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Fast Hyperspectral Anomaly Detection
via High-Order 2-D Crossing Filter

Yuan Yuan, Senior Member, IEEE, Qi Wang, and Guokang Zhu

Abstract—Anomaly detection has been an important topic in
hyperspectral image analysis. This technique is sometimes more
preferable than the supervised target detection because it requires
no a priori information for the interested materials. Many efforts
have been made in this topic; however, they usually suffer from
excessive time cost and a high false-positive rate. There are two
major problems that lead to such a predicament. First, the con-
struction of the background model and affinity estimation are
often overcomplicated. Second, most of these methods have to im-
pose a stringent assumption on the spectrum distribution of back-
ground; however, these assumptions cannot hold for all practical
situations. Based on this consideration, this paper proposes a novel
method allowing for fast yet accurate pixel-level hyperspectral
anomaly detection. We claim the following main contributions:
1) construct a high-order 2-D crossing approach to find the re-
gions of rapid change in the spectrum, which runs without any
a priori assumption; and 2) design a low-complexity discrimination
framework for fast hyperspectral anomaly detection, which can be
implemented by a series of filtering operators with linear time cost.
Experiments on three different hyperspectral images containing
several pixel-level anomalies demonstrate the superiority of the
proposed detector compared with the benchmark methods.

Index Terms—Anomaly detection, high order, hyperspectral
image, remote sensing, 2-D crossing.

I. INTRODUCTION

HYPERSPECTRAL imaging systems have the ability to
collect digital images with very densely sampled or

nearly continuous radiance spectra for each pixel in the scene.
The captured rich information about the spectral signatures can
help identify minor differences between various materials. This
characteristic enables hyperspectral images to be beneficial to
a wide range of applications. For example, they have already
been successfully applied to environmental monitoring [1], pro-

Manuscript received July 26, 2013; revised December 26, 2013, March 11,
2014, and April 23, 2014; accepted May 7, 2014. This work was supported
in part by the National Basic Research Program of China (973 Program)
under Grant 2011CB707104, by the National Natural Science Foundation of
China under Grant 61172143, Grant 61105012, and Grant 61379094, and by
the Fundamental Research Funds for the Central Universities under Grant
3102014JC02020G07.

Y. Yuan and G. Zhu are with the Center for OPTical IMagery Analysis and
Learning (OPTIMAL), State Key Laboratory of Transient Optics and Pho-
tonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy
of Sciences, Xi’an 710119, China (e-mail: yuany@opt.ac.cn; zhuguokang@
opt.ac.cn).

Q. Wang is with the Center for OPTical IMagery Analysis and Learning
(OPTIMAL), Northwestern Polytechnical University, Xi’an 710072, China
(e-mail: crabwq@nwpu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2014.2326654

duction quality inspection [2], medical imaging [3], biological
analysis [4], etc.

For the hyperspectral-image-based applications, target detec-
tion has been one of the most interesting and fundamental tasks
[5]. Based on the requirements of a priori spectral information
for the interested materials, existing works can be divided into
two categories: supervised and unsupervised. The former works
only when the objects of interest and the corresponding spectral
signatures are given in advance. Typically, it detects targets
by selecting all the pixels with spectral characteristics that are
highly correlated to the referenced ones [6], [7]. However, from
time to time, the interested objects and the accurate spectral
calibrations are difficult to specify in advance. With regard to
such a situation, unsupervised target detection, i.e., anomaly
detection, is a more preferred and pertinent technique. Most
anomaly detectors rely on no a priori information in addition
to the fact that the anomalies are rare with respect to the
background [8], [9].

Detecting anomalies in a hyperspectral image refers to dis-
tinguishing anomalous or prominent pixels, which are with
distinct spectral signatures significantly deviating from their
neighborhoods [10], [11]. To be specific, an anomaly can be
considered as an outlier embodied by the background observa-
tions. Distinguishing these outliers is important in hyperspectral
image analysis since they often represent unusual occurrences
crucial for further investigation [8]. In general, traditional meth-
ods for anomaly detection involve knowledge extraction for
background description and affinity function construction to
measure the deviation of the examined data from the extracted
knowledge. Although many efforts have been made to the two
functional components, the progress is still far from satisfying.
Existing methods usually suffer from excessive time cost and a
high false-positive rate (FPR) [12]. This predicament is mainly
due to the overcomplicated model construction and affinity
estimation, as well as the stringent assumptions imposed on the
spectrum distribution of the background.

Motivated by the need for overcoming the limitations of
existing works, in this paper, we propose a high-order 2-D
crossing-based method for fast yet accurate hyperspectral
anomaly detection. The proposed method is termed two-
dimensional crossing-based anomaly detector (2DCAD),
which takes advantage of the following aspects.

