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Abstract Non-local means filter uses all the possible self-
predictions and self-similarities the image can provide to
determine the pixel weights for filtering the noisy image,
with the assumption that the image contains an extensive
amount of self-similarity. As the pixels are highly correlated
and the noise is typically independently and identically dis-
tributed, averaging of these pixels results in noise suppression
thereby yielding a pixel that is similar to its original value.
The non-local means filter removes the noise and cleans the
edges without losing too many fine structure and details. But
as the noise increases, the performance of non-local means
filter deteriorates and the denoised image suffers from blur-
ring and loss of image details. This is because the similar
local patches used to find the pixel weights contains noisy
pixels. In this paper, the blend of non-local means filter and
its method noise thresholding using wavelets is proposed for
better image denoising. The performance of the proposed
method is compared with wavelet thresholding, bilateral
filter, non-local means filter and multi-resolution bilateral
filter. It is found that performance of proposed method is
superior to wavelet thresholding, bilateral filter and non-local
means filter and superior/akin to multi-resolution bilateral fil-
ter in terms of method noise, visual quality, PSNR and Image
Quality Index.
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BF Bilateral filter
DCHWT Discrete cosine harmonic wavelet transform
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MRBF Multi-resolution bilateral filter
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NL means Non-local means
NLFMT Non-local means filter and its method noise

thresholding
SURE Stein unbiased risk estimator
WT Wavelet transform

1 Introduction

Many scientific data sets are contaminated by noise because
of data acquisition process and/or transmission, which can
degrade the signal of interest. A first pre-processing step in
analyzing such data sets is denoising, that is, estimating the
signal of interest from the available noisy data [1].

Even though denoising has long been a focus of research,
there always remains room for improvement, especially in
image denoising. For images, noise suppression/reduction
is a delicate and a difficult task because there is a trade-
off between noise reduction and preservation of actual
image features. If high-frequency noise is to be removed
from the corrupted image, the simple spatial filtering may
be sufficient, but at the cost of computational complex-
ity involved in performing the convolution. This can be
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reduced by Frequency-domain methods where convolution
is transformed into multiplication of the spectra due to
Fourier convolution property. As the noise is spread across all
frequencies, the frequency-based denoising methods adopt
low-pass filtering to suppress most of high-frequency com-
ponents in order to denoise the image. However, this is gen-
erally not effective as it suppresses both noise and other
high-frequency features of the image resulting in an overly
smoothed denoised image.

Many of the denoising methodologies and strategies [2–
13] devise a model for the noise and/or for the original sig-
nal in a suitable subspace where the differences between
them are accentuated based on the following observations:
(a) the noise and clean signal show different behaviors in
multi-resolution representation, (b) significant geometrical
components of an image (edges) or time structures of a sig-
nal (sharp transitions) over-exceed noise information, espe-
cially at low resolutions [14]. Hence, in last two decades, a
flurry of research has involved the use of the wavelet trans-
form for denoising because of its multi-resolution and energy
compaction properties [15,16]. The motivation is that the
small wavelet coefficients in high-frequency bands that are
more likely due to noise are thresholded, leaving the large
wavelet coefficients which are more likely due to signal fea-
tures [10,11]. The influential works on signal denoising via
wavelet thresholding or shrinkage of Donoho and Johnstone
[10] and Donoho [11] in the additive white Gaussian noise
setting have shown that various thresholding schemes for
denoising have near-optimal properties in the minimax sense
and perform well in simulation studies of one-dimensional
curve estimation. The main assumption in wavelet thresh-
olding is that the signal magnitudes increasingly dominate
the magnitudes of the noise in a wavelet representation with
increasing level, so that wavelet coefficients can be set to zero
if their magnitudes are less than a predetermined threshold.

Hard-thresholding and soft-thresholding are the most pop-
ular thresholding schemes used for denoising, where the for-
mer leaves the magnitudes of coefficients unchanged if they
are larger than a given threshold, while the latter just shrinks
them to zero by the threshold value otherwise it is set to zero
in both cases. Further, the performances of these methods are
close to that of an ideal coefficient selection method if the
coefficients of the underlying signal are known in advance
[10,11]. Even though soft-thresholding introduces more error
or bias than hard-thresholding, it is more efficient in denois-
ing. But, for some classes of images, hard-thresholding per-
forms better [3]. However, the choice of a suitable threshold
value is the major problem with both of these methods and
most of their variants. Initially, Donoho and Johnstone have
given a mechanism for finding a universal threshold value
known as VisuShrink, which depends on the noise power and
the signal size (number of samples in the image). This was
derived by proving an asymptotically optimal upper bound

on the approximation error in the limit of an arbitrary large
signal size [10,11,17]. VisuShrink is a global thresholding
scheme where a single value of threshold is applied glob-
ally to all the wavelet coefficients. As the given noisy signal
may consist of some parts where the magnitudes of the sig-
nal are below the threshold and other parts where the noise
magnitudes are above the given threshold, thresholding by
VisuShrink will cut off parts of the signal on one hand and
leave some noise untouched on the other hand. This observa-
tion has led to the idea of a non-uniform or adaptive threshold
depending on the relationship between the energy distribu-
tion of the observed signal and that of the noise. The use of
different thresholds for different decomposition levels and
sub-bands seems more reasonable as the adaptive threshold
accounts for variation of the local statistics of the wavelet
coefficients.

