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Abstract. William Dembski claims to have established a deci-
sion process to determine when highly unlikely events observed in
the natural world are due to Intelligent Design. This article argues
that, as no implementable randomness test is superior to a universal
Martin-Löf test, this test should be used to replace Dembski’s decision
process. Furthermore, Dembski’s decision process is flawed, as natural
explanations are eliminated before chance. Dembski also introduces a
fourth law of thermodynamics, his “law of conservation of informa-
tion,” to argue that information cannot increase by natural processes.
However, this article, using algorithmic information theory, shows
that this law is no more than the second law of thermodynamics. The
article concludes that any discussions on the possibilities of design in-
terventions in nature should be articulated in terms of the algorithmic
information theory approach to randomness and its robust decision
process.
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William Dembski, in a number of works, including The Design Inference
(1998), No Free Lunch (2002b), and “Specification: The Pattern that Sig-
nifies Intelligence” (2005), claims that there is a robust decision process
that can determine when certain structures observed in the natural world
are the product of Intelligent Design (ID) rather than natural processes. As
defined by the Discovery Institute Web page (Discovery Institute 2012),
the theory of ID “holds that certain features of the universe and of living
things are best explained by an intelligent cause, not an undirected process
such as natural selection. Through the study and analysis of a system’s
components, a design theorist is able to determine whether various natural
structures are the product of chance, natural law, intelligent design, or
some combination thereof.”

Dembski also introduces his fourth law of thermodynamics that ef-
fectively states that information, using his definition, cannot increase by
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natural processes (2002b, section 3.10). He then argues that structures that
are high in information cannot emerge by chance.

The essence of the first of these claims is that a robust decision process can
be used to determine whether an observed event, that is, a structure, such as
the flagellum that provides motility to certain bacteria (see Behe 1996), is an
outcome of evolutionary processes, or is the product of nonnatural design.
The Dembski decision process considers first whether such a structure or
event can be explained by natural laws. If not, a randomness test is devised
based on identifying and specifying the event E. When the probability
of such a specified event occurring by chance is low, it is said to exhibit
Complex Specified Information (CSI). According to Dembski, this event can
be deemed to be due to ID as chance is eliminated. For example, Dembski
(2002b, xiii) would see a random set of Scrabble pieces as complex but not
specified, while a simple word “the” is specified without being complex. In
contrast, a Shakespearean sonnet is both complex and specified and would
be unlikely to occur by chance.

In mathematical terms, if P (E |H) is the probability of the specified
event, given the chance hypothesis H, Dembski defines the information
embodied in the outcome by ID = −log2 P (E |H). Dembski has defined
his information measure so that the lower the probability of an observed
outcome, the higher is the information and order embodied in the struc-
tures and, in Dembski’s terms, the higher the complexity. This measure
is the converse of the usual mathematical definitions of information and
here will be denoted by ID and termed D-information. As is shown later,
the concept of D-information has much in common with Kolmogorov’s
deficiency in randomness, that is, just like the deficiency in randomness,
outcomes with high D-information would exhibit low algorithmic infor-
mation, low entropy, and low algorithmic complexity. Shallit and Elsberry
(2004, 134–35) have noted the same point and have suggested that the
term anti-information be used to distinguish the common understanding
of information from what here is called D-information.

This article makes the following main points:

� As Shallit and Elsberry have suggested (2004, 134), Kolmogorov’s
deficiency in randomness provides a far more satisfactory measure
for D-information than that proposed by Dembski.

� As the Dembski approach does not adequately define a random-
ness test that can be implemented in practice (Elsberry and Shallit
2011), it should be replaced by the agreed mathematical mea-
sure of randomness known as a universal Martin-Löf randomness
test. The universal randomness test achieves Dembski’s purpose
and avoids all the confusion and argument around the Dembski
approach.
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� The clarity of the Martin-Löf approach shows that the Dembski
decision process to identify ID is flawed, as the decision route elimi-
nates natural explanations for surprise outcomes before it eliminates
chance. The fundamental choice to be made, given the available
information, is not whether chance provides a better explanation
than design, but whether natural laws provide a better explanation
than a design.

