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Abstract— Early mental stress detection can prevent many 
stress related health problems. This study aimed at using a 
wearable sensor system to measure physiological signals and 
detect mental stress. Three different stress conditions were 
presented to a healthy subject group. During  the procedure, 
ECG, respiration, skin conductance, and EMG of the trapezius 
muscles were recorded. In total, 19 physiological features were 
calculated from these signals. After normalization of the feature 
values and analysis of correlations among  these features,  a 
subset of 9 features was selected for further analysis. Principal 
component analysis reduced these 9 features to 7 principal 
components (PCs). Using these PCs and different classifiers, 
a consistent classification accuracy between stress and non 
stress conditions of almost 80% was found. This suggests that 
a promising feature subset was found for future development 
of a personalized stress monitor. 

 
I. INTRODUCTION 

 

The second most frequently occurring type of work- 

related health problems in the European population is ‘stress, 

depression or anxiety’ [1]. Of the sickness absence for one 

month or more, 25% was caused by stress, depression or 

anxiety. These figures indicate that stress is a major financial 

and social problem in European society. 

Chronic mental stress can cause health problems which 

include for example hypertension [2], cardiovascular diseases 

[3], increased likelihood of infections [2] and depression [4]. 

If mental stress could be detected in an early stage, stress 

related health problems could be prevented. 

Stress is known to activate the sympathetic nervous system 

(SNS) [4]. Much research has already been done on the 

detection of stress from physiological parameters that are 

influenced by the SNS. Examples are muscle activity, heart 

rate, heart rate variability, skin conductance and pupil diam- 

eter [5]–[8]. Other studies have shown that a combination 

of these physiological parameters facilitates differentiation 

between stressful situations and situations without stress [8]– 

[14]. These studies all measure signals in different situations 

(Stroop test, mental arithmetic, movie and sound fragments, 

car driving) than we did. We tried to mimic daily work stress 

with our newly developed test protocol that consisted of 

problem solving puzzle tasks and a memory task done in 

team effort. 
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A system that can measure stress levels based on phys- 

iological signals will create interesting applications in real 

life situations. Ultimate goal is to design an easily wearable 

wireless system that can measure real time stress levels. 

A possible application of such a system could be stress 

prevention at work. 

The goal of this study is to find the physiological signals 

and features that show the most distinct reaction to mental 

stress in the conditions included in our protocol. Once these 

features are identified, it should be possible to construct a 

reliable stress measure out of these features. 

A short description of the test protocol, signal acquisition 

system, data processing, methods for feature extraction and 

statistical analysis are presented in section II. Results of the 

analysis of the physiological signals during the stress tests, 

in comparison to relaxing periods, are presented in section 

III. The discussion can be found in section IV. Finally, 

conclusions are drawn in section V. 
 

II. METHODS 

A. Experimental  protocol 

The experimental protocol is only discussed briefly here. 

For a detailed description of the protocol, and a validation 

based on questionnaire answers, the reader is referred to [15]. 

A total number of 30 healthy subjects were recruited to 

participate in a protocol specially designed for this study. 

The ages of the subjects were in the range 19-53 (mean = 

33.1; SD = 7.87); 25 subjects were male and 5 female. The 

test was performed on a PC in a quiet room. 

The subjects answered some general questions first, and 

filled in the perceived stress scale (PSS) questionnaire. Then 

they performed a reference contraction, followed by exposure 

to three different stress conditions: a calculation task (the 

Norinder test, 2:30 min), a logical puzzle task (3:00 min) 

and a memory task (approximately 5:00 min). All  three 

tasks were done under time pressure and with distracting 

news fragments that were heard through headphones. Social 

pressure was induced in the memory task by telling the 

subjects that their performance would be included in a group 

result and published to colleagues afterwards. In between the 

stress conditions, 2:00 min resting periods were scheduled to 

make sure that one condition would not influence the next. 

Furthermore, a questionnaire had to be completed before and 

after each of the conditions. 
 

B. Physiological recordings 

One lead electrocardiography (ECG) and respiration were 

measured using a wireless chest belt. ECG was measured 

with commercial gel electrodes; respiration was measured 
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TABLE I 

OVERVIEW OF FEATURES EXTRACTED FROM THE MEASURED SIGNALS 

 
 

Number Feature Abbreviation Meaning 

1 Heart rate HR Mean heart rate 

2 Standard deviation interbeat intervals SDNN Mean standard deviation of the interbeat intervals 

3 Low frequency heart rate variability LF Heart rate variability in the 0.04-0.15 Hz band 

4 High frequency heart rate variability HF Heart rate variability in the 0.15-0.4 Hz band 

5 LF/HF ratio heart rate variability LFHF Ratio of the low and high frequency of heart rate variability 

6 Skin conductance level SCL Mean level of skin conductance 

7 Skin conductance response rate SCRR Mean number of skin conductance responses per second 

8 Skin  conductance  second  difference 
power 

SCdiff2 Signal power in the second difference of the skin conductance signal 

9 Ohmic perturbation duration skin con- 
ductance 

OPD Relative time of responsiveness of the skin conductance signal 

10 Respiration frequency RespFreq Mean respiration frequency 

11 RMS of the respiration signal RMSResp Root mean square value of the respiration signal for estimating tidal volume 
changes 

