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Abstract—As the unique identification of a vehicle, license plate
is a key clue to uncover over-speed vehicles or the ones involved
in hit-and-run accidents. However, the snapshot of over-speed
vehicle captured by surveillance camera is frequently blurred
due to fast motion, which is even unrecognizable by human.
Those observed plate images are usually in low resolution and
suffer severe loss of edge information, which cast great challenge
to existing blind deblurring methods. For license plate image
blurring caused by fast motion, the blur kernel can be viewed
as linear uniform convolution and parametrically modeled with
angle and length. In this paper, we propose a novel scheme based
on sparse representation to identify the blur kernel. By analysing
the sparse representation coefficients of the recovered image, we
determine the angle of the kernel based on the observation that
the recovered image has the most sparse representation when the
kernel angle corresponds to the genuine motion angle. Then, we
estimate the length of the motion kernel with Radon transform
in Fourier domain. Qur scheme can well handle large motion
blur even when the license plate is unrecognizable by human.
We evaluate our approach on real-world images and compare
with several popular state-of-the-art blind image deblurring
algorithms. Experimental results demonstrate the superiority of
our proposed approach in terms of effectiveness and robustness.

Index Terms—Kernel parameter estimation, license plate de-
blurring, linear motion blur, sparse representation.

I. INTRODUCTION

License plate is the unique ID of each vehicle and plays
a significant role in identifying the trouble-maker vehicle.
Nowadays, there are lots of auto over-speed detection and
capture systems for traffic violation on the main roads of
cities and high-ways. However, the motion of vehicle during
the exposure time would cause the blur of snapshot image.
Therefore, the exposure time (shutter speed) has significant
impact on the amount of blur. For video shooting, the exposure
time is largely dependent on the illumination situations. In
usual outdoor scene with sunshine, the typical exposure time
is about 1/300 second. For a vehicle running at 60 miles per
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Fig. 1: One example of fast-moving vehicle image and our final deblurred
result.

hour, during the exposure time, the displacement of license
plate is about 9 centimeters which is comparable with the size
of the license plate (14 x 44 centimeters in China), i.e., the
length of kernel is about 45 pixels when the license plate image
is with size of 140 x 440 pixels and the angle between camera
imaging plane and horizontal plane is about 60 degree. In such
a scenario, the blur of license plate cannot be neglected. In an
ideal scenario with sound illumination, the blur from shorter
exposure time, say, 1/1000 second, can be minor and may
not damage the semantic information. However, under poor
illumination situations, the camera has to prolong the exposure
time to obtain a fully exposed image, which easily incurs the
motion blur. Besides, for high-resolution digital cameras, high-
speed videography is also susceptible to motion blur [1]. When
the vehicle is over-speeded, such blurring effect from fast
motion becomes much more severe, resulting in plates far from
detectable, recognizable and difficult for retrieval [2]-[5]. In
this scenario, the fundamental task of license plate deblurring
is to recover the useful semantic clue for identification. For
example, for a blurred snapshot of over-speed vehicle, the most
important issue is to recognize its license plate after image
deblurring.

In the last decades, blind image deblurring/deconvolution
(BID) has gained lots of attention from the image processing
community. Although some advances have been made, it is
still very challenging to address many real-world cases. Math-
ematically, the model of image blurring can be formulated as:

B(x,y) = (k* I)(z,y) + G(z,y) (1)

where B, I, and k denote the blurred image, the sharp image
we intend to recover, and the blur kernel, respectively; G is
the additive noise (usually regarded as white Gaussian noise);
and * denotes convolution operator. For BID, the kernel £ and
sharp image [ are both unknown. According to whether the
kernel k is spatially-invariant or not, the BID problem can
be divided into two categories: uniform BID and non-uniform
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Fig. 2: Flow chart of the proposed method.

BID. For uniform BID, the kernel k is often called point spread
function.

In recent years, many effective BID algorithms have been
proposed. Due to the ill-posed nature of BID, prior knowledge
is usually introduced to avoid falling into the incorrect solu-
tions. Most of them simultaneously estimate kernel from the
blurred image and apply a non-blind image deblurring (NBID)
algorithm recursively to approach the true solution [6]-[10].
Another alternative is to take a two-step strategy, in which
the key point is to estimate an accurate kernel, then NBID
algorithm is only applied once to obtain the final restored
image [11]-[13].

Compared with the classical BID problems, license plate
deblurring has its own distinctive characteristics. Fig. 1 shows
one example of images on fast moving vehicle in a real
scenario. In this scenario, instead of improving the visual
quality, we are more interested in generating a recognizable
result. The challenges for license plate deblurring lie in three
aspects.