� Dembski’s fourth law of thermodynamics, that is, his law of con-
servation of the information ID, is no more than the second law
of thermodynamics in disguise. It is equivalent to the unsurprising
statement that entropy can only be conserved or increase in a closed
system. Given the initial state of the universe, there is no evidence
that the injection of D-information or its equivalent, the injection
of low entropy from a nonnatural source, is required to produce
any known structure.

� Dembski’s claim that his law of conservation of information proves
that high D-information structures cannot emerge by chance is
irrelevant in an open system, such as the earth.

Elsberry and Shallit (2011) and Shallit and Elsberry (2004) provide a
detailed critique of the inconsistencies of Dembski’s idea of CSI and his
so-called proof of the Law of Conservation of Information. While they
and a number of other authors (Miller 2004, Musgrave 2006) show the
bacterial flagellum can plausibly be explained by natural processes, as the
ID supporters are likely to find other examples that they claim exhibits ID,
the framework of the ID argument needs to be critiqued. Here, the primary
concern is to show the whole mathematical approach used by Dembski
is flawed. The mathematically robust Martin-Löf universal randomness
test is used to replace Dembski’s approach in order to determine whether
natural laws can explain surprise events. This is particularly important,
as influential thinkers, such as William Lane Craig, have been seduced
by the apparent sophistication of the Dembski argument (Elsberry and
Shallit 2011, 2). No implementable test of randomness can do better than a
universal Martin-Löf test (Li and Vitányi 2008, 137). If order is recognized,
the lack of randomness can be measured by this test. As a robust universal
test of randomness (and therefore of order) already exists, the scientific
community should only engage in discussions on the possibilities of design
interventions in nature that are articulated in terms of this universal test.

ALGORITHMIC INFORMATION THEORY (AIT)

The key idea is that an ordered system can be more simply described than
a disordered system. The AIT approach formalizes this by using a program
or an algorithm as the means to describe or specify the system. The shorter
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the program, the more ordered the system. For example, the sequence
formed by drawing 100 balls from a lotto urn must specify each digit. On
the other hand, the first 100 digits of π can be generated by a relatively
short computer program.

The detailed mathematical treatment below is not for every reader. It
deals with issues such as computer dependence and coding methodologies.
However, the following are the key messages:

(1) A system can be represented by a binary string in the system’s state
space. As an example, consider how one might represent the in-
stantaneous configuration of N players on a sports field. If jumping
is to be allowed, three position and three velocity dimensions are
required to specify the coordinates for each player. With N players,
the instantaneous configuration is a binary string in what would
be called the six N-dimensional state space of the system. If the
configuration is ordered, as would be the case if all the players were
running in line, the description would be simpler than the situation
where all players were placed at random and running at different
speeds and directions.

(2) Let s represent the string of binary characters that specifies the
instantaneous configuration or structure of a system (such as the
positions and velocities of the players as outlined in the previ-
ous paragraph). If a particular structure shows order, features, or
pattern, as is the case for structures that might be considered to
exhibit ID, a short algorithmic description can be found to gener-
ate the string s. Basically ordered structures have short algorithmic
descriptions, disordered structures do not.

(3) When appropriately coded, the length of the shortest algorithm
corresponds to an entropy measure denoted by H(s ).

(4) The measure of order in a particular structure is the difference in
length between its short algorithmic description and the description
of a disordered or random structure. This measure is called the
deficiency in randomness and is measured in bits.

A simple example might be that of a magnetic material, such as the
naturally occurring lodestone. The direction of the magnetic moment or
spin associated with each iron atom can be specified by a 1 when the spin
is vertically aligned and a 0 when the spin is pointing in the opposite
direction. Above, what is called the Curie transition temperature, all the
spins will be randomly aligned and there will be no net magnetism. In
which case, the configuration at instant of time can be specified by a
random sequence of 0’s and 1’s. However, where the spins become aligned
below the Curie temperature, the resultant highly ordered configuration is
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represented by a sequence of 1’s and, as shown below, can be described by
a short algorithm.

