos(t)+ 2t2 −

1
6
t4 −

1
2
t2 cos(t)−

1
18
cos3(t)

}
x3



E. Babolian et al. / Mathematical and Computer Modelling 50 (2009) 213–224 223

Table 1
Absolute errors of a 4-term approximation of Example 6.4.3.

xi ti |y− yapp4|

0.1 0.1 3.749× 10−12

0.2 0.2 1.128× 10−9

0.3 0.3 3.175× 10−8

0.4 0.4 3.229× 10−7

0.5 0.5 1.781× 10−6

Table 2
Absolute errors of a 4-term approximation of Example 6.4.4.

xi ti |y− yapp4|

0.1 0.1 1.247× 10−16

0.2 0.2 2.044× 10−12

0.3 0.3 5.968× 10−10

0.4 0.4 3.349× 10−8

0.5 0.5 7.615× 10−7

+ cos(t)
{
1
4
cos2(t)+

1
4
t2 −

1
12
t4 −

1
4
+ cos(t)+

1
90
t6

}
x

+ cos(t)
{
1
8
cos2(t)−

15
8
t2 − 4 cos(t)+

1
8
t4 +

31
8

}
.

In Table 1,we have computed the absolute errors for this approximation at somepointswhich shows efficiency of our choice.

It seems that the error increases by increasing t and x. It is because we have used only 4 terms in our approximation. So
it isn’t a big problem. For obtaining more accurate results (with smaller error values) one should use more terms in his/her
approximation.

Example 6.4.4. Consider the nonlinear nonhomogeneous Klein–Gordon equation ytt − yxx+ y2 = 6xt(x2− t2)+ x6t6 with
initial conditions y(x, 0) = 0 and yt(x, 0) = 0, which has the exact solution y(x, t) = x3t3. Our choice in this example yields
a 4-term approximation as follows:

yapp4 = u0 + u1 + u2 + u3

= x3t3 +
53
4200

x4t10 −
13
92 400

x2t12 −
1

959 616
x12t18 +

1
19 600

x7t15 −
1
4368

x9t13.

In Table 2,we have computed the absolute errors for this approximation at somepointswhich shows efficiency of our choice.

Again, we can use more terms in our approximation to get more accurate results for larger values of t and x. Moreover
we should indicate that our choice in computing the error in points (x, t) with equal values of x and t is arbitrary and one
can get very close results by choosing other (not equal) values.
Here, it is worth noting that the initial guess proposed by Chowdhury and Hashim in [13] may not be an efficient choice
when used for other types of problems. For example when their initial guess is applied to time-dependent Emden–Fowler
type equations [27], it yields a divergent series.

7. Conclusions

In this paper, we proposed some guidelines for beginners who intend to solve their problems using the homotopy
perturbation method. In the sequel we comparatively reviewed procedures which are used by researchers, through two
examples. Then we presented a simple way to choose L and v0 when we use the homotopy perturbation method to solve
time-dependent differential equations. In most cases, our simple choice yields exact an solution or at least very good
approximations. Although there are examples that showour choice isn’t as good as other choices, it still produces convergent
series that makes it a reliable one in solving a wide class of functional equations.
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