
A Learning-Based Approach for Proactive Caching
in Wireless Communication Networks

Yuyang Wang, Yun Chen, Haibo Dai, Yongming Huang, and Luxi Yang
School of Information Science and Engineering, Southeast University, Nanjing, China

Email: {wangyuyang, yunchen, hbdai, huangym, lxyang}@seu.edu.cn

Abstract—Proactive caching is a promising technology in 5G
wireless networks. Small-cell base stations (SBS) can cache
popular contents to assist the macro base station, and proactive
caching are considered to cope with the weak backhaul links
of SBSs. However, obtaining popular contents and making the
optimal caching strategy may be challenging. In this paper, a
novel learning-based approach is proposed, in which regular-
ized singular value decomposition (RSVD)-based collaborative
filtering (CF) is used to estimate the content popularity and
transfer learning (TL) is adopted to improve the estimation
accuracy. Then considering the interaction between users and
SBSs, a distributed iterative algorithm is designed to make a
caching strategy with the goal to maximize the number of users
who can be served by neighboring SBSs. Experiments have
been conducted to evaluate the performance of the proposed
algorithms and simulation results demonstrate the effectiveness
of our learning-based approach for proactive caching.

I. INTRODUCTION

With the development of mobile communications, mobile

smartphones and social networks, a wide variety of online

services are provided through mobile terminals, which leads

to explosive and rapid growth of mobile data [1]. As a

result, the excessive demand for data is draining the limited

spectrum resources of wireless transmissions, especially the

wireless links between base stations and users, and the wireless

backhual links between base stations and the core network.

To cope with this problem, a promising solution is to cache

popular contents at the edge of mobile networks.

Considering the large amount of mobile data, more users

and more diverse user requirements in wireless networks,

proactive caching is proposed in [2], which tracks users’

requesting frequency and analyzes historical data to predict the

popularity of contents. In real scenario of proactive caching,

the popularity of content files can not be known perfectly, so

various approaches are employed to estimate the popularity

profile. In [3]–[5], several learning-based approaches to esti-

mate the popularity profile for devising caching mechanisms

have been investigated. Besides, caching without prior knowl-

edge of the popularity distribution is considered for femtocell

networks in [6], where it is shown that distributed caching is an

NP-hard problem and approximation algorithms are proposed

for video content delivery. In [7], the theoretical analysis of the

implications of learning the popularity profile on the training

time is studied to achieve an offloading loss which is close to

the optimal policy.

In proactive caching, the aforementioned references have

some problems. Firstly, estimating the content popularity ma-

trix which is assumed to be largely unknown is very chal-

lenging due to the data sparseness and cold-start problems [8].

Considering the inefficient performance of supervised machine

learning which is used to estimate the popularity matrix, a

transfer learning (TL)-based approach are used to improve the

estimation accuracy by transferring knowledge from other do-

mains [4] [5]. However, the TL caching approaches mentioned

above are based on the classical collaborative filtering (CF)

learning techniques, which do not have superior performance

and can be further improved by regularized singular value

decomposition (RSVD). Secondly, in the existing approaches,

the proactive caching decision is made by storing the most

popular content greedily until no storage space remains after

obtaining the estimated content popularity matrix. However,

the popular caching strategy cause several neighbouring small-

cell base stations (SBS) to cache the same popular contents,

which clearly results in waste of cache resources. Considering

such a condition, the caching strategy can be optimized if

the interactions between the edge of networks are taken into

account [9].

In this paper, a learning-based approach deriving from

TL and RSVD-based CF techniques for proactive caching is

proposed, and our contributions are summarized as follows.

Firstly, in order to estimate the content popularity matrix,

traditional CF technique is ameliorated by RSVD. Second-

ly, considering the data sparseness and cold-start problems,

transfer learning is used to improve the estimation accuracy,

which is done by transferring and learning hidden features of

popularity matrix from the source domain, such as a social

network or a device-to-device (D2D) network [10], to the

target domain. Thirdly, after obtaining the estimated content

popularity matrix, a distributed iterative algorithm is pro-

posed to make the optimal proactive caching strategy. Finally,

compared with other traditional methods, experiments are

presented to show the effectiveness of the proposed approach.