AIT provides a formal tool to identify the pattern or order of the struc-
ture represented by a string. The algorithmic complexity (or information
content) of a structure represented by a binary string s is defined by the
length of the shortest binary algorithm that is able to generate s . If this
algorithm is much shorter than the string itself, one can conclude the struc-
ture represented by the string is ordered. However, as is outlined below, to
be consistent, standard procedures are required to specify the structure as a
string, to code the algorithms that describe the structure, and to minimize
the computer dependence of the algorithm.

The basic concept of AIT was originally conceived by Solomonoff
(1964). Kolmogorov (1965) and Chaitin (1966) formalized the approach
and were able to show that the computer dependence of the algorithmic
complexity can be mostly eliminated by defining the algorithmic com-
plexity or information content of the string s as the length of the shortest
algorithm that generates s on a reference universal Turing machine (UTM).
A UTM is a simple general-purpose computer with expandable memory.
Importantly, the universe is itself a UTM, and physical laws determine the
computational path of the states of the universe. As a UTM can simulate
any other Turing machine (Chaitin 1966, Li and Vitányi 2008), the refer-
ence UTM can in principle simulate the universe, or any other UTM, by
taking into account the machine dependence of algorithms.

Consider the following two outcomes resulting from the toss of a coin
200 times where heads is denoted by a 1 and tails by a 0.

(1) A random sequence represented by 200 characters of the form
“110010 . . . .1100.” This sequence can only be generated by a
binary algorithm that specifies each character. If the notation |. . . .|
is used to denote the length of the binary string representing the
characters or computational instructions between the vertical lines,
the length of the program that does this is

|p| = |110010 . . . .1100| + |OUTPUT instruction| + c .

As the length of this algorithm must include the length of the sequence,
the length of the OUTPUT instruction, and a constant term reflecting
the length of the basic instruction set of the computer implementing the
algorithm, it must be somewhat greater than the sequence length.

(2) The outcome is ordered consisting of 200 heads in a row, repre-
sented by the sequence “111 . . . .111.”

The algorithm that generates this is OUTPUT 1,200 times. In this case,
the algorithm only needs to specify the number 200, the character printed,
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together with a loop instruction that repeats the output command, and
again the constant c that includes the basic instruction set of the computer.
That is, the length of the algorithm p ′ is:

|p ′| = |200| + |1| + |OUTPUT instruction| + |loop instruction| + c .

This is somewhat greater than the 8 bits required to specify the integer
200. In what follows, p∗ will be used to denote the shortest program
that generates string s . As the algorithms p and p ′ above may not be the
shortest possible, |p∗|≤|p|. In general, the length |p∗| of the shortest algo-
rithm that generates the sequence is known as the algorithmic complexity,
the Kolmogorov complexity, or the program-sized complexity of the string.
When appropriately coded, as is outlined below, this measure is also the
algorithmic entropy of the configuration the string specifies. Any natural
structure that shows order can be described by a short algorithm compared
with a structure that shows no order and which can only be described by
specifying each character.

However, there are two types of codes that can be used for the instruc-
tions and algorithm. The first is where end markers are required for each
coded instruction to tell the computer when one instruction finishes and
the next starts. This coding gives rise to the plain algorithmic complexity
denoted by C (s ). Alternatively, when no code is a prefix of another, the
codes can be read at any instant requiring no end makers. This requires
the codes to be restricted to a set of instructions that are self-delimiting or
come from a prefix-free set (Levin 1974, Chaitin 1975). The algorithmic
complexity using this coding will be denoted by H(s ) and, because it is an
entropy measure, will be termed the algorithmic entropy.

The two complexity measures differ slightly by a term of the or-
der of log2C (s ) (Li and Vitányi 2008, 203), that is, H(s ) − C (s ) ≤
2log2C (s ) + O(1). Much of the discussion on testing for randomness
can use either definition of complexity. While C (s ) is more straightfor-
ward, in later discussions on information, and the so-called fourth law of
thermodynamics, H(s ) is more appropriate as it is an entropy measure that
aligns with the traditional concept of entropy.

The formal definition of the algorithmic complexity first specifies that
the computation using program p is implemented on a reference UTM
U (p). When there is no restriction on the computer instructions, the
complexity measure is the plain algorithmic complexity CU (s ) given by:

CU (s ) = |p∗| = minimum|p|such that U (p) = s .