1) The surveillance camera is usually designed for captur-
ing a big scene that includes a whole vehicle, therefore,
the license plate only occupies a small region of the
whole image. This leads to insufficient details for kernel
estimation.

2) Due to the fast motion, the size of blur kernel is very
large. The edge information is degraded severely and is
unavailable from blurred images. Therefore, the methods
based on large scale edges cannot work robustly and
even may fail in some situations [14].

3) The content of licence plate image is very simple, most
of edges lie in horizontal and vertical directions. Thus,
the methods based on isotropy assumption [12] may also
not work well for license plate image.

In this paper, we target on this challenging BID problem:
blind deblurring of fast moving license plate, which is severely
blurred and even unrecognizable by human. Our goal is to
recover a sharp license plate with confidence that the restored
license plate image can be recognized by human effortlessly.
Generally speaking, the blur kernel is dominated by the
relative motion between the moving car and static surveillance
camera, which can be modeled as a projection transform [15].
However, the kernel can be approximated by linear uniform
motion blur kernel. The task of blur kernel estimation can
be reduced to the estimation of two parameters in the linear
motion kernel: angle (#) and length (7). Given a linear kernel
kg1, a corresponding deblurred image ng can be obtained
by applying NBID on the blurred image B with kg ;. Then

the sparse representation coefficients of je’l on pre-trained
dictionary can be denoted as A(0,1), which is a function of
and [. We observe that A(6,1) shows very useful quasi-convex
characteristic under a fixed [. By utilizing this interesting
characteristic, we can infer the true angle of the blur kernel
efficiently. Once the angle is determined, on the direction
parallel to the motion, the power spectrum of blurred image
is obviously affected by the linear kernel based on which the
spectrum is a sinc-like function, and the distance between its
two adjacent zero-crossings in frequency domain is determined
by the length of kernel. In order to reduce the effect of noise
and improve the robustness of length estimation, we utilize the
Radon transform in frequency domain. After kernel estimation,
we obtain the final deblurring result with a very simple NBID
algorithm.

The rest of this paper is organized as follows. In Section II,
we review several popular methods about BID and kernel
parameter estimation. In Section III, we introduce the useful
property of sparse representation coefficients and present our
kernel parameter estimation in detail. Deblurring results and
comparing experiments with the state-of-the-art blind image
deblurring algorithms are provided in Section IV. Finally, we
conclude this paper in Section V.

II. RELATED WORK

From the perspective of Bayesian inference, there are two
main alternatives for BID: maximum a posteriori (MAP)
methods and marginalization methods. On the other hand, for
specific kernel, the recovery can be reduced to a parameter
estimation problem. In this section, we will review several
representative BID schemes in the above three categories.

A. MAP methods

The MAP methods attempt to obtain the latent image by
solving the following optimization problem:

(k. I) = argmax{p(k, [|B) o p(Blk, Dp(k)p(1)} ()

where p(B|k, I) is the likelihood item which is usually mod-
eled with a Gaussian distribution; p(k) and p(I) denote the
prior knowledge of kernel and latent image, respectively.

As Levin et al. [11] pointed out, the solution of naive
MAP framework with gradient sparsity prior usually does not
necessarily correspond to the kernel and sharp image, but leads
to the result favoring the “no blur” solution (f = B). To avoid
obtaining a “no blur” solution, several preprocessing methods
have been proposed for the MAP framework. Shan et al. [7]
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Fig. 3: Images used in our simulation experiment.

introduced a new model of spatially random distribution of
image noise and a new smooth constraint of latent image.
In [6], [10], the authors proposed to add one prediction (or
selection) step to enhance the large scale edges to improve the
performance. Based on the same idea, Xu ef al. [8] introduced
an unnatural ¢, sparsity prior, and the sparsity function used in
their algorithm has the similar effect with edge prediction. In
this strategy, the edge prediction is critical for the deblurring
performance.

Another alternative is to introduce more complicated prior,
such as framelet [16], [17] and transparency information [18],
[19]. Motivated by the great success of sparse representation in
the field of image processing and computer vision [20], [21],
the sparsity on a learned over-complete dictionary is used as
the prior of sharp image in Hu’s work [22]. For the special
blurred document, Chen [23] and Cho [9] introduced a well-
designed prior which is computed by text detection algorithm
[24], [25]. However, both of these two methods require that the
image is big enough and the background is not very complex.
Goldstein et al. [26] proposed to estimate the power spectrum
of the blur kernel with a spectral whitening formula. Liu et
al. [27] introduced a convex kernel regularizer to the prevalent
nonblind deconvolution methods, which showed impressive
performance in their paper.