Generally, with our proposed caching scheme, not only can

the heavy traffic load be relieved, as well the request latency

can be decreased, which will definitely result in better user

experience.

The rest of this paper is organized as follows. Section

II describes the system model and problem statement under

consideration. In Section III, a caching approach using TL

and RSVD-based CF techniques is presented in detail to

estimate the content popularity matrix, then a distributed

iterative algorithm is proposed to develop a caching strategy.

978-1-5386-2062-5/17/$31.00 ©2017 IEEE

The performance of the proposed approach is evaluated by

experiments in Section IV and finally concluding remarks are

provided in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we present the system model followed by

the main problem addressed in the paper.

A. System Model

A heterogeneous cellular network is considered, including

N users, one macro base station (MBS) and M SBSs. The

set of users is denoted by N = {1, 2, . . . , N}, and the set

of SBSs is denoted by M = {1, 2, . . . ,M}. The set of

users and SBSs are randomly distributed in the MBS’s service

scope. Each user independently requests a file from the content

server in service provider. The set of files is denoted by

F = {1, 2, . . . , F}, where the size of each content file f
is B bits. The popularity of content files is specified by the

distribution P = {P1, P2, . . . , PF }, which is well modeled by

the Zipf-like distribution [11]:

Pf =
1/fα∑F
i=1 1/i

α
, (1)

where α is the exponent factor which characterizes the

distribution and reflects different content popularities. The

distribution mentioned above describes a content popularity

in the ordered case. For simplicity, the distribution P is

assumed to be stationary across time. Therefore, the content

popularity matrix is given by P ∈ R
N×F , where each entry

Pnf represents the probability that user n requests content f .

In order to simulate the delivery when the user requests the

content, we assume that each SBS has a finite cache size C
and caches contents from the set F . Cache size C means the

SBS can cache up to C files, of which each length is B bits.

In the modeled cellular network, if a user requests a content

cached by a nearby SBS, then the SBS serves the request,

otherwise the request is served by the MBS. The relationships

among the users, SBSs and contents are modeled as follows.

We define a cache matrix X ∈ R
F×M , where entry xfm

returns 1 if SBS m caches the content f and 0 otherwise, and

define a serve matrix Y ∈ RM×N , where entry ymn returns 1

if SBS m can serve user n and 0 otherwise. If a request that

user n needs content f can be served by a nearby SBS, then

max
m∈M

{xfmymn} = 1, otherwise max
m∈M

{xfmymn} = 0.
Now, we present a simple communications protocol to

determine which SBSs a specific user can be served by, and

these SBSs are defined as neighboring SBSs. It is supposed

that a SBS is located at a, a user is located at b. If ||a−b|| < R,

where R is the radius of SBS, the connection between the user

and the SBS is established. Hence, the serve matrix Y can be

known.

B. Problem Statement

In a typical wireless communication network, the MBS

deliver a content file to a user by the backhaul link. This results

in backhaul congestion during peak traffic hours. To alleviate

this problem, caching the most popular files at the SBSs

proactively is proposed. Then, the request from a user can

be served directly by one of the neighboring SBSs. Therefore,

the caching strategy should be made optimally. Estimating the

content popularity matrix P is of high importance in proactive

caching. Since P is assumed to be largely unknown and the

number of users and files is extremely large, traditional CF or

TL techniques lead to poor performance. Thus, we come up

with a better learning-based approach in the estimate.

Then, based on the complete estimated matrix P, an optimal

caching decision (cache matrix X) should be made. Instead of

using greedy algorithm to store the most popular files, we

establish an optimization problem as follows:

max
X

N∑
n=1

F∑
f=1

Pnf max
m∈M

{xfmymn}

s.t.

F∑
f=1

xfm ≤ C, ∀m ∈ M,

(2)

where the objective function means the expected number of

users who can be served by neighboring SBSs. Therefore, an

algorithm is designed to solve the optimization problem.