Similarly, H(s ) is given by virtually the same equation, but there is the
additional requirement that no instruction in p can be a prefix of any
other.
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As different UTMs can simulate each other, the algorithmic complexity
measure on a particular machine can be related to another by a con-
stant term of the order of 1, denoted by O(1). This allows the machine-
independent definition to be given by:

C (s ) ≤ CU (s ) + O(1)

H(s ) ≤ HU (s ) + O(1)

When a simple UTM is used, the O(1) term will be small, as most instruc-
tions can be embedded in the program rather than in the description of
the computer.

In many physical situations, only the differences between the lengths of
algorithms are the important measure. In this case, the O(1) term cancels
out and common instructions, such as the OUTPUT instruction, or those
specifying natural laws, can be taken as given and ignored. A further point
is when the computation starts with an input string t , the algorithmic
complexity is denoted by C (s |t) or H(s |t).

Ignoring common instructions and machine dependence, the algorith-
mic complexity of the random string above becomes:

H(110011 . . . .110) ≈ C (110011 . . . .110) is given by.

|p∗|≈|110011 . . . .110|.
On the other hand, the ordered string of 200 heads is represented by

H(111 . . . .111) ≈ C (111 . . . .111)is given by|p ′∗|≈|200|+|1|
+ |loop instruction|.

C (110011 . . . .110) is more than 200 bits, whereas C (111 . . . .11) is much
shorter as it only requires about 8 bits to specify the integer 200. There
are only a few more bits to account for the loop instruction, so on. The
specification of the ordered string is close to 192 = 200 – 8 bits shorter
than the random string. Kolmogorov introduced the term deficiency in
randomness to quantify the amount of compression. While the algorithmic
complexity is not computable, where order is recognized, the description
can at least be partially compressed. If more hidden structure is found, the
description can be compressed further.

Nomenclature—What is Information? The Nobel laureate Manfred
Eigen recognized that the nucleic acids code information. This leads
William Dembski to argue that information is key to unraveling the central
problems of biology (2002a, b) and to claim an injection of information is
necessary for living systems to reach certain levels of biological complexity.
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However, there is no reason to believe that Dembski’s ID or D-information
corresponds to what Eigen meant. While there is more than one way to
define information, it is important to be consistent and to understand
how different definitions are related. Dembski justifies his D-information
concept by comparison with Shannon’s information theory for a message
transmitted by a source, through a communication channel to a receiver.
The received message is the event E. The amount of information transmit-
ted, according to Dembski, is given by ID = −log2 P (E |H), assuming the
chance hypothesis H. This definition assigns higher information content
to more highly ordered structures that might exhibit CSI.

On the other hand, Shannon’s Information Theory defines informa-
tion as the number of bits required to identify a particular message in a
set of messages. In this approach, the length of the optimum code for
each message is virtually −log2 P (E |H). While the expected outcome of
D-information for a set of outcomes is the same as for Shannon informa-
tion, Shannon warns that “the concept of information applies not to the
individual messages but rather to the situation as a whole” (Shannon and
Weaver 1949, 100).

In the Shannon Information Theory approach, as the number of mes-
sages increases, the information increases. While the AIT approach must
actually define the message or string, its definition of information aligns
with that of Shannon. As a consequence, AIT identifies increasing informa-
tion with increasing disorder, greater randomness, and increasing entropy.
Because ordered structures can be defined by short algorithms, in contrast
to Dembski’s definition, the information content and the algorithmic com-
plexity of these is low. In the algorithmic case, the information is embodied
in the number of computational bits needed to define the system. This is
lower for ordered systems.

Most structures in the living biosystem are highly ordered and far from
even a local equilibrium. Each of them can be described by an algorithm
that has fewer bits relative to the description of an equilibrium configura-
tion. A tree is such a case, as it can be specified by the growth instructions
embodied in the DNA of the seed cell and the environmental conditions
affecting the growth algorithm. The amazingly real looking fractal mod-
els of natural structures for use in animated movies or creating artificial
ecosystems, demonstrate the ability of simple algorithms to capture the
richness of what intuitively would seem to be immensely complex natural
systems.