There are also other researchers resorting to more informa-
tion about the latent sharp image. Zhang et al. [28], Yuan et
al. [29] and Hu et al. [30] proposed to use a pair of images
to estimate a more accurate blur kernel, which can reduce the
deblurring artifacts. Tai et al. attempted to solve the deblurring
problem by constructing a special camera hardware which
can record an auxiliary lower resolution but higher frame-
rate video [1]. However, the requirement of multi-observation
method or hardware is infeasible in many real applications
[31], [32].

The limits of MAP framework are obvious. Firstly, MAP
with simple gradient prior cannot guarantee that the true
solution is available in most area of images. Secondly, when
the kernel size is very large, usually insufficient edges can be
filtered out in the blurred image, which significantly affects
final result.

B. Marginalization methods

The marginalization methods are based on the observation
that maximizing p(k|B) usually leads to a more robust and

accurate kernel even under a weak prior of sharp image [11],
[13], [14], [33]. These methods firstly estimate the kernel
by expectation maximization (EM) algorithm, and then apply
NBID only once. Wang et al. [14] combined the marginaliza-
tion method and large scale step edge prediction technique to
improve the robustness of deblurring algorithm.

However, it can be proved theoretically that the max-
marginalization method can only handle small kernel situations
(i.e., the size of kernel is much smaller than the size of
observed image). In fact, in our scenario, the kernel size even
reaches one-third the size of the blurred image. Another draw-
back of the marginalization method is that the computational
complexity grows rapidly by introducing the EM algorithm.

C. Parametric kernel estimation methods

Most of the algorithms mentioned above attempt to estimate
a general kernel with the only constraint that every element of
kernel is nonnegative. However, in real world, several common
blur kernels are parametric, such as blur caused by moving at a
constant speed and out-of-focus blur [12]. The blur estimation
problem can be reduced to a parameter estimation problem
which is much more tractable. Parametric blur estimation
algorithms utilize the property that linear uniform blur kernel’s
spectrum is sinc-like function which is distinctive from natural
image [12], [34]. Oliveira et al. assumed nature image to be
approximately isotropic, which is valid for natural image with
large size. However, for small image, the spectrum is heavily
dependent on the content of the image such as large scale
edge.

For non-uniform deblurring, the kernel estimation is a
thornier problem because a strict non-uniform kernel has too
many degrees of freedom. To simplify the estimation of kernel,
the non-uniform blurring is typically assumed to be caused by
projection transform [35]-[37]. Whyte et al. [35] assumed that
the blur from camera shake is mostly due to the 3D rotation
of camera, which could be approximated by roll, yaw and
pitch. In a similar way, Gupta et al. [36] reduced the motion
of camera into 3D subspace: roll and x, y-translations. In a
recent work, Zheng et al. [37] estimated the normal vector
of the plane in the camera scene and the camera’s motion
direction to handle the forward or backward motion blur.

For over-speed license plate deblurring, the size of blur
kernel is very large, even reaching one-third of the size
of blurred image, which poses great challenges to both the
MAP and marginalization methods. To tackle this problem,
we adopt the blur kernel parameter estimation method (angle
and length). For angle estimation, our scheme makes use of the
relationship between the kernel angle and sparse representation
coefficients. For length estimation, we exploit the fact that the
behavior of power spectrum is significantly affected by the
length of kernel in Fourier domain. The major advantage of our
method is that the proposed scheme can handle large motion
blur even when the license plate is unrecognizable by human,
which makes our approach promising in real applications.

III. ESTIMATION OF BLUR KERNEL

Generally, the blur kernel is determined by the relative
motion between the moving vehicle and static surveillance
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camera during the exposure time. When the exposure time
is very short and the vehicle is moving very fast, the motion
can be regarded as linear and the speed can be considered
as approximately constant. In such cases, the blur kernel of
license plate image can be modeled as a linear uniform kernel
with two parameters: angle and length [15]. In the following
Section III-A, we introduce how to utilize sparse represen-
tation on over-complete dictionary to evaluate the angle of
kernel robustly. After the angle estimation, in Section III-B,
frequency domain-based method is proposed to estimate the
length of kernel. At last, we summarize our algorithms in
details in Section III-C. Fig. 2 shows the overall flow chart
of our proposed scheme.

A. Angle estimation of linear uniform kernel

Sparsity on learned over-complete dictionary as the prior
of sharp image has been well discussed [21], [22], however,

sparse representation has received little attention in parameter
inference.