• Decrease the FPR for hyperspectral anomaly detection
without any a priori assumption. The proposed method
is inspired by the excellence of zero-crossing analysis,
which is carried out based on monitoring the instantaneous
points at which the signal passes through a preset “zero”
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value [13]. It is a low-complexity approach without any
a priori assumption on signature distribution but is orig-
inally dedicated to time-series processing. Therefore, in
this paper, this approach is reformulated to be pertinent
for multichannel spatial signal processing and now aims
at seeking out regions of rapid change in the spectrum.
Based on this formulation, a conceptually clear method is
obtained for hyperspectral anomaly detection.

• Effectuate fast discrimination of anomalies without statis-
tic model construction for the background, as well as
the affinity estimation for the test pixel. In the proposed
anomaly detector, different orders of 2-D crossing analysis
are integrated to find the most anomalous pixels. This is
achieved by employing a series of “center-surround” op-
erators for difference generation and the one-bit transform
(1BT) [14], [15] for 2-D crossing count calculation. All
the involved operators are formulated within a filtering
framework. This contributes to a conceptually simple yet
practical detector and facilitates an efficient implementa-
tion with linear complexity.

The rest of this paper is organized as follows. Section II
reviews the works on the topic of hyperspectral anomaly
detection. Section III describes each component of 2DCAD
in detail. Section IV presents the extensive experiments to
prove the superiority of the proposed method in pixel-level
hyperspectral anomaly detection, and the conclusion follows in
Section V.

II. RELATED WORK

Generally, anomaly detectors tackle anomalies as outliers de-
viating from the knowledge extracted from their surroundings.
According to the implicit assumptions imposed on background
knowledge, efforts toward hyperspectral anomaly detection
can be roughly divided into two categories. One category is
based on the assumption that all the spectral signatures in the
background are homogeneous in some aspects. In this view,
the background is considered as one single type and described
with a unified model, such as normal distribution, Gaussian
mixture, and Student’s mixture. The other category assumes
that the spectral signatures in the background are fitted with
different class distributions. These distributions are modeled,
respectively, and the deviation with respect to each one is
calculated for further judgment.

Among the works that belong to the first category, which
is probably the most popular, is the Reed–Xiaoli (RX) de-
tector proposed by Reed and Yu [16]. RX is recognized to
be the benchmark method in many multispectral/hyperspectral
detection applications [10], [12], [17]. In this method, the
nonstationary multivariate Gaussian model is assumed to char-
acterize the local background pixels around the target. After
estimating the mean vector and covariance matrix on the basis
of the local neighborhood, the Mahalanobi distance between
each examined pixel and the statistic model is calculated and
compared with a threshold for the final discrimination.

Despite its popularity, RX is found to be with a high FPR
in many applications [12], [17], [18]. There are two main

problems with RX that lead to its poor practicality. The first
problem is that the local multivariate Gaussian model cannot
always provide an adequate representation for background,
particularly when there are multiple materials and textures
[12], [18]. The other problem is that the affinity function of
RX involves estimation and inversion of a high-dimensional
covariance matrix, frequently under a small sample size [12],
[19]. These operations are highly complex but badly condi-
tioned and unstable. There are indeed many efforts made to
overcome these two limitations, which provide a lot of variants
for RX, such as selective KPCA RX [20], subspace RX [21],
kernel RX [22], minimum covariance determinant RX [23],
random-selection-based anomaly detector (RSAD) [10], and
compressive RX [8]. However, as the basic assumption has
never been revised, to the best of our knowledge, there is still
no refreshing progress in practice.

Recently, many other methods assuming the homogeneous
background have announced promising results with better FPR
than RX series. These methods differ from RX series essen-
tially in the description of background spectra. For example,
Banerjee et al. [12] introduce a concept of support vector
data description (SVDD) for hyperspectral anomaly detection.
SVDD is developed by Tax and Duin in [24] and Tax et al.
in [25], which models a distribution by learning the support
as the minimal enclosing hypersphere enveloping the data in
specified feature space. Benefiting from this technique, the a
priori distribution that RX depends on could be removed, and
an anomaly could be intuitively tackled as an outlier excluded
by the support. There also exist many variants of the SVDD de-
tector, such as parameter-adaptive kernel SVDD [18], Gaussian
kernel SVDD [19], and sparse kernel SVDD [26]. However,
as SVDD is not an expeditious technique, the SVDD-based
anomaly detectors are computationally too expensive even for
a medium-sized hyperspectral image.