III. ESTIMATING THE POPULARITY MATRIX AND MAKING

CACHING STRATEGY

In this section, we propose a caching approach using TL and

RSVD-based CF techniques to estimate the content popularity

matrix, then a distributed iterative algorithm is designed to

make an optimal caching strategy.

A. Estimating the Popularity Matrix

To estimate the popularity matrix, which is assumed to be

largely unknown, RSVD-based CF is a classical approach to

learn from a sparse matrix and make a estimate of the complete

matrix. In this section, we improve the objective function of

RSVD-based CF, and then use TL to increase the estimation

accuracy.

1) RSVD-based CF to Estimate: The proposed RSVD-

based CF caching procedure is composed of training and

prediction parts. In the training part, the goal is to constantly

optimize the estimate of popularity matrix P, where every SBS

builds a model based on the available information regarding

users’ preferences/ratings for files. The entry in the sparse pop-

ularity matrix P is defined as Pij , and we transform P into the

following equivalent form: R = {(i, j, r) : r = Pij , Pij �= 0}.

The three elements of each row represent the user identity i,
the file identity j, and the user’s ratings r for the file, which

record all known information of popularity matrix. To estimate

the unknown entries of P, we use RSVD to decompose the

matrix and construct an estimate of the popularity matrix with

a rank of k: P ≈ NTF, where the two factor matrices are

N ∈ Rk×N and F ∈ Rk×F . The physical significance of these

two factor matrices can be explained as that each user and file

have k features, each row of the matrices is the eigenvector

of corresponding user or file. Then the objective function of

the optimization problem can be established by the sum of

squares of errors between the predicted values and the true

values, and the optimization problem is given by:

min
i,j∈P

∑
(i,j)∈P

(Pij − nTi fj)2, (3)

where the sum is over the (i, j) user/file pairs in the training

set, and ni and fj represent the i-th and j-th columns of N and

F respectively. However, if data in the training set is trained

according to the above formula, the results of estimation

will be over-fitting, which will lead to poor performance of

the training model. In order to avoid over-fitting, we add a

regularization parameter λ to the objective function, which is

used to balance the regularization and fitting in data training

process. Since all the values in ni and fj are variable and

we do not know which variables will result in over-fitting

problems, all of them are balanced, which refers to RSVD.

The initial popularity matrix of our algorithm (ie, the input

training matrix) is R, where the entry rij corresponding to Pij
is the known rating data, and the estimated value is defined

as r̂ij = n
T
i fj . For convenience, we denote the error between

the true value and the estimated value as eij = rij − r̂ij .
Because the user’s rating on the file depends not only on the

relationship between the user and the file, but also on the

user’s and the file’s own features, a baseline predictor is added

to the estimated value, which is denoted as r̂ij = μ + bi +
bj +n

T
i fj , where μ is the average of all the ratings, bi stands

for the quality of each user i relative to μ, and bj stands for

the quality of each file j relative to μ, both bi and bj are

also balanced with a regularization parameter λ. Accordingly,

the optimization problem is improved and can be defined as

follows:

min
i,j∈R

∑
(i,j)∈R

(rij−μ−bi−bj−nTi fj)2+λ(b2i+b2j+|ni|2+|fj |2). (4)

Then we can use a stochastic gradient descent algorithm to

optimize (4) and the estimate of the popularity matrix is

made. The optimized RSVD-based CF is proposed above.

However, to cope with the sparsity problem, the proactive

caching approach can be improved by employing a TL-based

approach.

2) TL to Improve the Estimate: The proposed TL-based

approach is to utilize the knowledge obtained from users’

interactions with a social network (termed the source domain),

and transfer the knowledge from source domain to help learn

the users request pattern (target domain) by cleverly combining

samples from the source domain and the target domain. The

prior information can be obtained from social networks with

D2D interactions, which is considered to follow a D2D content

distribution. We suppose that there are Ns users and F s files

in the source domain, and the popularity matrix of source

domain is Ps (or Rs). Therefore, by judiciously combining

the samples from source domain and target domain, we define

the TL domain, where there are N tl users and F tl files, and

the popularity matrix is Ptl (or Rtl). When using TL, we also

establish the two factor matrices N ∈ Rk×Ntl

and F ∈ Rk×F tl

.