An adaptive method of selecting a threshold that adapts to
the data as well as minimizing the Stein unbiased risk estima-
tor (SURE) is developed by Donoho and Johnstone, which is
called as SureShrink wavelet thresholding technique [10,17].
This is achieved by choosing distinct thresholds for each sub-
band of each decomposition level of the wavelet tree using an
efficient recursive process [2]. Even though the SureShrink
thresholding method clearly provides an adaptive threshold-
ing strategy, its performance depends on the estimated sta-
tistics of the wavelet coefficients of the original image from
that of the noisy image. Among the literature available on
threshold value selection for image denoising, BayesShrink
proposed by Chang et al. [3] has a better mean-squared error
(MSE) performance than SureShrink. This has been derived
in a Bayesian framework assuming a generalized Gaussian
distribution for the wavelet coefficients.

An alternative to the wavelet-based denoising methods
is the bilateral filter (BF) introduced by Tomasi and Man-
duchi [18] which considers both the spatial and the inten-
sity information between a point and its neighboring points
unlike the conventional linear filtering where only spatial
information is considered. The concept of the BF was ear-
lier presented in [19] as the SUSAN filter and in [20] as the
neighborhood filter. The BF takes a weighted sum of pix-
els in a local neighborhood; the weights depend on both the
spatial distance and the intensity distance. This preserves the
edges/sharp boundaries very well while noise is averaged out
as it average pixels belonging to the same region as the ref-
erence pixel. But it fails when the standard deviation of the
noise exceeds the edge contrast. Recently, a relation between
BF and anisotropic diffusion has been established in [21].
Also, Elad [22] proved that the BF is identical to a single
Jacobi iteration of a weighted least squares minimization. In
the last decade, the classical BF algorithm [23–27] has been
modified and improved by many researchers. In [28,29], the
authors give an empirical study of the optimal BF parameter
selection in image denoising applications and proposed the
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multi-resolution bilateral filter (MRBF). The application
of BF on the approximation sub-band results in loss of
some image details, whereas that after each level of wavelet
reconstruction flattens the gray levels thereby resulting in a
cartoon-like appearance. Further, the variants of MRBF pro-
posed in [30] for denoising of magnetic resonance images
and in [31] for astronomical, ultrasound and x-ray images
also suffer from loss of some image details as well as flatten-
ing of gray levels due to BF. This is because the application
of BF removes noise as well as some image details by spatial
filtering without loss of edge information (range filtering).
The problem of cartoon-like appearance due to flattening of
gray levels is minimized by applying BF only once during
the process of denoising, thereby avoiding loss of too many
image details consequently improving the denoising perfor-
mance [32].

Recently, Buades et al. [33] proposed a non-local means
(NL means) filter which systematically uses all the possi-
ble self-predictions the image can provide and similarity of
local patches to determine the pixel weights. As the patch size
reduces to one pixel, the NL means filter becomes equiva-
lent to the BF. The former better cleans the edges without
losing too many fine structures and details while the later
loses details and creates irregularities on the edges. Further,
Kervrann and Boulanger [34] extended the work of [33] by
controlling the neighborhood of each pixel adaptively. All
these denoising methods work well with less noise (high
SNR) but fail to do so with more noise (low SNR). As both
the target pixel and the similar local patches which are used
to find the pixel weights are noisy, the estimate of NL means
filter becomes biased [35]. To cater for this problem of noisy
target pixel, adaption of central kernel weight (AKW) to the
degree of noise is proposed in [35]. But this does not take
care of the similar noisy local patches and hence, especially
at higher noise, the biased estimate degrades/blurs the image
by removing much of the image details. In order to resolve
these issues, an amalgamation of NL means Filtering and its
method noise thresholding using wavelets has been proposed
for image denoising.

The paper is organized as follows: Sect. 2 discusses the
NL means Filter, Sect. 3 proposes the NL means Filter and its
method noise thresholding using wavelets for image denois-
ing, Sect. 4 discusses experimental results, and conclusions
follow in Sect. 5.

2 NL means filter

The goal of image denoising is to remove the noise while
retaining the important image features like edges, details as
much as possible. Linear filter convolves the image with a
constant matrix to obtain a linear combination of neighbor-
hood values and has been widely used for noise elimination

in the presence of additive noise. This produces a blurred and
smoothed image with poor feature localization and incom-
plete noise suppression.

Neighborhood filter, proposed by Yaroslavsky, averages
only similar gray level pixels inside the spatial neighborhood
Bσ (x) [20] and is given by

YNFh,σ v(x) = 1

C(x)

∫

Bσ (x)

v(y)e− |v(y)−v(x)|2
h2 dy (1)

where x ∈ image �, y ∈ Bσ (x), C(x)=∫
Bσ (x)

e− |v(y)−v(x)|2
h2 dy

is the normalization factor and h controls the pixel similarity.
The Yaroslavsky filter is less known than more recent ver-
sions, namely the SUSAN filter [19] and the BF [18]. Both
algorithms, instead of considering a fixed spatial neighbor-
hood Bσ (x), weigh the distance to the reference pixel x ,

SNFh,σ v(x) = 1

C(x)