In addition to those previously mentioned, kurtosis is con-
sidered as a useful high-order moment to characterize a dis-
tribution and has also been employed for anomaly detection.
Du and Kopriva [11] report that the small targets contribute
to the tail of the distribution in a hyperspectral image. They
propose to unequally constrain the kurtosis and project the
spectral signatures with a set of projectors yielding maximum
constrained kurtoses. Then, the anomalies are successively
discriminated in the gradually projected feature space. This
method is considered to be quick but is found to fail when
the background cannot be perfectly characterized as a Gaussian
distribution. Correlation analysis is another strategy that can
support fast outlier identification. Inspired by this strategy,
Gaucel et al. [27] develop an anomaly detector based on whiten-
ing and spatial correlation filtering (WSCF). They start with
the whitening transformation for the hyperspectral pixels and
proceed to filtering the whitened image to obtain the statistics
of the correlations between each test pixel and its surrounding
neighbors. Finally, a thresholding strategy is employed for the
discrimination. Although this method is indeed very efficient,
it lacks effectiveness and robustness in practice. More recently,
Parzen windowing (PW) has also been investigated in hyper-
spectral anomaly detection. PW performs probability density
function estimation in a window through a kernel function,
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Fig. 1. Flowchart of the proposed high-order 2DCAD.

without a specific assumption of the background distribution.
Based on such an approach, in the works of Veracini et al.
[28] and Matteoli et al. [17], the anomalies within a scene
are directly detected through the likelihood ratio test (LRT) by
a threshold procedure. Unfortunately, suffering from complex
bandwidth selection, the PW-based anomaly detectors are com-
putationally intensive as well.

Different from the aforementioned methods, the second cate-
gory includes methods that assume the multiclass background.
These methods estimate for each background class a description
and then calculate and integrate the deviations of all the pixels
with respect to these descriptions for the final discrimination.
As for this category, one of the most typical samples is the
multivariate normal inverse Gaussian (MNIG) detector [29].
In the MNIG detector, each background class is assumed to
be an independent MNIG distribution. After estimating all
the distributions on the basis of the classes, the LRT rule is
employed to judge whether a pixel is an anomaly. Another
example is the cluster-based anomaly detector (CBAD) [30].
This method is performed after the entire scene has been seg-
mented into different clusters, and the anomalies are detected
in each cluster individually. Obviously, methods of the second
category specifically require a priori information about the
background classes and heavily depend on anther technique
to make reliable classification. Therefore, these methods may
be limited more stringent than those belonging to the first
category.

III. 2DCAD

This section details the proposed 2DCAD for hyperspectral
anomaly detection. The overall flowchart is summarized in
Fig. 1. In this method, the most crucial component is the
low-complexity-based high-order 2-D crossing analysis for
high-dimensional hyperspectral images, without any a priori
assumption on the signal distribution. There are mainly four
steps for this procedure. First, the high-order difference signals
are constructed from the input hyperspectral image cube. A
subsequent 1-bit representation is then applied to generate a
series of effective bit maps of different orders. After that, the
2-D crossing count is calculated for each bit map, which can
be considered as a statistics of anomaly or not. Finally, a
higher-level difference operator is employed to get a more

concise expression, and the discrimination function is designed
to make the final decision. All these operations are efficiently
implemented using a spatial weighted center-surround filtering
framework. The following will describe the theory behind
high-order 2-D crossing analysis and the corresponding dis-
crimination function for hyperspectral anomaly detection in
detail.

A. High-Order 2-D Crossing Analysis

Hyperspectral anomaly detection aims at distinguishing the
pixels with the anomalous spectral signatures significantly de-
viating from their surrounding neighborhoods. This problem
can be converted to locating the points where there is an incon-
sistency between two consecutive pixels, if a clip operator can
be formulated here to dichotomize the signals. A similar idea
has a long history in time-series processing referring to zero-
crossing analysis, for which the clip operation could be directly
a hard segmentation using a preset “zero” value. However,
the same strategy will fail in hyperspectral anomaly detection,
because it is difficult to define the “zero” value for the raw
multichannel spatial signals. To cope with this problem, we
formulate a high-order 2-D crossing analysis on the basis of
the high-order difference operation specific for hyperspectral
imagery.

1) High-Order Difference Construction: Assume a hyper-
spectral image composed of pixels H = {hi}. The first-order
difference L(1)

i is constructed through a spatial weighted center-
surround operator, i.e.,

L
(1)
i =

∑
j∈Ni

‖hi − hj‖2wij (1)

wij =
1

zi
exp

(
− 1

2σ2
‖pi − pj‖2

)
. (2)

Here, Ni denotes N local neighbors around the location pi. wij

is a spatial weighting term that controls the contributions of the
neighboring pixel at location pj over the influence radius. σ =
log(N) is employed to control the strength of wij , and zi is a
normalization factor ensuring

∑
j∈Ni

wij = 1.
In practice, the spatial weighting term is chosen as a

Gaussian blurring kernel, which can be evaluated very ef-
ficiently [31]. Specificly, for a fast implementation of this
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center-surround operation, (1) is first decomposed by factoring
out the quadratic error function, i.e.,