Then, the optimization problem is given by

min
i,j∈Rtl

∑
(i,j)/∈Rs

(rij−μ−bi−bj−nTi fj)2

+λ(b2i+b
2
j+|ni|2+|fj |2)

+ δ
∑

(i,j)∈Rs

(rij−μ−bi−bj−nTi fj)2

+λ(b2i+b
2
j+|ni|2+|fj |2),

(5)

where δ is used to balance the information from target domain

and source domain. Having the above objective function, we

need to optimize it by training, and a stochastic gradient

descent algorithm is used. Specifically, we take the objective

function’s partial respect to bi, bj , ni and fj , and these four

variables is changed with the negative gradient. Therefore, the

four variables are updated as follows:

bi =

{
bi + γ(eij − λbi), (i, j) /∈ Rs
bi + δγ(eij − λbi), (i, j) ∈ Rs, (6)

bj =

{
bj + γ(eij − λbj), (i, j) /∈ Rs
bj + δγ(eij − λbj), (i, j) ∈ Rs, (7)

ni =

{
ni + γ(eijfj − λni), (i, j) /∈ Rs
ni + δγ(eijfj − λni), (i, j) ∈ Rs, (8)

fj =

{
fj + γ(eijni − λfj), (i, j) /∈ Rs
fj + δγ(eijni − λfj), (i, j) ∈ Rs. (9)

In the training described by the algorithm above, we need to

obtain the deviation between the current estimate and the true

value. For the measure of the error, we use the root mean

square error (RMSE) [12]. Similar to R, we suppose that the

test matrix is Rtest and the number of test values TE is equal to

the number of rows in Rtest. Therefore, the evaluation metrics

is given by

RMSE =

√ ∑
(i,j,rij)∈R

(rij − r̂ij)2/TE . (10)

The related pseudocode is presented in Algorithm 1, which

uses RSVD-based CF and TL techniques to estimate the

popularity matrix and the evaluation metrics RMSE is also

given.

B. Making Caching Strategy

After obtaining the estimate of the popularity matrix, the

optimal caching strategy should be made based on the es-

timate, by solving the optimization problem (2). Firstly, the

caching strategy Xm of every SBS m is the m-th columns

of X, and the strategy set is denoted by Xm = {Xm},

where Xm = (x1m, x2m, . . . , xFm)
T , xfm ∈ {0, 1}. Then,

we define the utility function of every SBS m as Um(X) =∑
n∈Lm

∑F
f=1 Pnf maxm∈M

{xfmymn}, where Lm represent the

set of users that SBS m can serve. In order to describe

the optimal caching strategy, we define that best strategy

Algorithm 1 Popularity Estimate Algorithm

Require: R, Rs, Rtest

Ensure: P , rmse
1: function LOADFILEANDINITIAL(R,Rs, Rtest)
2: Load R,Rs, Rtest

3: Create arrays bi, bj , ni, fj ;RateMatrix, μ← R,Rs

4: for every element in bi, bj , ni, fj do
5: bi, bj ← 0;ni, fj ← rand()/10
6: end for
7: end function
8: function TRAIN(γ, λ, nIter)
9: Rmse,RNum, rij ← 0;LRmse← 1000

10: for n = 1→ nIter do
11: Rmse← 0, RNum← 0
12: for i = 1→ UserNum do
13: for j = 1→ IterNum do
14: rij ← μ+ bi[i] + bj [j] + ni[i] · fj [j]
15: e← RateMatrix[i][j]− rij
16: Update bi[i], bj [j], ni[i], fj [j]in Eq.(6-9)

17: Rmse← Rmse+ e2, RNum++
18: end for
19: end for
20: Rmse← √

Rmse/RNum
21: if Rmse > LRmse then break
22: end if
23: LRmse← Rmse, γ ← 0.9γ
24: end for
25: P ← μ+ bi + bj + ni · fj
26: rmse← √∑

(Rtest − P)2/TE
27: return P ,rmse
28: end function

set (BSS) is the strategy set that maximize the utility of

SBS m given the strategies of the rest of SBSs, BSSm =
arg max

Xm∈Xm

Um(Xm,X−m). Furthermore, to cache files as

many as possible, we define the strategy set that the cache

of SBS m is full as Fum.