∫

Bσ (x)

v(y)e− |y−x |2
σ2 e− |v(y)−v(x)|2

h2 dy (2)

where C(x) = ∫
Bσ (x)

e− |y−x |2
σ2 e− |v(y)−v(x)|2

h2 dy is the normal-
ization factor and σ is a spatial filtering parameter. These
filters maintain sharp boundaries since they average pixels
belonging to the same region as the reference pixel. The prob-
lem with these filters is that comparing only gray level values
around a given pixel is not so robust when these values are
noisy. Further, the Neighborhood filters also create artificial
shocks. In last decade, Buades et al. [33,36] have extended
the neighborhood filters to a wider class which they called it
as non-local means (NL means). This is with the assumption
that the image contains an extensive amount of self-similarity
and is used to find the pixel weights for filtering the noisy
image. The most similar pixels to a given pixel have no rea-
son to be close to it. Think of the periodic patterns or the
elongated edges which appear in most images. It is there-
fore licit to scan a vast portion of the image in search of
all the pixels that really resemble the pixel to be denoised.
The resemblance is evaluated by comparing a whole win-
dow around each pixel, not just the pixel value. Denoising is
then done by computing the average gray value of these most
resembling pixels. Since the image pixels are highly corre-
lated while noise is typically independently and identically
distributed (i.i.d.), averaging of these pixels results in noise
cancellation and yields a pixel that is similar to its original
value.

Given a discrete noisy image v = {v(i)|i ∈ I }, the esti-
mated value N L(i) for a pixel i is computed as a weighted
average of all the pixel intensities v ( j) in the image I ,

NL(i) =
∑
j∈I

w(i, j)v( j), (3)
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Fig. 1 Proposed image
denoising framework NL means 

Filter 

Wavelet 
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where w(i, j) is the weight assigned to value v( j) for restor-
ing the pixel i . Even though the traditional definition of the
NL means filter considers the intensity of each pixel can be
linked to pixel intensities of the whole image, for practi-
cal and computational considerations, the number of pixels
taken into account in the weighted average is restricted to a
neighborhood search window Si centered at the pixel i . More
precisely, the weight w(i, j) evaluates the similarity between
the intensities of the local neighborhoods (patches) v(Ni ) and
v(N j ) centered on pixels i and j , such that 0 ≤ w(i, j) ≤ 1
and

∑
j w(i, j) = 1, where Nk denotes a square neighbor-

hood of fixed size centered at a pixel k and is within the
search window Si centered at the pixel i . This similarity is
measured as a decreasing function of the weighted Euclidean
distance, ‖v(Ni ) − v(N j )‖2

2,σ
′ , where σ > 0 is the standard

deviation of the Gaussian kernel. This distance is the tradi-
tional L2-norm convolved with a Gaussian kernel of stan-
dard deviation σ . Indeed, in digital images, closer pixels are
more dependent and therefore closer pixels to the central one
should have more importance in the window comparison.
Hence, the Gaussian kernel is used to assign spatial weights
to the pixels in the window such that the central pixel in
the window contribute more to the distance than the pixels
located at the periphery. The weights w(i, j) are computed as
follows:

w(i, j) = 1

Z(i)
e− ‖v(Ni )−v(N j )‖2

2,σ

h2 (4)

where Z(i) is a normalization constant

z(i) =
∑

j

e− ‖v(Ni )−v(N j )‖2
2,σ

h2 (5)

ensuring that
∑

j w (i, j) = 1 and h is the smoothing kernel
width which controls the decay of the exponential function
and therefore the decay of the weights as a function of the
Euclidean distances. From Eq. (5), it can be seen that a small h
shrinks the area of averaging and thus noise is not likely to be
suppressed enough. Conversely, if h is too large, the weights
at the boundary of Si are also very large, which results in
blurry output. Further, due to the fast decay of the exponential
kernel, large Euclidean distances lead to nearly zero weights
acting as an automatic threshold. Since the NL means filter

compares not only the gray level in a single point but also the
geometrical configuration in a whole neighborhood, it allows
a more robust comparison than neighborhood filters.

The application of the Euclidean distance to the noisy
neighborhoods raises the following equality

E‖v(Ni ) − v(N j )‖2
2,σ = ‖u(Ni ) − u(N j )‖2

2,σ + 2σ 2
n (6)

where u denotes the original (unknown) image and v the
noisy image obtained by adding a white noise. This equal-
ity shows the robustness of the algorithm since in expecta-
tion the Euclidean distance conserves the order of similarity
between pixels. Thus, using a threshold function and setting
this hard threshold to 2σ 2

n leads to take an average of pix-
els which originally had an almost identical window around
them.

3 NL means filter and its method noise thresholding

The image denoising framework using the blend of NL means
Filter and its Method noise Thresholding using wavelets
(NLFMT) is shown in Fig. 1. A difference between the origi-
nal image and its denoised image shows the noise removed by
the algorithm, which is called as method noise. In principle,
the method noise should look like a noise. Since even good
quality images have some noise, it makes sense to evaluate
any denoising method in that way, without the traditional
“add noise and then remove it” trick. Mathematically, it is
given by

MN = A − IF (7)

where A is the original image (not necessarily noisy) and IF

is the output of denoising operator for a input image A.
The application of NL means filter on the noisy image

removes the noise and cleans the edges without losing too
many fine structures and details. Even though the NL means
filter is very effective in removing the noise at high SNR
(with less noise) but as the noise increases, its performance
deteriorates. This is because the similar local patches which
are used to find the pixel weights are also noisy. To capture
what is removed from the noisy image by the NL means
filter, the definition of the method noise is redefined as the

123



SIViP

difference between the noisy image and its denoised image.
Hence, Eq. (7) is rewritten as

MN = I − IF (8)

where I = A + Z is a noisy image obtained by corrupting
the original image A by a white Gaussian noise Z and IF is
the output of NL means filter for a input image I .