Dembski’s use of the word complexity is also confusing (see also com-
ments in Elsberry and Shallit 2011, Shallit and Elsberry 2004). At times he
identifies increasing complexity with increasing randomness, such as when
he compares a Caesar cipher with a cipher generated by a one-time pad
(Dembski 2002b, 78). At other times, he identifies increasing complexity
with increasing order (Dembski 2002b, 156–83).
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The AIT approach does not fall into the ambiguity trap of Dembski’s
definitions. Furthermore, as is discussed below, the deficiency in random-
ness provides an information measure with exactly the properties required
by Dembski. The deficiency measure leads to an understanding of infor-
mation that makes it clear that there is no need for any fourth law of
thermodynamics, as there is no need for an injection of information to
generate currently observed living systems.

DEFICIENCY IN RANDOMNESS AS A MEASURE OF ORDER

A disordered system requires a long description as each component needs
to be separately specified. On the other hand, if the system is ordered, a
short algorithmic description is possible. The difference in bits between
a binary specification of a random string and a string of the same length
that shows order is called the deficiency in randomness. It is a measure of
how nonrandom or how ordered the particular configuration is relative to
a disordered one. For example, if the system is the players on the sports
field, the difference in length between the description of the configuration
of players where their positions and velocities are randomly distributed and
one where the players are lined up is the deficiency in randomness. The
following formalizes the approach.

In AIT, the word typical is used to describe a string that is deemed random
in a set of strings, that is, it has no distinguishing features. Similarly, a typical
string in a real-world system would be deemed to belong to a state in the set
of equilibrium states. As mentioned above, the deficiency in randomness
of string s is a measure of how untypical or how ordered a string is and,
as discussed later, forms the basis of a universal Martin-Löf randomness
test.

Much of the ID discussion is about identifying nonrandom strings in
a set of equally likely outcomes. The probability distribution over the
members of this set is called the uniform distribution. The algorithmic
complexity of a typical string s in the 2n members of the set of all strings
with length n, is the length of the string itself, that is, |s | = n. If all strings
are equally likely this is the same value as the Shannon entropy of the set.
That is, the algorithmic complexity of a typical or random member of the
set = the Shannon entropy of the set.

The deficiency in randomness can be defined using either plain
algorithmic complexity C (s ), or H(s ) for self-delimiting coding. As
H(s ) − C (s ) ≤ 2log2C (s ), the difference between these is usually unim-
portant, although the discussion is a little simpler using plain complexity.
However, H(s ) has the advantage that it can be identified with the ther-
modynamic entropy (allowing for units). When H(s ) is used, the extra
length given by O(log2C (s )) term may need to be tracked.
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The deficiency in randomness for string s where |s | = n for simple
coding is defined as

d (s |n) = n − C (s |n).

Here, C (s |n) is the plain algorithmic complexity given the value of |s | = n.
The deficiency is close to 0 for a typical or random string, and approaches
n for a highly ordered string. Similarly, for self-delimiting coding and
P (s ) = 1/n, the deficiency is defined as δ(s |P (s )),

δ(s |P (s )) = n − H(s |n).

For a real-world system, the self-delimiting definition measures the distance
string s is from an equilibrium string. In the case of a general distribution
P (s ),

δ(s |P (s )) = −l og 2 P (s ) − H(s |P (s )).

In what follows, the major contributions to the deficiency of randomness
will be outlined to illustrate the idea. For the sake of a more straightforward
argument, any small O(1) remaining terms and the O(log2) extra term
arising from self-delimiting coding will be ignored.

Consider the highly ordered outcome of obtaining 200 heads in a row
from the toss of a coin 200 times. This can be specified by an algorithm
slightly greater than 8 bits. On the other hand, as all outcomes are equally
likely, a typical or random outcome requires at least n = 200 bits to be
specified. The deficiency in randomness is the difference between these
and is close to 192 (= 200 – 8) bits. The large deficiency in randomness
indicates the outcome is a surprise, as it is extremely unlikely to be due to
chance. Such a surprise outcome has low algorithmic complexity or low
algorithmic entropy, and represents a high degree of order.