In fact, parameter estimation also corresponds to an opti-
mization problem in a Bayesian view. For angle estimation, it
can be regarded as solving the following problem:

. A
(0, 1) = argmin{—logp(I) + Slko + I = Bt} ()

where B is the blurred image, I denotes the latent image to be
recovered, kg is the linear uniform motion kernel determined
by angle 6 (ignore length here), and p(I) is the prior of the
sharp image.

By introducing sparse representation, in our angle estima-
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tion algorithm, we attempt to solve:
9= i i
argmin Z oy |
st. ;X = Doy 4)
. A
X = argmjln{|[|TV + 5%9 xI — B|%}

where D is pre-learned over-complete dictionary on the sharp
license plate images, {2; is the patch extraction operator, and
«; is the sparse representation coefficients of the ¢th patch.
The physical meaning of Eq. (4) is that the angle we intend
to estimate is the one with which the recovered sharp image
has the sparsest representation.

3> |ail

The key to solve Eq. (4) is to estimate the gradient —,
However, it is difficult to directly solve such a two-layer
optimization problem. In order to investigate the relation
between Y |a;| and the variable 6, we decompose Eq. (4) into
two simpler sub-problems. For a given parameter pair (4,1),
we first solve the following optimization problem,

A
X:argmlin{|f|Tv+§|/€0*I—B|%} )

Then the sparse representation coefficient ) |a;| can be
computed by solving:
min Yo

Here, for simplicity, we define A = ) |a;|. Therefore, A(6,1)
can be regarded as a function of kernel parameters (6,17). In
order to explore the property of A(#) (ignore [ here), we have
done some experiments on two example images: Lena and
a real sharp license plate image (shown in Fig. 3). Firstly,
we blur the sharp Lena and license plate image with a linear
uniform motion blur kernel with an angle of 80 degrees and
a length of 35 pixels (@ = 80°,] = 35). In Fig. 4, we plot
the relation between A and 6 under different length settings
for Lena and the license plate, respectively. In Fig. 5, we
add Gaussian white noise to the blurred image (the standard
variance o0 = 5). We can see that no matter whether noise
exits or not in the observed images, the relation between A
and 6 shows a quasi-convex curve on both natural and license
plate images. Under different length settings, the minimum of
A is achieved when 6 corresponds to the ground truth angle.

Furthermore, we explore this characteristic of sparse repre-
sentation on three plate images. Each image is blurred by a
series of linear motion blur kernels (angle varying in the range
[0°,90°] under three length settings) with Gaussian noise. The
angle that corresponds to the smallest score A is regarded
as our estimated angle. Fig. 6 reports the accuracy assessed
by root mean squared error (RMSE)(in degree) over 5 runs
under different ground truth kernel settings. The errors of angle
estimation stay in a low level and are essentially independent
of the ground truth angles.

The main difficulty in solving the optimization by Eq. (4) is
that the gradient cannot be calculated efficiently. However, the
quasi-convex property from the sparse representation brings a
great improvement on this optimization problem. Even though

the gradient %—’g has no closed form, we can estimate the

(6)
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Fig. 6: RMSE of angle estimation. The noise level is o = 5.

gradient by computing Eq. (5) and (6) twice. Then we use
the gradient descent method to find the optimization value. In
Fig. 4 and Fig. 5, we can see that there are several outliers on
the curves. In order to reduce the effect of outliers, the step
of gradient descent should not be too small. However, large
step may lead to the degradation of accuracy. So we propose a
two-step coarse-to-fine angle estimation algorithm, which will
be elaborated on in Section III-C.

As mentioned above, the sparse representation score A
provides us a useful clue to determine the angle of the blur
kernel. In addition, there are also some other blurriness metrics
which were proposed recently. As a typical example, Liu et
al. proposed a complex metric for motion deblurring, which
combined several popular image quality assessment measures
[38]. We first blur Fig. 3(b) with kernel (f = 80°,1 = 35) to
obtain the blurred image, which is then deblurred with a series
of linear uniform kernels using Eq. (5). For each deblurred
image, the corresponding Liu’s measure can be calculated.
Fig. 7(a) shows the relation between Liu’s metric and the
kernel parameters, where higher value means better deblurring
performance. Comparing with Fig. 4(b), under different length
settings, the curves show distinct trends. Especially when the
length setting is shorter than the ground truth (see green and
blue curve in Fig. 7(a)), Liu’s metric fails to achieve the peak
value around the ground truth (§ = 80°). Besides, there are
many statistically justified metrics as well. Here, we adopt the
classical Steins unbiased risk estimate (SURE). The result of
SURE in Fig. 7(b) is obtained by Monte-Carlo algorithm, in
which each point is computed using 10 examples [39], [40].
The SURE also shows the similar quasi-convex properties.
However, the SURE keeps in low value in large range around
the ground truth (see blue, green and red curves in Fig. 7(b)),
which makes it difficult to determine the optimal angle as the
final estimation result.