At low SNR, the NL means filter not only removes the
noise but at the same time it blurs the image thereby removing
much of the image details. Consequently, the method noise
will consists of noise as well as image details along with
some edges. Hence, the method noise MN can be considered
as a combination of image details D and a white Gaussian
noise N and is written as [32]

MN = D + N (9)

Now the problem is to estimate the detail image D, which has
only the original image features and edges/sharp boundaries
that are removed by NL means filter, as accurately as possible
according to some criteria and is added with the NL means
filtered image IF to get better denoised image with details.
In wavelet domain, Eq. (9) can be represented as

Y = W + Nw (10)

where Y is the noisy wavelet coefficient (method noise), W
is the true wavelet coefficient (detail image) and Nw is inde-
pendent Gaussian noise.

In wavelet domain, the goal is to estimate the true wavelet
coefficient W from Y by thresholding Y with a proper value
of threshold which minimizes MSE so that it can retain the
original image features and edges/sharp boundaries very well
in the final denoised image. The estimate of the true wavelet
coefficient is represented as Ŵ and its wavelet reconstruction
gives an estimate of detail image D̂. The summation of this
detail image D̂ with the NL means filtered image IF will give
the denoised image B, certainly have more image details and
edges as compared with NL means filtered image IF .

The wavelet thresholding adds power to the proposed
method as noise components can be eliminated better in detail
sub-bands of method noise. The adaptive method of selecting
a threshold developed by Donoho and Johnstone minimizes
the Stein unbiased risk estimator (SURE) [37], which has
been known as the SureShrink wavelet thresholding tech-
nique [10,17]. The adaptivity of SureShrink is achieved by
choosing distinct thresholds for each sub-band of each level
of the wavelet tree using an efficient recursive process [2,3].
This thresholding scheme attempts to select thresholds that
adapt to the data as well as minimize an estimation of the MSE
or risk. Further, it uses a hybrid approach while selecting the
SURE threshold or local universal threshold depending on
the energy of a particular sub-band. That is, it uses SURE
threshold in high activity sub-bands and localized univer-
sal threshold in sparse sub-bands. Although the SureShrink

thresholding method clearly provides an adaptive threshold-
ing strategy, its performance is dependent on estimating the
statistics of the wavelet coefficients of the original image
from that of the noisy image. In last decade, there has been
a fair amount of research on threshold value selection for
image denoising. Among them, Chang et al. [3] have pro-
posed a BayesShrink method which derives a threshold in a
Bayesian framework assuming a generalized Gaussian distri-
bution for the wavelet coefficients. This method has a better
MSE performance than SureShrink, and hence, it is used in
the proposed method to threshold the method noise wavelet
coefficients.

BayesShrink is also an adaptive, data-driven thresholding
strategy via soft-thresholding which derives the threshold
in a Bayesian framework, assuming a generalized Gaussian
distribution. This method is adaptive to each sub-band
because it depends on data-driven estimates of the parame-
ters. The threshold for a given sub-band derived by minimiz-
ing Bayesian risk, given by

T = σ 2
n

σw

(11)

where σ 2
n is the noise variance estimated from sub-band HH1

by a robust median estimator [3], given by

σ̂n = Median
(∣∣Yi, j

∣∣)
0.6745

, Yi, j ∈ {HH1} (12)

and σ 2
w is the variance of wavelet coefficients in that sub-

band, whose estimate is computed using

σ̂ 2
w = max

(
σ̂ 2

y − σ̂ 2
n , 0

)
(13)

where σ̂ 2
y = 1

MN

∑M,N
i, j=1 Y 2

i, j .

4 Results and discussion

Experiments were carried out on various standard grayscale
images of size 512 × 512 which are shown in Fig. 2. The
input images are corrupted by a simulated Gaussian white
noise with zero mean and five different standard deviations
σ ∈ [10, 20, 30, 40, 50]. The denoising process has been
performed on these five noisy realizations. To validate the
superiority of the proposed method NLFMT, its performance
is compared in terms of method noise, visual quality, PSNR
and Image Quality Index (IQI) of the denoised images using
the various methods available in literature such as Wavelet-
based thresholding (WT), BF, MRBF, NL means filter and
BM3D [38]. For BM3D, the parameter values suggested by
the authors are used. In all the cases, db8 is used for wavelet
decomposition and BayesShrink soft-thresholding is used to
threshold these wavelet coefficients. In WT-based thresh-
olding and NLFMT, three levels of decomposition are used
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Fig. 2 Original images used
for experiments. a Lena, b
Barbara, c Boat, d Baboon

whereas in MRBF, only one decomposition level is used.
The other parameters used are given against the methods
considered.