L
(1)
i = h2

i − 2hi

∑
j∈Ni

hT
j wij +

∑
j∈Ni

h2
jwij . (3)

Then, a permutohedral lattice embedding approach [32],
which can yield a linear time approximation for high-
dimensional filtering, is employed to evaluate

∑
j∈Ni

hT
j wij

and
∑

j∈Ni
h2
jwij . Permutohedral lattice embedding exploits

the band-limiting effects of Gaussian smoothing and performs
the fast evaluation by extracting a sparse number of samples
on simplices of a high-dimensional permutohedral lattice struc-
ture. By using this approach, a first-order difference could be
constructed in linear time O(N).

Once the first-order differences have been obtained, there
is a direct way to construct the higher kth-order differences,
in a recursive manner. More specifically, there is recursively a
weighted center-surround operator implemented as

L
(k)
i =

∑
j∈Ni

∥∥∥L(k−1)
i − L

(k−1)
j

∥∥∥2 wij . (4)

It is manifest that, by employing the same strategy as (1), each
higher-order difference can be evaluated in O(N) time.

2) High-Order 2-D Crossing Count: After obtaining the
difference signals, the high-order 2-D crossing method also
requires a clip operator to build the binary signals, as well as
a change monitor utilized to locate the points where there are
rapid changes compared with their neighbors.

In regard of the clip operator, the proposed method is im-
plemented by making use of single-bit-depth representation.
This type of representation has been generally successful in
discriminating patterns with different values [33]. In this paper,
we use a 1BT filter to transform the difference signals into
either 0 or 1. The bit map of the kth-order differences is
accomplished in the form of

B
(k)
i =

{
1, if L(k)

i ≥ F
(
L
(k)
i

)
0, otherwise.

(5)

Here, F (L
(k)
i ) denotes the filtered result of L

(k)
i obtained by

a multibandpass filter. This kind of 1BT has achieved great
success in both visible video [14], [33] and hyperspectral image
[15] processing. Similar to the works of Natarajan et al. in [14]
and Demir et al. [15], a 17 × 17 multibandpass-filter kernel is
employed, which is defined as

f(i, j) =

{
1/25, if i, j ∈ [0, 4, 8, 12, 16]
0, otherwise.

(6)

After applying the 1BT filter, the original hyperspectral im-
age becomes a binary map. Then, as mentioned shortly before,
there is a need for the change monitor to calculate the high-
order crossing counts. Different from the case of time-series
analysis where there is only one direction forward time relation,
for the examined pixel in the 2-D 1BT map, the change monitor
has to count all the transitions (i.e., changes from 1 to 0, and
vice versa) of the pixel from its neighbors in a surrounded 2-D

region with the consideration of their spatial distribution.
Therefore, in this paper, the change monitor is formulated by

D
(k)
i =

∑
j∈Ni

(
B

(k)
i ⊕B

(k)
j

)
wij (7)

where D
(k)
i denotes the kth-order crossing counts, i is the

examined position, j is the spatial index in the center-surround
neighborhood structure, and ⊕ denotes the Boolean exclusive-
or (XOR) operation. The spatial weighting term wij is im-
posed to emphasize the contributions of neighbors closer to
position i. Beneficial from the Boolean simplicity, (7) also has
very low complexity and is thus particularly suitable for fast
computation.

B. High-Order 2-D Crossing for Anomaly Detection

As for the ultimate purpose, performing the high-order 2-D
crossing analysis is dedicated to distinguishing whether a test
position presents an anomalous signal different from its neigh-
bors. It is found that different orders of 2-D crossing counts
unequally contribute to the discrimination of anomaly. This
phenomenon is illustrated in Fig. 2(a). We can see clearly that
not all the statistics of crossing counts is suitable for separating
the two kinds of points. Sometimes, their distributions are
mixed together. Inspired by an excellent work of magnetic
signal processing [34], we further employ a difference operator
on the calculated high-order crossing counts to partition the
two distributions, as well as to capture the internal relations
among different orders. Then, the final discrimination function
is consequently formulated on the basis of the 2-D crossing
count differences.

1) Difference Operator for High-Order 2-D Crossing
Counts: Given the high-order 2-D crossing counts, the em-
ployed difference operator is defined by

Δ
(k)
i =

{
D

(k)
i , k = 1∣∣∣D(k)
i −D

(k−1)
i

∣∣∣ , otherwise.
(8)

This operator is concise and intuitive in implementation
and, at the same time, can take into account the relationships
between two adjacent orders. It is found that Δ

(k)
i is more

effective than D
(k)
i . Fig. 2(b) presents the statistics of Δ

(k)
i .