Different from the general natural scene images, license
plate images usually only contain some specific characters,
such as English letters and digits. Therefore, license plate
images are characterized by very particular and limited pat-
terns, which can be well learned by sparse representation. In
this paper, our dictionary is trained on sharp license plate
images. Hence, the prior knowledge about license plate images
is already embedded in the over-complete dictionary. In this
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view, the prior used in this paper is more specific and adaptive,
which is beneficial to angle estimation.

Sparse representation coefficients show great potential in
the angle estimation of linear uniform kernel. A natural
extension is to apply it to the length inference. However,
sparse representation coefficients do not show such quasi-
convex characteristic with the variation of length. As shown
in Fig. 4(a), Fig. 4(b), and Fig. 5(b), A achieves the minimum
when [ is set as 25, while the ground truth of length is 35.
Furthermore, in Fig. 8, we plot the relation between A and
I when the angle is fixed, where the sparse representation
coefficients show the monotonic increasing property with the
increase of [. In other words, if we use the sparsity on over-
complete dictionary as prior, the result favors a shorter kernel
no matter whether the angle is correct or not.

B. Length estimation of linear uniform kernel

Once the direction of motion has been fixed, we can rotate
the blurred image to make this direction horizontal. Then the
uniform linear motion blur kernel has the form as below:
r=0,1,--L—-1;, y=0

otherwise

(@) =

k(z,y) = )

The magnitude of the frequency response of k(z,y) on hori-
zontal direction is given by the following equation:

sin(£22)

Lsin(5g)

|F]€(U)|O( U:0717aN_1 (8)
where N is the size of blurred image in pixel. Given two
successive zero points vy, vy of Fj(v), it is easy to obtain

that:
N

L=
[v1 — va]

©))
Thus, the core of length estimation is to estimate the distance
between two adjacent zero points of frequency response of
kernel. In frequency domain, the uniform blur model can be
written as:

Fp(u,v) = Fp(u,v)Fr(u,v) + Fg(u,v) (10)

where F' denotes the Fourier transform operator.
We can find that the zero points of Fj, is also the zeros points
of F'p without considering noise. In most of real situations,
it is difficult to directly search zero points in the frequency
response of observed image. Due to noise, the zero points of
F}; may not exactly denote the zero points of F'z; however, the
magnitude of Fp around zero points still can be distinguished
from other points as the power spectrum of natural images
along lines through the origin point obeys the following power-

law [41] [42]
[Fr(w)] o< |w]™7

Y
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where the value of v may vary with the angle of lines due to
the presence of large scale edge. Next, we exploit the power-
law and Radon transform to infer the distance between two
adjacent zero points of |Fj]|.

Radon transform is an integral transform that collects the
sum of a function over straight lines. Radon transform result
can be represented by the angle between horizontal axes o
and the distance to the origin point p [43]. For BID, Radon
transform is proposed to estimate the motion blur kernel [12],
especially when the observed image is corrupted by noise
[44], [45]. In our length estimation algorithm, we adopt the
modified Radon transform which only considers the center
area of blurred image [12]. The modified Radon transform is
defined as:
+d

f(pcosa — xsina, psina + z cos a)dx

(12)
where f is a general 2D function to be Radon transformed. For
the blurred images, under weak noise assumption (Fg = 0),

Ry(a,p) =

Algorithm 1 Coarse angle estimation

Input: Blurred image B, step A, initial angle 6y, a moderate
length [, k=0

1: while not converged do

2:  Generate uniform linear kernel k; ¢, , k1,6, —A, k1,6,+A

3:  Solve Eq. (5) with kernels k; g, k1,6, —A, ki,0,+, g€t
deblurred images Il,gk, Il,Gk—A, Il,ek—i—A

4: Solve Eq. (6) with Ilﬂk, Il,ek—A’ Il,O;ﬁ-As get Al,ékn
Alo—ns AlLo+n

S: if Al,Gk == min(Al,OkyAl,ekav Al,0k+A)

6: converged and return

7: elseifAlygk_A == min(Awk R Al,Hk—Av Al,@;ﬁ-A)
8: 0 < 0, — A

9: else

10: O < 01, + A

11: end while
Output: 6y

we have

Riog |FB\(0‘7 p) =~ Riog |Fr| (o, p) + Riog |7, (o, p) (13)
Based on the assumption of power-law, for one fixed angle
a, Rig| le(P) is also a polynomial function. We use a three
order polynomial function to fit Ri,g |5, (p)
Riog |ps|(p) = ap® +bp> + cp+d (14)
The local minimums of Riog |py|(p) — qug |F|(p) correspond
to the zeros points of Ri,g|m(p), as shown in Fig. 9.
Through detecting the distance between two consecutive local
minimums of Ri,g |y, (p) — Rlog |F|(p), we can then estimate
the length of kernel by Eq. (9).