MRBF:σs = 1.8, σr = σn , neighborhood window =
11 × 11
BF:σs = 1.8, σr = 5σn , neighborhood window = 11 ×
11
NL means:σs = 5, h = 0.55σn , neighborhood window
= 7 × 7, search window = 21 × 21
NLFMT:σs = 5, h = 0.55σn , neighborhood window
= 7 × 7, search window = 21 × 21

The method noise of a very good image denoising method
should look like a noise even for a noise free image. That
is, any denoising algorithm should not alter the noise free
images, so that the method noise should be very small when
some kind of regularity for the image is assumed. Since the
removed details, texture or edges have a large method noise,
it helps us to understand the performance and limitations of
the denoising algorithms. Figure 3 shows the performance
of the WT, MRBF, BF, NL means filter, proposed method
(NLFMT) and BM3D in terms of method noise for an input
image of boat with σ = 2.5. It is observed from Fig. 3 that the
method noise of WT (Fig. 3d) and NLFMT (Fig. 3f) looks

like a noise with very minimal details whereas that of NL
means filter (Fig. 3c) and MRBF (Fig. 3e) has more details
near the bottom of the boat. Figure 3b shows the increased
details throughout the method noise image which is due to
BF. The method noise of BM3D (Fig. 3g) looks like noise
only in some portions of the image (top and bottom portion
of the image) and has some image details in other regions,
which is greater than that of proposed method. The wavelet
thresholding of NL means filter’s method noise (Fig. 3c) and
its addition with NL means filter’s output improve the method
noise of NLFMT (Fig. 3f). That is, the image details present
in the method noise of NL means filter (Fig. 3c) has been
transferred to the denoised image of NLFMT, and hence,
those details are not visible in the method noise of NLFMT
(Fig. 3f). To further explore the improvements of NLFMT
over NL means filter, the denoised images of baboon and
their respective method noise MN are shown in Fig. 4 for
different standard deviations σ ∈ [10, 20, 30]. With increas-
ing noise, the NL means filter blurs the image (beard, mouth
and nose portions of baboon) (Fig. 4a–c) and hence those
details are reflected in its method noise (Fig. 4d–f). This
is not the case with NLFMT (Fig. 4g–i) as those image
details present in the method noise of NL means filter are
added to NL means filtered output after wavelet threshold-
ing its method noise. Hence the method noise of NLFMT
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Fig. 3 a Gaussian white noise of σ = 2.5, method noise of b BF, c NL means, d WT, e MRBF, f NLFMT, g BM3D

looks like a noise as shown in Fig. 4j–l. In principle, the
method noise should look like a noise with very small ampli-
tudes. In order to compare the performance of the considered
methods quantitatively, the minimum and maximum ampli-
tude levels of the method noise are tabulated in Table 1.
From Table 1, it is observed that the minimum and maxi-
mum amplitudes of the method noise by BM3D stand first
in the list as they have lowest value (in absolute sense) com-
pared to other methods. This may be due to its outstand-
ing denoising performance of BM3D. If BM3D is excluded
from the comparison, then the proposed method, NLFMT,
has the lesser values thereby standing second in the list
(bolded in Table 1). But that of WT has higher magni-
tude than NLFMT and stands second in the list, which is

followed by MRBF, NL means and BF. From these obser-
vations it is found that, even though the performance of
proposed method is similar/inferior to BM3D, it has shown
better performance compared to other methods in terms of
method noise.

The image quality is measured by visual inspection as
there is no generally accepted objective way to judge the
image quality of a denoised image. There are two criteria
that are used widely in the literature: (1) visibility of the
artifacts and (2) preservation of edge details. For image
quality comparison, Lena, boat and Barbara images are
considered with different σ to compare the performance of
the proposed method with BF, NL means, WT, MRBF and
BM3D.
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Fig. 4 a–c Denoised images by NL means and its method noise in d–f, g–i by NLFMT and its method noise in j–l with σ ∈ [10, 20, 30],
respectively

The denoised images of boat with σ = 30 by different
methods are shown in Fig. 5 and that of Lena with σ = 40
in Fig. 6. In order to explain the performance of NLFMT,

the selected portions of the denoised images of Lena and
Barbara are considered in Figs. 7, 8 and 9. In these figures,
(a) shows the noisy image, and (b), (c), (d), (e), (f) and (g)
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Table 1 Minimum and maximum amplitude levels of the method noise

Denoising methods Minimum Maximum

WT −22.8602 21.7308

BF −29.5608 28.4542

MRBF −22.8602 22.7308

NL means −25.1134 23.0250

NLFMT −19.5651 18.7301

BM3D −11.2134 9.8694

show its denoised images by BF, NL means, WT, MRBF,
NLFMT and BM3D, respectively. It is known that the BF
removes noise by domain filtering and retains the edges by
range filtering, but this is at the cost of image details. This

is observed in (b) of Figs. 5, 6, 7, 8 and 9 that the image
details also have been smoothed along with the noise by
domain filtering, especially in Fig. 8b (top portion of the
image) and 9b (crosshair pattern of chair and line pattern on
cloth covering the head). The application of NL means fil-
ter removes the details to some extent and blurs the image
at low SNR as the similar local patches used to find pixel
weights are noisy (c of Figs. 5, 6, 7, 8 and 9). It is observed
from (d) of Figs. 5, 6, 7, 8, 9 that the denoised images by
WT still have some amount of noise with blocking artifacts
and able to retain some of the details. In MRBF, the appli-
cation of BF on approximation sub-band obtained after one
level of wavelet decomposition makes to lose some of the
image details present in that sub-band because of domain fil-
ter inherent in BF. Further, like iterated BF, the MRBF also