Compared with Fig. 2(a), it is obvious that Δ
(k)
i is more

discriminative for the two kinds of points. This conclusion is
consistent with that in [34], which indicates that an effective
detector can be constructed on the basis of Δ(k)

i .
2) Outline of Anomaly Detection Procedure: After the given

procedure, the final decision will be made for the anomaly
or not. Similar to [12] and [16], 2DCAD uses the hollow-
window information to design the discrimination function. The
sliding window consists of two regions. As shown in Fig. 3,
there are both inner and outer windows surrounding the test
pixel. The inner area serves as a guard band, whereas the outer
area constitutes the background for the test pixel. Note that
the dimensions sin and sout of the sliding hollow window are
selected according to the spatial resolution of the scene and the
expected size of the anomaly targets. Specifically, the inner area
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Fig. 2. Mean values and standard deviations for (a) normalized 2-D crossing counts and (b) normalized 2-D crossing differences. The statistics are calculated in
a real-world hyperspectral image composed of 180 × 180 pixels with 88 anomalies.

should accommodate the expected typical or largest anomaly
targets in the scene, and the outer region should be large
enough for background estimation while preventing excessive
contamination by anomalies. The discrimination function is
formulated as

ϕ =

K∑
k=1

∥∥∥Δ(k)
inner −Δ

(k)
outer

∥∥∥2
Δ

(k)
outer

(9)

where there are K orders of 2-D crossing count difference taken
into the discrimination. Δ(k)

inner and Δ
(k)
outer denote the averaged

value of the kth-order 2-D crossing count difference over the
inner and outer regions, respectively.

For better understanding, the overall procedure is briefly
summarized in Algorithm 1. For each examined pixel, the
proposed detector takes O(KN) time for each of the first
three steps as well as the final discrimination and O(K) time
for the fourth step. Suppose there are a total of I pixels in
a hyperspectral image, 2DCAD runs in complexity O(I ×
(4KN +K)) involving only basic arithmetic. As k and N are
typically not very large in practice, the proposed method is very
efficient.

Algorithm 1 2DCAD for Hyperspectral Anomaly Detection

Input:
The observed hyperspectral data, H;
The maximum order, K;
The sizes of the inner and outer regions, sin and sout.
Processing Steps:

1: Recursively generate L(k) by (3) and (4);
2: Conduct the clip operator to obtain B(k) by (5);
3: Employ the change monitor to calculate D(k) by (7);
4: Use the difference operator to generate Δ(k) by (8);
5: Make discrimination ϕ by (9).

Output:
Discrimination matrix, ϕ.

Fig. 3. Example of a sliding hollow window.

IV. EXPERIMENTS

The following section starts with the introduction of the
employed hyperspectral data sets and then describes the ex-
perimental setup concerning the evaluation metrics and the
benchmark detectors. In the end, the comparison results are
presented and analyzed in detail.

A. Data Sets

To evaluate the performance of the proposed 2DCAD under
different types of hyperspectral images, a simulated data set and
two publicly available real-world data sets gathered by famous
remote imaging systems are employed. The details of these
hyperspectral data sets are introduced as follows.

1) Simulated scene. This data set was synthesized with
200 × 200 pixels comprising the spectra of lawn grass,
dry long grass, blackbrush leaf, sage brush, and tum-
blewe. The corresponding spectral signatures are selected
from the U.S. Geological Survey vegetation spectral
library.1 All these spectra are previously calibrated to
the bands consistent with AVIRIS data and are down-
sampled with a dimension of 105. Similar to [10], the
synthetic scene has two background regions. The top
100 lines consist of lawn grass and dry long grass, with
the mixture proportion of lawn grass regularly varying
from 100% to 50.5%. For the remaining 100 lines, the
background is composed of blackbrush leaf and sage
brush, and the percentage of blackbrush leaf varies from

1http://speclab.cr.usgs.gov/spectral-lib.html.
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Fig. 4. Visualization of the scenes and the ground truth masks. The first row shows the color representations of the Simulated scene, the Salinas scene, and the
Lakeshore scene, respectively. The second row represents the corresponding ground truths.

50.5% to 100% with 0.25% increase per line. Finally,
three spectra, i.e., sage brush, dry long grass, and tum-
blewe, are separately used as anomalies. The correspond-
ing anomaly targets are constructed with three different
sizes (i.e., 1 × 1, 2 × 2, and 3 × 3) and are sparsely
placed at the top background, the bottom background, and
the border between the two regions, respectively. Please
refer to Fig. 4 for the specific locations.