We report the performance of the proposed length estimation
method in Fig. 10. The estimation error is also assessed by
RMSE (in pixel) on three plate licence images with size of
about 200 x 400. The estimation error stays in low level under
three angle settings with the variation of length.

C. Summary of proposed scheme

In the angle estimation stage, we adopt a two-step coarse-
to-fine framework. In the first step, the quasi-convex property
is utilized to find the initial best angle under coarse granularity
for any moderate length. The algorithm is summarized in
Algorithm 1. In general, it only takes several iterations for
Algorithm 1 to converge. Once the initial estimated angle is
obtained, we perform the fine angle estimation. In Algorith-
m 1, all the operations are applied on a fixed length; whereas
the fine estimation of angle is implemented on a multi-length
setting, the details of which can be found in Algorithm 2.

In both Algorithms 1 and 2, it is critical to solve Eq. (5)
and (6). The over-complete dictionary D is pre-trained on
the sharp license plate images. Both dictionary learning and
Eq. (6) are solved with Lee’s feature-sign algorithm [46]. For
Eq. (5), there are many successful algorithms [47]. In this
paper, we adopt the popular split-Bregman method [48]. We
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Algorithm 2 Fine angle estimation

Algorithm 4 Length estimation

Input: Blurred image B, the output of Algorithm 1 6, a
moderate length [
1: Generate a series of pair (6;,/;) (responding kernel k;)
that center about (6,1)
2: Solve Eq. (5) with kernel k;, get I;
3: Solve Eq. (6) with I;, get A;
4: Sort A; by increasing order
5: Get the top-k A; and the corresponding 6;
Output: The average of top-k 0;

Algorithm 3 Non-blind image deblurring

Input: Blurred image B, kernel k, the balance parameter A
1: Initialize the Bregman multipliers b,,b, and Bregman
parameter e

2: while not converged do

3 argming{3|k*I— B|%4 + §|dy — VoI —by|% + §|dy —
VI —by|%}, solved by gradient descent method

4 argming, {|dy|+§|ds — VoI —by |3}, solved by shrink-
age operator

5 argming, {|d,|+ 5|d,
age operator

—VyI—b,|%}, solved by shrink-

6:  Update Bregman multiplier
7: by < b, +V,I—d,
8: by < by + VI —d,
9:  if reach the max-iteration
10 converged and return
11:  endif

12: end while
QOutput: The recovered image [

rewrite problem (5) into the following form:

A
axgmin{|d,| + |dy| + S|k T - B3}

s.t. dy = V1
dy=V,I

(15)

The detail of solving Eq. (15) (or equally Eq. (5)) is listed in
Algorithm 3.

In the angle estimation stage, the NBID algorithm does not
involve complicated prior information. The reason is that com-
plicated prior usually incurs high computational complexity.
The length estimation scheme is summarized in Algorithm 4
and its principle can be found in Section III-B.

After obtaining the parameters of blur kernel, the final non-
blind deblurring is done with the NBID algorithm proposed
by Whyte et al. [49].

I'V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we compare the proposed method with
several existing state-of-the-art deblurring methods on real
blurred plate images. The parameter settings and computa-
tional complexity are also discussed in detail.

Input: Blurred image B, the output of Algorithm 2 6
1: Extend B into a square image (the size is N x N) and
calculate logarithm of frequency magnitude of B denoted
by log(|F5|)
2: Apply modified Radon transform on log(|Fg|) over the
angle 0, Ri,g(r,|)(p) denotes the result
3: Fit Riog(jrp)(p) with three order polynomial function
through least square error method, the fitting result is
Riog(Fs1) (P)
4: Get the distance of two consecutive local minimums of
Riog(1F))(P) = Riog(1Fp)(p) denoted by d
5: Get the estimated length by L = &
Output: The length of kernel L