Fig. 5 a Noisy image with σ = 30, denoised images by b BF, c NL means, d WT, e MRBF, f NLFMT, g BM3D
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Fig. 6 a Noisy image with σ = 40, denoised images by b BF, c NL means, d WT, e MRBF, f NLFMT, g BM3D

has the effect of flattening the gray levels in an image con-
siderably resulting in a cartoon-like appearance [18] due to
application of BF after each level of wavelet reconstruction.
The flattening effect of gray levels and loss of image details
can be observed in (e) of Figs. 5, 6, 7, 8 and 9. Also, it is
observed that the edges look like distorted in (e) of Figs. 8
(edges of cupboard and books) and 9 (edge of chair’s leg).
BM3D has shown good performance in all the cases and is
superior to proposed method. Even though the noise present
in the denoised image by NLMFT is little more than that
by MRBF, the performance of NLFMT is better than that of
MRBF in terms of details and edges. The hat portion of the
Lena image has more details in denoised image by NLFMT
(Fig. 7f) than that by MRBF (Fig. 7e). Similarly, crosshair
pattern of chair and line pattern on cloth covering the head

in Barbara image is clearly visible in denoised image by
NLFMT (Fig. 9f) than that by MRBF (Fig. 9e). The edges
in denoised images by NLFMT are not distorted like that of
MRBF (e, f of Figs. 8, 9). From these observations, it is found
that the performance of the proposed method is superior to
that of WT, BF and NL means and is superior/similar to that
of MRBF.

The performances of the proposed methods are measured
quantitatively using PSNR and Image Quality Index (IQI) of
the denoised images. The IQI of the denoised image is defined
as a product of three factors: loss of correlation, luminance
distortion and contrast distortion and given as [A31]:

IQI =
(

σIB

σIσB

)(
2mImB

m2
I + m2

B

) (
2σIσB

σ 2
I + σ 2

B

)
(14)

123



SIViP

Fig. 7 a Noisy image with σ = 30, denoised images by b BF, c NL means, d WT, e MRBF, f NLFMT, g BM3D

where mI = 1
MN

∑M
i=1

∑N
j=1 I (i, j) , mB = 1

MN

∑M
i=1∑N

j=1 B(i, j) σ 2
I = 1

MN−1

∑M
i=1

∑N
j=1 (I (i, j) − mI)

2 ,

σ 2
B = 1

MN−1

∑M
i=1

∑N
j=1 (B (i, j) − mB)2, σIB = 1

MN−1∑M
i=1

∑N
j=1 (I (i, j) − mI) (B (i, j) − mB)

The first component of Eq. (14) represents the correlation
coefficient between I and B, which measures the degree of
linear correlation between I and B and its dynamic range is
from −1 to 1. The second component measures how close
the mean luminance is between I and B with a value range
of [0, 1]. σI and σB can be viewed as the estimates of the
contrast of I and B, so the third component with a value range
of [0, 1] measures how similar the contrasts of the images
are.

So, the IQI is rewritten as

IQI = 4mImBσIB(
m2

I + m2
B

) (
σ 2

I + σ 2
B

) (15)

The dynamic range of IQI is [−1, 1]. The best value 1 is
achieved, if and only if, B = I for all i = 1, 2, . . . , M and
j = 1, 2, . . . , N . The lowest value −1 occurs when B =
2mI − I (i, j) for all i = 1, 2, . . . , M and j = 1, 2, . . . , N .

PSNR and IQI of the denoised images by different meth-
ods are tabulated in Tables 2 and 3, respectively. As BM3D
has a good denoising performance, it has highest values in
terms of PSNR and IQI. By excluding BM3D, the proposed
methods are compared and discussed with other methods
under consideration, and hence, the second highest PSNR and
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Fig. 8 a Noisy image with σ = 30, denoised images by b BF, c NL means, d WT, e MRBF, f NLFMT, g BM3D

IQI values are bolded. It is observed from the Table 2 that the
denoised images by NLFMT has highest PSNR than that of
other methods for images like Barbara, baboon and to some
extent for Lena (σ = 10, 20), boat images (σ = 10, 20). The
closest competitor for NLFMT is MRBF which has high-
est PSNR for some cases of Lena (σ = 30, 40, 50), boat
(σ = 30, 40, 50) and baboon images (σ = 50). The PSNR
performance of NL means is better than BF and WT at lower
σ and at higher σ either BF or WT scores over NL means
filter. From Table 3, it is noticed that almost all the IQI values
for different methods are greater than 0.9 and approaching 1.
This means, when the IQI approaches 1 the denoised image
is close to the original image. It is observed from Table 3 that,
NLFMT has highest IQI than that of other methods for images
like Barbara (all σ ), Lena (σ = 10, 20), boat (σ = 10, 20)

and baboon (σ = 10, 20, 30). For other σ of these images,
MRBF scores over NLFMT in terms of IQI. Here also, IQI
performance of NL means is better than BF and WT at lower
σ and at higher σ either BF or WT scores over NL means
filter. For baboon with σ = 10, the proposed method has
higher value than that of BM3D both in terms of PSNR and
IQI. From Tables 2 and 3 it is observed that, in most of the
cases the denoised image with high PSNR will have higher
IQI and vice versa.