In order to obtain the optimal solution of caching strategy,

we suppose that every SBS exchanges information with neigh-

bors to improve its strategy, so a distributed iterative algorithm

is designed as shown in Algorithm 2. In the initialization,

every SBS caches C content files. In each iteration, a set of

non-interacting SBSs is selected, calculating the current utility

functions and finding their best strategy sets independently,

and then, the new strategy of the SBSs can be selected

accordingly. Finally, the new utility functions and caching

strategy are updated.

IV. EXPERIMENTS AND RESULTS ANALYSIS

In this section, simulation experiments are performed, and

we provide results analysis to demonstrate the effectiveness of

the proposed algorithms.

We consider a (1000m × 1000m) area with the SBSs and

users randomly and independently distributed in the area. The

parameter values used in our calculations are as follows:

Algorithm 2 Decentralized Cache Algorithm

1: Initialize i← 0; ∀m ∈ M,Xm(i) = (1, . . . , 1, 0, . . . , 0)
2: for i = 1→MaxIterNum do
3: Randomly select a set of SBSs H(i)
4: for every SBS m ∈ H(i) do
5: Calculate Um(Xm(i),X−m(i))
6: end for
7: for every SBS m ∈ H(i) do
8: Calculate BSSm
9: if Xm(i) /∈ BSSm then

10: X̂m(i)← BSSm ∩ Fum
11: end if
12: if Xm(i) ∈ BSSm then
13: X̂m(i)← BSSm \ Xm(i)
14: end if
15: Calculate Um(X̂m(i),X−m(i)), update Xm(i)
16: end for
17: end for

200 0 200 400 600 800 1000 1200

200

0

200

400

600

800

1000

1200 Users Location
SBSs Location

Fig. 1. The distribution of SBSs and users

M = 10, N = 100, F = 100, C = 10, α = 1,
γ = 0.05, λ = 0.15, k = 16, R = 300m, B = 1Mb.

We randomly generate the entire popularity matrix in target

domain according to Zipf distribution, from where the training

set R is randomly selected with 5% of ratings. Similarly,

matrix in source domain is randomly generated according to

D2D content distribution, from where Rs is randomly selected

with 10% of ratings. An interaction graph between SBSs and

users is shown in Fig. 1.

In the stage of estimating the popularity matrix, we compare

the proposed Algorithm 1 with the approach without TL. The

comparison chart between the two approaches regarding to

evaluation metrics RMSE is shown in Fig. 2, where RMSE

reflects the estimation accuracy of popularity matrix. Fig. 2

shows that with the increase of user-file scale, both RMSEs

are reduced, which indicates that the estimated matrix is closer

to the true value. More importantly, the performance of the

proposed algorithm with TL is clearly better than the approach

without TL. Therefore, the effectiveness of Algorithm 1 in

estimating the popularity matrix is demonstrated.

To verify the overall performance of the proposed caching

20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

8

9

10
x 10 3

user file scale

R
M

SE

without TL
with TL

Fig. 2. RMSE versus the user-file scale with scale 100 representing that the
number of users and files are both 100

4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cache Size

U
se

r S
at

is
fa

ct
io

n

Proposed Caching Approach
Random Caching Approach
Propular Caching Approach

Fig. 3. Users’ satisfaction versus the cache size of SBSs

approach, we compare the approach with two other approach-

es: a) the random caching approach, in which contents are

cached uniformly at random; b) the popular caching approach,

in which the content popularity matrix is estimated via Algo-

rithm 1, and the most popular contents are stored accordingly.

In the simulation model, users’ satisfaction represented by

the ratio of users served by neighboring SBSs is the main

comparison metric.