2) Salinas scene. This scene was gathered by the AVIRIS
system with 224 bands in 1998 over Salinas Valley, CA.
The original data set consists of 512 × 217 pixels with a
spatial resolution of 3.7 m and comprises vegetables, bare
soils, and vineyard fields. Conventional experiments usu-
ally exclude 20 atmospheric and water bands (108–112,
154–167, and 224) due to the low signal-to-noise ratio
(SNR). In this paper, the employed Salinas scene is a
subset with 180 × 180 pixels cropped from the one
downloaded from the GIC website.2

3) Lakeshore scene. This data set was acquired by the
SAMSON sensor, which is a push broom sensitive to
the near-infrared bands, and was collected by the Florida
Environmental Research Institute as part of the GOES-R-
sponsored experiment. The SAMSON sensor is devel-
oped by FERI and generates 156 bands covering the
spectral range from 400 to 900 nm with a bandwidth of
3.2 nm. The collected scene consists of 952 × 952 pixels
with a geometric resolution of 1.0 m. In this paper, the
employed Lakeshore scene is a subset of the one provided
by the Opticks project,3 and is composed of 200 × 200
pixels with atmospheric correction.

2http://www.ehu.es/ccwintco/.
3http://opticks.org/confluence/display/opticks/.

B. Experimental Setup

Preparatory to the experimental comparison, there are three
key points that need to be stated: 1) ground truth construction of
the data sets; 2) evaluation metrics; and 3) benchmark methods.

Since the first image is manually synthesized, its ground truth
labels of anomalies are precisely known. As for the second
and third data sets, their ground truths are not provided. Some
researchers claim a ground truth labeled by themselves, but
how the procedure is conducted is not introduced. To establish
our ground truths as objective as possible, this work turns to
hyperspectral classification techniques. To be specific, for a
hyperspectral image with known category information of the
background objects, a classification training set is constructed
by selecting some adequate pixels for each background cat-
egory and is further refined through the constraint of ran-
dom sample consensus [35] to restrain the contamination by
the possible anomalies. After performing the classification by
support vector machine, classification and regression trees,
k-nearest neighbors, and Gaussian mixture model, the pixels
that have rare labels with respect to their surrounding neighbors
are selected as candidates. Then, the true anomaly pixels are
specified as those rare in more than half of the classification
processes. The finalized ground truths of the employed data
sets are shown in Fig. 4. The pixel sizes of the anomaly targets
contained in these two real-world data sets are approximately
in the range of 1 × 1 to 3 × 3.

The second question is how to evaluate the anomaly de-
tectors. In the related literatures, the detectors are typically
evaluated by plotting their receiver operating characteristic
(ROC) curves referring to ground truth masks [9], [10], [17].
This curve is sketched by varying the threshold used to di-
chotomize the detection results, according to which a detected
pixel could be judged as true anomaly or false alarm. Based
on the ROC curves, a derivative indicator, i.e., the area under
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Fig. 5. Visualization of the anomaly detection results. From top to bottom, the first row represents the comparison of the 3-D illustrations on the Simulated scene,
and the remaining rows respectively illustrate the comparisons of the normalized detection maps on the Salinas scene and the Lakeshore scene. From left to right,
the columns respectively represent the detection results of RX, WSCF, CBAD, SVDD, RSAD, and 2DCAD.

the curve (AUC), is calculated for further evaluation [12], [19].
Additionally, the abilities of the detectors to intuitively sepa-
rate anomaly targets from the background have also aroused
interest in practice. Toward this direction, this paper introduces
a criterion measuring the Bhattacharyya distance between the
detection score histograms of the true anomaly pixels and the
background pixels. Such evaluation metric is denoted with
BDhist and calculated by

BDhist(H1, H2) =

√√√√1−
∑
i

√
H1(i)H2(i)∑

i H1(i)
∑

i H2(i)
(10)

where H1 and H2 are two histograms, with H1(i) and H2(i)
denoting their ith components. Larger BDhist values indicate
better performances.

In regard to the benchmark methods, there is a consensus
that the employed methods should guarantee popularity, re-
cency, and variety. In our experiments, the performance of the
proposed method is verified by comparing it with RX, SVDD,
CBAD, WSCF, and RSAD. The first two benchmark methods
are cited with the highest frequency in anomaly detection
literatures and lead to a lot of variants. CBAD is a modified
version of RX, which uses RX in a global sense through vector-
quantization-based clustering. WSCF is also a fast anomaly
detector based on 2-D spatial filtering. RSAD has been devel-
oped very recently and can enrich the variety of competitors.
Since there are four methods (RX, WSCF, SVDD, and 2DCAD)
involving a sliding hollow window, the window size should be
identified. To adapt to the employed hyperspectral data sets, the

dimensions of the inner and outer regions are fixed to 3 × 3 and
7 × 7, respectively. The quantization level of CBAD is set to
4 for the Simulated scene, as there are four spectral signatures
used to form the backgrounds, and to 8 for the two real-world
data sets according to [30]. The kernel parameter for SVDD is
determined by an approximate minimax technique formulated
in [12]. As for 2DCAD, the order parameter K is set to 2 in
the comparison between 2DCAD and the competitors. All the
detection results are presented by the anomaly maps with the
range [0,1], in which the high value of a pixel indicates the high
possibility of being an anomaly.