12 RMS of the EMG signal RMSEMG Normalized root mean square value as percentage of the EMG reference 
contraction 

13 Static load Static 10th percentile of rank ordered EMG RMS values 

14 Median load Median 50th percentile of rank ordered EMG RMS values 

15 Peak load Peak 90th percentile of rank ordered EMG RMS values 

16 Gaps/min Gaprate Average number of EMG gaps per minute 

17 Relative time with gaps Gaptime Percentage of time in which EMG gaps occurred 

18 Mean EMG frequency MNF Mean frequency of the magnitude of the EMG frequency spectrum 

19 Median EMG frequency MDF Frequency at which the surface on the left side equals that of the right 
side of the magnitude of the EMG frequency spectrum 

 

 
 

with a piezoelectric film sensor from SleepSense. A wireless 

hand sensor was used for measuring skin conductance (SC) 

by applying a constant voltage of 0.5V DC across the palm of 

the hand and measuring the change in current. The wireless 

sensor nodes used for this study are based on the body 

area network platform developed within imec. Details can 

be found in [16]. Electromyography (EMG) signals were 

measured bipolarly from the upper trapezius muscles of both 

shoulders with commercial gel electrodes. Details on the 

procedure of EMG recording can be  found  in  [15].  ECG 

and respiration were recorded at a sampling frequency of 

250 Hz. The SC was recorded at 100 Hz. The EMG was 

recorded at 1000 Hz. 
 

C. Feature  calculation 

An overview of the features that were calculated from the 

measured signals can be found in Table I. LF, HF, and LFHF 

were calculated after applying a Hanning window on the 

interpolated heart rate signal. For details on the calculation 

of SCdiff2 and OPD, see [13]. RespFreq was determined as 

the main frequency component of the power spectral density 

of the respiration signal. Details on the calculation of the 

EMG related features can be found in [15]. 

The features were calculated with a sliding window of 

120 seconds that moved over the signals. The length of the 

window was equal to the length of the shortest condition: 

the two-minute rest condition. For most of the features, the 

window moved in steps of 1 second. However, for HR and 

SDNN the window moved from one beat to the next beat, 

instead of in steps of 1 second. For every position of the 

window, all feature values were calculated for that particular 

time window. The obtained feature values were normalized 

by calculating the z-score as in (1), with x being the original 

feature value, z the normalized value, and µ and σ the mean 

and standard deviation of the feature values, respectively. 

 
(x − µ) 

z = (1) 
σ 

 

The 20 second reference contraction was excluded from 

calculation of µ and σ, because it is a physical exercise 

and probably influenced the physiological signals in a non 

psychological  way. 

The feature values of the different conditions were then 

determined from the normalized values. For rest conditions, 

the values were taken that were calculated when the 120 

second window was exactly over the rest condition. For the 

stress values, the values were used that were calculated when 

the 120 second window was over the last two minutes of the 

stress condition. 

 
D. Analysis methods 

 

From the 19 features that were extracted from the signals, 

it was expected that some would show high correlations, 

since some are based on the same physiological processes. 

Therefore, a selection was made based on these correlations 
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Fig. 1. Absolute correlation values among the features. The feature numbers 
correspond to the numbers in Table I. 

 
 

and prior knowledge to reduce the number of features and 

construct a non redundant feature set for further analysis. 

Next, principal component analysis (PCA) was applied to 

the feature subset to remove the last correlations between 

features. This is important for the classification to be done 

later. In general, for classification it is important to reduce 

the number of variables of the problem as much as possible 

to get a density of data points as high as possible in the 

multi-dimensional feature space. 

The number of principal components (PCs) for the next 

step of analysis was chosen such that at least 90% of the 

variance was explained. These PCs were used to classify the 

three stress conditions and the rest conditions following each 

of the stress conditions. 

A 5-fold cross-validation was performed five times to eval- 

uate the classification performance. Four different classifiers 

were used to investigate the differences in performance: a 

Linear Bayes Normal Classifier, a Quadratic Bayes Normal 

Classifier, a K-Nearest Neighbor Classifier, and a Fisher’s 

Least Square Linear Classifier. 
 

III. RESULTS 

Some subjects were excluded from analysis because of 

poor  signal  quality  (1  poor  respiration  signal,  5  poor  SC 

signals, 5 poor EMG signals, 9 subjects excluded in total), 

incomplete data due to failing sensor nodes (2 subjects), or 

distractions due to other people being present in the room 

during the experiment (1 subject). Excluding these subjects 

left a database with 18 complete recordings of good quality. 

The  absolute  correlation  values  among  the  normalized 

19 features are shown in Fig. 1. For some features, high 

correlations were found; for example, SDNN, LF, and HF 

correlate strongly as do RMSEMG, Static, Median, and Peak. 