Even though the PSNR and IQI of MRBF for boat
image with σ = 30 and Lena image with σ = 30, 40 is
greater than NLFMT, the MRBF suffers from edge distortion,
detail loss and cartoon-like appearance (e of Figs. 5, 6, 7).
Hence, sometimes higher PSNR and IQI do not necessarily
correspond to a better visual quality. In case of Barbara,
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Fig. 9 a Noisy image with σ = 30, denoised images by b BF, c NL means, d WT, e MRBF, f NLFMT, g BM3D

the proposed NLFMT has higher PSNR and IQI with
more details and good visual quality than that of MRBF
(Figs. 8, 9). In this case, higher PSNR and IQI correspond to
a better visual quality.

It is known that the performance of the WT-based denois-
ing method depends on the type of wavelet used. In order
to analyze the effect of the same on the proposed NLFMT
method, different wavelets like db8, sym8, db16, coif5,
bior6.8 and DCHWT [39–41] are used to decompose the
method noise. PSNR and IQI of the denoised images by
NLFMT with different wavelets are tabulated in Tables 4
and 5, respectively. The bolded values in these tables show
the highest PSNR and IQI of the denoised images by dif-
ferent wavelets. It is observed from the Table 4 that the
DCHWT decomposition provides highest PSNR in most

of the cases, and in other cases, it is provided by bior6.8
and coif5. In Table 5, for most of the cases, coif5 pro-
vides highest IQI, and in other cases, it is by DCHWT and
bior6.8.

In Fig. 10a shows the noisy image of Barbara with σ = 30
and its denoised images by NLFMT using sym8, db16, coif5,
bior6.8, DCHWT for method noise decomposition are shown
in (b–f), respectively. It is observed from Fig. 10 that there
is a reduction of noise in all the denoised images except
for a few artifacts, which are more prominent in Fig. 10e
(bior6.8). Further, the denoised images by sym8 (Fig. 10b),
coif5 (Fig. 10d) and DCHWT (Fig. 10f) have similar perfor-
mance, and better than that of bior6.8 (Fig. 10e) and db16
(Fig. 10c). For Barbara image with σ = 30, it is observed
from Tables 4 and 5 that the NLFMT using DCHWT provides
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Table 2 PSNR of denoised images by different denoising methods

σ 10 20 30 40 50 10 20 30 40 50

Input image Lena 512 × 512 Barbara 512 × 512

WT 33.23 29.97 28.25 27.07 26.09 31.45 27.70 25.55 24.10 23.11

MRBF 34.07 31.21 29.60 28.31 27.16 32.14 28.08 25.59 24.13 23.24

BF 32.01 29.70 28.43 27.39 26.40 27.32 25.04 24.24 23.65 23.09

NL means 34.56 30.54 28.20 26.68 25.77 34.40 28.88 25.89 23.99 22.86

NLFMT 35.41 31.62 29.44 27.91 26.71 35.18 29.96 26.88 24.84 23.50

BM3D 35.79 32.94 31.16 29.79 28.70 35.37 32.04 29.87 27.98 26.60

Input image Boat 512 × 512 Baboon 512 × 512

WT 31.82 28.38 26.52 25.28 24.34 29.90 25.71 23.67 22.42 21.58

MRBF 32.33 29.15 27.35 26.13 25.14 29.81 25.66 23.61 22.46 21.76

BF 29.39 27.18 26.12 25.31 24.56 25.07 23.01 22.33 21.91 21.56

NL means 32.10 28.00 25.88 24.32 23.37 31.95 25.18 22.03 20.59 20.05

NLFMT 33.47 29.60 27.33 25.74 24.61 33.47 26.94 24.13 22.58 21.62

BM3D 33.86 30.81 29.01 27.60 26.38 31.51 27.39 25.25 23.71 22.72

Table 3 IQI of denoised images by different denoising methods

σ 10 20 30 40 50 10 20 30 40 50

Input image Lena 512 × 512 Barbara 512 × 512

WT 0.9931 0.9875 0.9818 0.9772 0.9728 0.9880 0.9753 0.9621 0.9502 0.9410

MRBF 0.9943 0.9900 0.9860 0.9821 0.9777 0.9892 0.9759 0.9621 0.9508 0.9436

BF 0.9917 0.9863 0.9823 0.9779 0.9729 0.9717 0.9577 0.9513 0.9459 0.9418

NL means 0.9951 0.9895 0.9837 0.9780 0.9728 0.9939 0.9795 0.9631 0.9471 0.9338

NLFMT 0.9957 0.9907 0.9850 0.9799 0.9749 0.9944 0.9829 0.9689 0.9552 0.9445

BM3D 0.9960 0.9931 0.9905 0.9879 0.9860 0.9945 0.9891 0.9840 0.9772 0.9713

Input image Boat 512 × 512 Baboon 512 × 512

WT 0.9919 0.9825 0.9737 0.9661 0.9581 0.9827 0.9598 0.9396 0.9219 0.9073

MRBF 0.9917 0.9852 0.9803 0.9751 0.9690 0.9822 0.9599 0.9404 0.9247 0.9135

BF 0.9863 0.9799 0.9752 0.9696 0.9629 0.9577 0.9346 0.9243 0.9171 0.9097

NL means 0.9893 0.9760 0.9679 0.9614 0.9536 0.9871 0.9531 0.9161 0.8856 0.8715

NLFMT 0.9933 0.9857 0.9778 0.9689 0.9596 0.9909 0.9678 0.9447 0.9241 0.9082

BM3D 0.9942 0.9886 0.9836 0.9797 0.9753 0.9873 0.9705 0.9551 0.9390 0.9273

Table 4 PSNR of the denoised images by NLFMT with different wavelets by BayesShrink soft thresholding