A. Experimental data

All the experimental data used in our experiments are
captured in real scenarios. The static license plate images that
are used to learn the over-complete dictionary are taken by
Nikon Coolpix P7000 under different scales from the front
view. One sample of sharp license plate images is shown in
Fig. 3(b). For the blurred license plate images, we capture the
images by fixing the camera (Canon 7D) on the tripod which
is put on footbridge. Fig. 1 shows a blurred image degraded by
motion blur in real scene. The region of licence plate with size
of about 100 x 200 pixels is extracted from image in advance,
and our scheme is only applied on such regions. In our kernel
estimation procedure, sparse representation plays a key role in
angle estimation. In the past years, several powerful dictionary
learning methods have been proposed [46], [50], [51]. Lee’s
algorithm is used in our dictionary learning stage [46]. From
the sharp license plate images we take, ten thousand patches
with the size of 8 x 8 are extracted, and the other parameters’
setting follows the proposal of [46]. Then a dictionary with
512 atoms can be obtained.

B. Implementation of our scheme

For the Eq. (5), A is set as 500. We find that A can
vary in a wide range without notable impact on the final
deblurred results. In the coarse angle estimation stage, the step
A is 5 considering the robustness and computing complexity.
Another parameter is the starting angle 6. For over-speed
car license plate blur, the angle of motion kernel is usually
in the range [40, 140]. So we set 6y as 90°. For Eq. (6),
sparse representation is applied to overlapped patches. The
patches with the size of 8 x 8 are sampled every 6 pixels along
horizontal and vertical axes. And the sum of absolute value
of all patches’ sparse representation coefficients is regarded as
the final score.

In the fine angle estimation stage, centering at the output
0 of the last module, we generate a series of parameter pairs
(0;,1;), where the length [; lies in the range [25, 49] with
step size 3, and 6; lies in the range [ — 10,6 + 10] with step
size 5. That means we have 45 images to apply NBID and
sparse coding algorithm. Since this process is highly separated,
parallel algorithm can be designed for it. Then we select
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TABLE I: Recognition rate of different BID methods

BID schemes Recognition rate

Unprocessed images 9.10%

NSBD [52] 18.18%
TPISD/USR [8], [10] 43.18%
Proposed algorithm 79.55%

six angles corresponding to the smallest sparse representation
scores. The average of the six angels is taken as the final
angle. In the angle estimation stage, deconvolution is done
on each RGB channel independently. Sparse representation is
only implemented on the luminance channel considering the
computing complexity.

Our algorithm is implemented with MATLAB script without
optimization and runs on a workstation with Intel Xeon
CPU@2.40GHz and 32GB RAM.

C. Evaluation of the proposed algorithm

For the blurred images we captured in real scenario, the
ground truth is unavailable. In order to test the validity of
our proposed algorithm, we deblur the captured images with
different linear kernels which have small bias on angle or
length compared with our estimated parameters. Figs. 11, 12
and 13 demonstrate that our estimated results are exact or near
the best parameters on three examples under different blur
levels. The plate images become recognizable after deblurring
under our estimated parameter settings.

We compare our proposed scheme with four stat-of-the-
art blind image deblurring methods: 1) NSBD [52]; 2) Xu’s
methods (TPISD [10]/USR [8]); 3) FSR [17]; 4) HQMD
[7]. We use the source codes of those comparison methods
downloaded from the authors’ websites. NSBD [52] and FSR
[17] do not need edge detection or equivalent operations. USR
[8] and HQMD [7] are based on edge detection or prediction.
Xu’s method [8] requires the size of image be larger than
200 x 200 in pixel. When the height of our observed image is
smaller than 200, an extra super-resolution is applied before
applying Xu’s BID method. After obtaining the recovered
sharp image, we acquire the final restored image by down-
sampling to the raw size.

Fig. 14 and Fig. 15 show the deblurring performance of
our scheme and other comparing algorithms under different
situations. In most cases, the proposed method achieves the
best performance improvement and successfully improves the
plate image from unrecognizable to recognizable. The second
and third images of Fig. 14, the first and second images
of Fig.15 show the same great improvement on semantic
recognition. It can be observed that in real scene and very large
blur condition, deblurring artifact is unavoidable no matter
which BID algorithm is chosen. However, in our scheme, the
artifact does not damage the semantic information on most
images. At the same time, our scheme demonstrates the best
robustness.