Fig. 3 shows the impact of the cache size of SBSs. The

users’ satisfaction increases with the cache size of SBSs for all

2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of SBS

U
se

r S
at

is
fa

ct
io

n

Proposed Caching Approach
Random Caching Approach
Propular Caching Approach

Fig. 4. Users’ satisfaction versus the number of SBSs

approaches. When the cache size of SBSs is larger, users can

request more files from SBSs so the probability of being served

by neighbouring SBSs also becomes larger, and we expect that

all the users can be served by SBSs when the cache size is

large enough. Our proposed approach performs better than the

popular caching approach and the random caching approach,

and the superiority of our proposed approach is demonstrated.

Fig. 4 shows the impact of the number of SBSs. The

users’ satisfaction increases with the number of SBSs for all

approach. The users can be served by more SBSs when the

density of SBSs becomes larger, so users will have higher

probability to acquire content files from neighbouring SBSs,

and it is expected that all the users can be served by SBSs

when the SBSs is dense enough. The proposed approach

performs better than the popular caching approach and the

random caching approach, which verifies the effectiveness of

the proposed algorithms.

V. CONCLUSION

In this paper, we propose a novel learning-based approach

for proactive caching. In the estimating stage, the proposed

approach optimize the traditional CF by RSVD and use TL to

improve the estimation accuracy by ingeniously transferring

the prior information from social networks. Then, in the

caching decision-making stage, we consider the interaction

between users and SBSs by establishing the utility function of

every SBSs, and a distributed iterative algorithm is designed to

make a caching strategy based on the purpose to maximize the

expected number of users who can be served by neighboring

SBSs. Finally, experiments are conducted to evaluate the per-

formance of the algorithms, and simulation results demonstrate

the effectiveness of our learning-based approach for proactive

caching.

REFERENCES

[1] Cisco, “Global mobile data traffic forecast update, 2013–2018,” white
paper, 2014.

[2] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5g wireless networks,” IEEE Commun. Mag.,
vol. 52, pp. 82–89, Aug 2014.

[3] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy,
“Learning distributed caching strategies in small cell networks,” in Proc.
IEEE Int. Symp. Wireless Commun. Syst., pp. 917–921, Aug 2014.

[4] E. Bastug, M. Bennis, and M. Debbah, “Anticipatory caching in small
cell networks: A transfer learning approach,” in 1st KuVS Workshop on
Anticipatory Networks, 2014.

[5] E. Bastug, M. Bennis, and M. Debbah, “A transfer learning approach
for cache-enabled wireless networks,” in Proc. Int. Symp. Model. Opt.
Mobile Ad Hoc Wireless Netw. (WiOpt), pp. 161–166, May 2015.

[6] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. Inf. Theory, vol. 59, pp. 8402–8413, Dec
2013.

[7] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based
approach to caching in heterogenous small cell networks,” IEEE Trans.
Commun., vol. 64, pp. 1674–1686, April 2016.

[8] J. Lee, M. Sun, and G. Lebanon, “A comparative study of collaborative
filtering algorithms,” arXiv preprint arXiv:1205.3193, 2012.

[9] H. Dai, Y. Huang, and L. Yang, “Game theoretic max-logit learning
approaches for joint base station selection and resource allocation
in heterogeneous networks,” IEEE J. Sel. Areas Commun., vol. 33,
pp. 1068–1081, June 2015.

[10] H. Dai, Y. Huang, R. Zhao, J. Wang, and L. Yang, “Resource op-
timization for device-to-device and small cell uplink communications
underlaying cellular networks,” IEEE Trans. Veh. Technol., vol. PP,
no. 99, pp. 1–1, 2017.

[11] J. Llorca, A. M. Tulino, K. Guan, and D. C. Kilper, “Network-coded
caching-aided multicast for efficient content delivery,” in Proc. IEEE
Int. Conf. Commun., pp. 3557–3562, June 2013.

[12] W. Pan, E. W. Xiang, and Q. Yang, “Transfer learning in collaborative
filtering with uncertain ratings.,” in AAAI, vol. 12, pp. 662–668, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