σ 10 20 30 40 50 10 20 30 40 50

Input image Lena 512 × 512 Barbara 512 × 512

db8 35.41 31.62 29.44 27.91 26.71 35.18 29.96 26.88 24.84 23.50

sym8 35.41 31.65 29.46 27.93 26.73 35.14 29.94 26.88 24.86 23.52

db16 35.40 31.61 29.42 27.89 26.70 35.21 29.97 26.93 24.91 23.54

coif5 35.47 31.67 29.49 27.96 26.76 35.29 30.09 27.05 25.00 23.61

bior6.8 35.60 31.49 29.11 27.44 26.14 35.54 30.09 26.93 24.77 23.31

DCHWT 35.47 31.68 29.48 27.96 26.78 35.41 30.14 27.09 25.02 23.60

Input image Boat 512 × 512 Baboon 512 × 512

db8 33.47 29.60 27.32 25.74 24.61 33.47 26.94 24.13 22.58 21.62

sym8 33.43 29.63 27.33 25.78 24.65 33.51 26.93 24.13 22.57 21.60

db16 33.44 29.59 27.29 25.73 24.59 33.55 27.01 24.17 22.57 21.59

coif5 33.56 29.71 27.42 25.87 24.74 33.71 27.05 24.20 22.64 21.66

bior6.8 33.89 29.76 27.26 25.57 24.34 34.23 27.46 24.33 22.64 21.60
DCHWT 33.50 29.69 27.38 25.81 24.68 33.65 27.08 24.26 22.69 21.73
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Table 5 IQI of the denoised images by NLFMT with different wavelets by BayesShrink soft-thresholding

σ 10 20 30 40 50 10 20 30 40 50

Input image Lena 512 × 512 Barbara 512 × 512

db8 0.9957 0.9907 0.9850 0.9799 0.9749 0.9944 0.9829 0.9689 0.9552 0.9445

sym8 0.9957 0.9907 0.9852 0.9798 0.9750 0.9944 0.9830 0.9691 0.9558 0.9446

db16 0.9957 0.9906 0.9852 0.9799 0.9746 0.9945 0.9833 0.9702 0.9573 0.9465

coif5 0.9957 0.9906 0.9853 0.9796 0.9742 0.9945 0.9836 0.9707 0.9581 0.9475

bior6.8 0.9956 0.9899 0.9833 0.9765 0.9696 0.9947 0.9838 0.9706 0.9564 0.9437

DCHWT 0.9957 0.9907 0.9852 0.9798 0.9752 0.9946 0.9836 0.9706 0.9574 0.9462

Input image Boat 512 × 512 Baboon 512 × 512

db8 0.9933 0.9857 0.9778 0.9689 0.9596 0.9909 0.9678 0.9447 0.9241 0.9082

sym8 0.9931 0.9857 0.9780 0.9691 0.9605 0.9910 0.9676 0.9448 0.9240 0.9076

db16 0.9934 0.9858 0.9776 0.9683 0.9592 0.9910 0.9676 0.9445 0.9231 0.9074

coif5 0.9935 0.9863 0.9786 0.9698 0.9611 0.9913 0.9683 0.9450 0.9250 0.9089

bior6.8 0.9942 0.9860 0.9756 0.9646 0.9537 0.9923 0.9709 0.9463 0.9249 0.9076

DCHWT 0.9935 0.9862 0.9786 0.9696 0.9611 0.9912 0.9685 0.9459 0.9257 0.9093

Fig. 10 a Noisy image with σ = 30, denoised images by NLFMT using b sym8, c db16, d coif5, e bior6.8, f DCHWT

highest PSNR whereas NLFMT using coif3 provides highest
IQI. Even though the IQI of bior6.8 is same as DCHWT, the
visual quality of the denoised image using bior6.8 is not as
good as that of DCHWT because of the artifacts present in
that denoised image. From Fig. 10, it is observed that the
denoised images by NLFMT using sym8, coif5 and DCHWT
have comparable visual qualities.

5 Conclusions

In this paper, the amalgamation of NL means filter and
its method noise thresholding using wavelet has been pro-
posed. The performance of the proposed methods is com-
pared with WT-based approach, BF, MRBF and NL means
filter. Through experiments conducted on standard images,
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it was found that the proposed method has improved the
results of WT approach, BF, NL means filter and MRBF
with slight increase in performance in terms of method noise,
visual quality, PSNR and IQI. Only in few cases MRBF has
shown improved performance when compared to the pro-
posed method.

The performance of the proposed method can be improved
by using adaptive kernel-based NL means filter and collab-
orative filtering used in BM3D. Further, it is possible to
improve the results by using shift invariant wavelet trans-
form and better sub-band denoising techniques for method
noise decomposition and thresholding. These issues and the
detailed analysis of parameter selection for the proposed
framework as well as the application of other nonlinear fil-
ters instead of NL means filter are left as future work and
will inspire further research toward understanding and elim-
inating noise in real images.
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