C. Comparison Results

The comparison experiment is first conducted on the Sim-
ulated scene. Fig. 5(a)–(f) and Fig. 6(a) and (d) illustrate the
detection results on this data set. In Fig. 5(a)–(f), it is found
that the 3-D displayed detection results of 2DCAD greatly
differs from those of the benchmark detectors. Verified by the
ground truth mask, RX and RSAD are successful in finding
the anomaly targets composed of spectral signatures greatly
differing from all the others. These anomalies are located on
the border between the two background regions. However, as
for the anomalies that have relatively slight distinctiveness and
are embedded in the mixed top and bottom backgrounds, these
two methods do not perform well. SVDD and WSCF have the
accuracy nearly equivalent to RX, but the detection results are
opposite. These two detectors have the ability to detect the
true anomalies in the strongly homogenous backgrounds but
are ineffective even for the high discriminative anomalies when
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Fig. 6. Quantitative comparison of the anomaly detection results. The first row shows the ROC curves, and the second row illustrates the AUC and BDhist bars.
From left to right, the columns respectively correspond to the comparisons on the Simulated scene, the Salinas scene, and the Lakeshore scene.

the background is relatively complex. Compared with these
competitors, the proposed detector can highlight more anomaly
pixels, without losing the ability to suppress the background.
As shown in Fig. 6(a) and (d), 2DCAD demonstrates the signif-
icantly better ROC curve, as well as the AUC and BDhist bars,
than RX, WSCF, SVDD, and RSAD. It should be noted that
CBAD also performs well on the Simulated scene. Therefore,
two more difficult tasks have been conducted on the employed
real-world data sets for further comparison.

The detection results for the Salinas scene are illustrated in
Fig. 5(g)–(l) and Fig. 6(b) and (e), where Fig. 5(g)–(l) presents
the normalized anomaly maps produced by RX, WSCF, CBAD,
SVDD, RSAD, and the proposed 2DCAD, respectively. As
observed from these figures, the global method RSAD tends
to assign high anomalous values to the pixels that have the low
proportions of occurrence in this scene. This judgement is too
arbitrary and inaccurate. Among the other three detectors, RX
and SVDD yield visually similar results. They both have many
omissions at which the spectral signatures are distinguishable
but embedded in the relatively highly divergent backgrounds.
WSCF and CBAD mainly highlight the boundaries and fail in
suppressing the background. Differently, the performance of the
proposed 2DCAD is satisfactory on this scene. As can be seen
in Fig. 5(l), the anomaly map of 2DCAD effectively assigns
the high values for most of the anomalies while suppressing the
background. Therefore, for all the quantitative results plotted in
Fig. 6(b) and (e), the proposed detector clearly dominates the
other competitors.

In regard to Lakeshore scene, the comparison results are
shown in Fig. 5(m)–(r) and Fig. 6(c) and (f). For this hy-
perspectral image, as proved in Fig. 6(c) and (f), the pro-

TABLE I
COMPARISON OF RUNNING TIMES (s)

Fig. 7. Comparison between the averaged AUC and BDhist bars under
different settings of K.

posed detector also takes a significant advantage on the two
employed evaluation metrics compared with the competitors.
A careful observation on the produced anomaly maps reveals
that RX mainly selects the pixels from the calm lake region
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Fig. 8. Comparison of the performances on the noisy images. From left to right, the columns respectively represent the comparisons on the Simulated scene, the
Salinas scene, and the Lakeshore scene.

TABLE II
AMOUNTS OF RELATIVE CHANGES ON THE PERFORMANCES BEFORE AND AFTER ADDING NOISE

as anomalies, while losing awareness to the truly anomalous
ones embedded in the complex lands. SVDD produces a result
better than RX; however, the overall detection statistics for the
entire anomaly positions are not conspicuous enough within
the background regions. RSAD performs consistent on the
Salinas scene. Its detection result lacks interpretability for the
anomalies. WSCF and CBAD are seriously interfered with by
the interface between two remote scanning series. On the con-
trary, the proposed 2DCAD is more effective for the employed
Lakeshore scene.

D. Comparison of Running Times

To evaluate the efficiency of the implemented detectors, the
running times of each method are compared in Table I. Timings
have been taken on an Intel Core i3-550 3.2-GHz CPU with 3-
GB RAM. All these detectors are implemented in the MATLAB
platform. Assuming there are a total of N pixels contained in
the outer region of the sliding hollow window and K orders that
are taken into account, for each examined pixel, the proposed
detector needs O(4KN +N) computation time to assign a
detection degree.