To quantitatively demonstrate the gain, we also evaluate
the deblurring performance with recognition rates of license
plate in the character level. We train a support vector machine
with radial basis function kernel (RBF-SVM) as classifier after

TABLE II: Running time of different methods

BID schemes Running time(s)

TPISD/USR (optimized by C++ and CUDA) [8], [10] 45.68
NSBD [52] 11.84

FSR [17] 135.23

HQMD (optimized by C++ ) [7] 736.89

Proposed algorithm 347.95

resizing every sharp character into a fixed size. There are
totally 240 licence plate images in the training dataset. All the
parameters of SVM follow the suggestion of LIBSVM [53]. In
the test stage, the pre-trained SVM is applied on 9 licence plate
images captured in real cases. The performance improvement
on recognition rate is shown in Table I. Apparently, the
recognition rate is notably improved after deconvolution and
the proposed algorithm achieves the highest recognition rate.

In our scheme, the fine angle estimation stage is the most
time consuming. Under our parameter setting, it needs to
conduct sparse representation and NBID 45 times. Therefore,
the time complexities of our scheme are O(MN) (M is the
number of iteration in each sparse representation and NBID,
and N is the image size). Table II shows the running time of
the five different blind image deblurring algorithms on a real
blurred plate image with size of about 200 x 300.

D. Discussion

Blur kernel estimation can be regarded as searching the best
solution in a large blur kernel space. By constraining the blur
kernel, the search range can be greatly reduced, which can
significantly improve the robustness of blur kernel estimation.
The experimental results demonstrate that such constraints
on blur kernels are very effective. For blind deblurring of
license plate images, we pay more attention on the sematic
content of images, i.e., we aim to recognize the blurred plate
license image after deblurring processing. Even though there
are still some artifacts in the final deblurred result, most of
the semantic information has been recovered.

V. CONCLUSION

In this paper, we propose a novel kernel parameter estima-
tion algorithm for license plate from fast-moving vehicles. Un-
der some very weak assumptions, the license plate deblurring
problem can be reduced to a parameter estimation problem.
An interesting quasi-convex property of sparse representation
coefficients with kernel parameter (angle) is uncovered and
exploited. This property leads us to design a coarse-to-fine
algorithm to estimate the angle efficiently. The length estima-
tion is completed by exploring the well-used power-spectrum
character of natural image.

One advantage of our algorithm is that our model can handle
very large blur kernel. As shown by experiments in Section IV,
for the license plate that cannot be recognized by human, the
deblurred result becomes readable. Another advantage is that
our scheme is more robust. This benefits from the compactness
of our model as well as the fact that our method does not make
strong assumption about the content of image such as edge or
isotropic property.
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(a) blurred image (b) (6 =66.67°,1 = 29.87) (c) (0 =66.67°,1 =24.87)

() (6 = 66.67°,1 = 34.87) (e) (6 = 61.67°,1 = 29.87) () (0 = 71.67°,1 = 29.87)

Fig. 11: Middle blur example. The image size is 224 x 140, and our estimated kernel parameters are (6 = 66.67°,1 = 29.87). Top-left is the observed
license plate image. Top-middle is our recovered result. The other four images are the results acquired by modifying the kernel parameters with a small bias
on the estimated angel or length.

(a) blurred image (b) (0 =91.67°,1 = 23.16) (c) (6 =91.67°,1 = 18.16)

_— - — —————— - = - —_—— -

(d) (0 =91.67°,1 = 28.16) (e) (0 =186.67°,1 = 23.16) () (0 =96.67°,1 = 23.16)

Fig. 12: Small blur example. The image size is 220 x 104, and the estimated kernel parameter are (6 = 91.67°,1 = 23.16). In this paper, we regard this
situation as small blur, because we are still able to recognize the number of this plate. However in the other paper, this is large blur considering the size of
image.

—— e b WL - . W AT e

(a) blurred image (b) (6 =110.83°,1 = 42.18) (c) (# =110.83°,1 = 37.18)

WY YWY " T TR S - %

RA B8O Y

(d) (6 =110.83°,1 = 47.18) (e) (# =105.83°,1 = 42.18) (f) (0 =115.83°,1 = 42.18)

Fig. 13: Large blur example. The size of image is 232 x 120. Top-middle is our result and the responding kernel parameter is (6 = 110.83°,1 = 42.18). In
this situation, human almost cannot recognize the plate. After deblurring, we can figure out the first Chinese character effortlessly, as shown in (b).
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T —

Fig. 14: Performance comparison in real situations: (a) blurred images, (b) NSBD [52], (c) FSR [17], (d) HQMD [7], (e) TPISD [10]/USR [8], (f) our method.

In our scheme, we only use very simple and naive NBID
algorithm. And there is still obvious artifact in the deblurred
results. However, for many practical applications, people are
more interested in identifying the semantics of the image.
From this view, our scheme brings great improvement on the
license plate recognition.
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