Based on these correlations and prior knowledge, a subset  

of 9 features was chosen for further analysis. This subset 

included: 

HR Chosen because it did not correlate to any other 

feature and has shown to react to stress in other 

Fig. 2.   Percentages of variance explained by the different PCs 

 

 
studies (for example [17]). 

SDNN Chosen from the correlating features  SDNN, 

LF, HF, LFHF. SDNN gave promising results 

before [13]. 

SCL Did not correlate with other features, so this 

feature was included on itself. 

SCRR Like SCL, SCRR did not correlate with other 

features, but can contribute to results. 

SCdiff2 OPD and SCdiff2 correlated strongly. SCdiff2 

was chosen arbitrarily. 

RespFreq Did not correlate with other features, but might 

react to stress. 

Peak Chosen from RMS, Static, Median, and Peak. 

Peak load gave the best result from this subset 

in an earlier analysis on EMG signals [15]. 

Gaptime This feature also showed promising results in 

an earlier analysis [15]. 

MNF From MNF and MDF, MNF gave a slightly 

better result in an earlier analysis [15]. 

Next, PCA was performed with these 9 features. The 

percentage of explained variance by the different PCs is 

shown in Fig. 2. The 1st to the 7th PC were selected for 

further analysis as together they explain 93.6% variance. 

These seven PCs were input for classification between 

three rest and three stress conditions, treated as two classes. 

The guessing rate for this classification problem was thus 

0.5. The mean error rate and its standard deviation give 

information about how well the classification succeeded and 

how constant the error rate is. The resulting error rates and 

standard deviations can be found in Table II. 
 

IV. DISCUSSION 
 

The goal of this study was to find the physiological signals 

and features that showed the most distinct reaction to mental 

stress in the conditions of our protocol. A selection of 9 

features was made that gave a good representation of the 

physiological reaction to mental stress. These 9 features were 

reduced to 7 PCs that showed promising results in classifying 

mental stress from periods without stress. 
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TABLE II 

ERROR RATES AND STANDARD DEVIATIONS OF CLASSIFICATION OF 

REST AND STRESS CONDITIONS WITH DIFFERENT CLASSIFIERS 

 

 
Classifier Error rate Standard 

deviation 
 

Linear Bayes Normal 0.2167 0.0250 

Quadratic Bayes Normal 0.2222 0.0207 

K-Nearest Neighbor 0.2370 0.0168 

   Fisher’s Least Square 0.2074 0.0140   

 
 

 
The  results  from  different  classifiers  varied  slightly,  but 

they were all in the same order of magnitude. The error rates 

were just above 0.2 for all four classifiers. The similarity of 

results means that the dataset is consistent and it makes a 

strong case for the result being valid. The result implies that a 

good subset of features was chosen. Also, good classification 

results indicate a possibility for classifying individual cases, 

which is needed for a personalized stress detection system. 

Compared to other papers on classification of mental stress 

situations, our results were somewhat worse. Classification 

accuracies of other studies range from 80% [12] to 97.4% 

[11]. However, other studies only used one type of stressor 

in their protocols and therefore they were able to tune their 

algorithms  to  detecting  the  single  type  of  mental  stress 

induced by that stressor. In our study, three different stressors 

were used that were all included in the analysis. Still, an 

accuracy of almost 80% was achieved in differentiating these 

different mental stress conditions from rest conditions. 

Something that can be improved in our analysis method 

is the way the feature values were normalized. The feature 

values calculated over the entire length of the protocol were 

used. By using this method of normalization, not only the 

baseline value, but also the reactivity from rest to stress 

conditions was normalized. However, to apply this method, 

a long recording time is needed. It is preferable for future 

use to have only a short time of baseline measurement that is 

sufficient for normalizing all future recordings. Investigations 

are needed to find a short, but representative, protocol that 

can be used for calibration of the physiological features to 

be calculated in the remainder of the recording. Because 

the reactivity needs to be normalized as well, some type 

of standard stressor could be included in this calibration 

protocol. This must be a stressor that is easy to apply and 

also triggers reactivity in a majority of people. 

Another limitation of our study is the controlled environ- 

ment in which it was performed. In daily life conditions, 

physiological signals are influenced by other factors than 

stress, for example physical activity. For application of a 

stress detection system  in  daily  life,  one  must  be  able 

to distinguish between changes in physiology caused by 

psychological factors and changes caused by other factors. 
 

V. CONCLUSIONS 

A subset of 9 physiological features was found that can be 

used for mental stress detection. The features were extracted 

 

from ECG, respiration, SC, and EMG signals. PCA indicated 

that the feature subset could be expressed as 7 PCs. These 

PCs were used for classification of cases into rest or stress 

conditions. A classification accuracy of almost 80% was 

found. This promising result indicates that this feature subset 

can be used for stress detection in the future. The high 

classification accuracy also indicates that the features are 

suitable for individual stress detection. 
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