As a result, for all the employed simulated and real-world
hyperspectral images, 2DCAD costs less time of two or three
orders of magnitude than most of the competitive algorithms,
except for the nearly equivalent running time compared with
WSCF and CBAD, while guaranteeing the superior anomaly
maps. As for WSCF and CBAD, it is found that there is always
an unsatisfying upper bound on the performance in practice. For
example, WSCF is limited by AUC = 0.81 on the employed
Lakeshore scene. In such a case, claiming the true-positive rate
at 90.91% entails the false-alarm rate to exceed 41%. Compared
with WSCF, the proposed method achieves AUC = 0.93 on the
same scene, with which a high true-positive rate of 92.73% only
sacrifices the false-alarm rate to be 1.28%. Therefore, from an
overall perspective, the proposed 2DCAD can claim to be most
predominant in practical applications.

E. Parameter Discussion

As presented in Section IV-C, there is a tremendous ad-
vancement in both effectiveness and efficiency when taking
the proposed 2DCAD for hyperspectral anomaly detection.
However, there is still an uncertainty concerning the selection
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of parameter K, which is worthy of further explanation. This
section answers this question by taking an analysis of the
performances of 2DCAD under different settings of K. Without
loss of generality, in this analysis, the averaged AUC and
BDhist value over all the employed data sets are used as the
validation metrics.

The results are illustrated in Fig. 7. It can be observed that
employing only the first-order information is poor at discrim-
ination ability. With the increasing of K, which means the
effect of the higher-order information is incorporated in the
detection procedure, the performance will improve. After K
reaches 2, setting higher K cannot get a lager AUC value, or
even leads to a deterioration, while the computational cost is
more expensive. These results indicate that the high-order 2-D
crossing is effective for hyperspectral anomaly detection, but it
is necessary to make an appropriate selection of K. Considering
the two employed evaluation metrics simultaneously, K is
finally fixed as 2 in our practical implementations.

F. Robustness to Noise

Generally, the actual requirements in the practical conditions
not only involve the satisfying performances on efficiency and
effectiveness but also consider the robustness to significant
levels of noise. To evaluate the robustness of all the imple-
mented anomaly detectors, each employed hyperspectral image
is extended to five copies containing certain levels of spectral
correlated noise by using the strategy in [36]. For these copies,
the SNR ranges from 60 to 20 dB with an interval of 10 dB,
whereas the shape parameter η is fixed to 0.18 (η → ∞ leads to
white noise; η → 0 generates one-band noise).

The performances of the implemented anomaly detectors on
the noisy images are illustrated in Fig. 8. It is clear that the
superiority of 2DCAD can hold for significant levels of noise.
Moreover, the amounts of relative changes on the performances
before and after adding noise are also compared. The com-
parison is shown in Table II, by which the averaged relative
changes over the three employed data sets are presented. As
can be seen from the table, the relative changes of 2DCAD
on both AUC and BDhist are very slight (less than 0.01) and
smaller than those of the competitors in most of the cases. All
these clues altogether demonstrate that the proposed 2DCAD
has remarkable robustness to the levels of spectral correlated
noise compared with the benchmark methods.

V. CONCLUSION

Anomalies in the hyperspectral image often represent crucial
occurrences worthy of further investigation. Therefore, reliably
detecting these anomalies is important in both academia and
industry. In this regard, traditional hyperspectral anomaly de-
tectors are far from satisfying due to their excessive time costs
and high FPRs. In this paper, a novel hyperspectral anomaly
detector has been proposed based on the formulation of the
high-order 2-D crossing analysis. The proposed detector is
termed 2DCAD, which can allow for fast examination of the
testing pixels with respect to their neighborhoods, without
losing accuracy.

2DCAD is fully unsupervised and computationally accept-
able, the benefits of which are as follows: 1) Formulation
of the high-order 2-D crossing approach dedicates to mul-
tichannel 2-D signal processing. The proposed high-order
2-D crossing approach can seek regions of rapid change in the
spectrum, which can help decrease the FPR for hyperspectral
anomaly detection without any a priori assumption regarding
the background. 2) Low-complexity discrimination allows for
a unitive filtering framework. This facilitates a conceptually
simple and efficient implementation conducted with linear
time cost.

The experimental results demonstrate that 2DCAD takes
advantage of effectiveness, efficiency, and robustness for the
examined data sets containing several pixel-level anomalies,
with respect to the competitors RX, WSCF, CBAD, SVDD, and
RSAD. The proposed detector has the ability to detect the true
pixel-level anomalies in a greater probability and is sufficiently
efficient for real-time application.
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