In the section headed “The Universal Randomness Test for Design,” it is
shown that the amount the description of an outcome can be compressed
is the basis of the mathematically robust universal Martin-Löf test of
randomness. As this test is the most reliable tool to identify the level of
randomness in a given string, it should replace the Dembski design filter.
The masterstroke of the Martin-Löf approach is that a universal test cannot
be bettered, and any workable test can always be expressed as a universal test.
Furthermore, in the section on “Entropy Information and a Fourth Law
of Thermodynamics,” the deficiency in randomness using self-delimiting
coding, provides an alternative measure of D-information and shows the
relationship between D-information and (algorithmic) entropy.



52 Zygon

Limitations of Deficiency in Randomness. Although no computable
process can unequivocally determine the extent of the pattern or order in
an observed outcome, this is not so critical for the ID situation. As the
order or pattern is recognized by observation, a provisional algorithm can
be found to capture this order. Even if it is not the shortest algorithm
possible, the recognized structure may provide a sufficiently good estimate
of the degree of order to address the critical ID questions and would satisfy
all Dembski’s requirements.

Nevertheless, if there is a need to find a shorter algorithm, the resource-
bound complexity can be used as an approximation to the algorithmic
complexity, providing a lower bound to the deficiency in randomness.
This approximation is just the shortest algorithm that generates the string
in no more than t steps.

DEMBSKI’S DECISION PROCESS TO IDENTIFY ID

Dembski (1998) claims to have developed a robust decision process that
determines whether chance or, alternatively, a nonnatural intervention
explains certain observed events. This decision process focuses on dif-
ferentiating low-probability events that occur by chance, from similarly
low-probability events that can be shown to exhibit what Dembski calls
CSI. As Dembski explains, “A long sequence of randomly strewn Scrabble
pieces is complex without being specified. A short sequence specifying the
word “the” is specified without being complex. A sequence correspond-
ing to a Shakespearean sonnet is both complex and specified” (Dembski
2002b, xiii). In essence the process is trying to distinguish a highly ordered
surprise outcome from a random one.

Once the outcome has been shown to be specified, the results can be
fed into a decision process that Dembski calls the design filter. If the design
filter shows that natural laws cannot explain the specified outcome, and
it has low probability, according to Dembski it cannot be explained by
chance and therefore must be the result of ID. The logic of the argument
outlined in the left-hand column of Table 1 is as follows:

(1) Can an observed outcome E, for example, a highly complex bio-
logical structure, be explained by the regularity of natural laws?

(2) If not, is the outcome due to chance? That is,
� Is the probability of the outcome independent of what

Dembski calls background information, K ? This indepen-
dence is to ensure that the background information does not
change the probability of the outcome. This requires that
P (E |H, K ) = P (E |H), where H is the chance hypothesis.

� Can the outcome be specified? The process of specification has
evolved through Dembski’s writings. Essentially it involves,
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Table 1. Comparison of Dembski and AIT Decision Processes

Dembski decision process AIT decision process

Does a natural explanation exist? Ignore: this should be last step
Is the event E chance?
Is P (E |H, K ) = P (E |H)?
Does pattern D delimit E , and can D be

specified, and is the probability low even
considering all the probabilistic resources?

That is, is P (overall) < 1/2?
If yes, D shows CSI

Is the surprise event E (represented by s D)
due to chance?

If in a Martin-Löf test,
d (s D) − 1 or δ(s D) − 1 ≥ m for large
m, then chance probability
P (s ) ≤ 1/2m is low.

Therefore not chance but ID Not chance as structure is ordered
Is a natural explanation in principle

possible?
That is, can order emerge through the

ejection of disorder, perhaps using
stored energy?

(see text)

given the background information: Can a general complexity
measure ϕ be found to assign E to a rejection region of
possible outcomes? That is, a region where chance can be
eliminated (Dembski 1998, 2002b).

� Is the probability of E still low, taking into account all the
probabilistic resources (i.e., the myriad of different opportu-
nities for E to occur and to be specified)?

� If the resultant probability that includes all the chance ways
of producing E is < 1/2, then according to Dembski, chance
as an explanation is eliminated.

(3) If such an unlikely outcome is observed, it embodies information
that is both complex and specified and, according to the Dembski
procedure, one must conclude that the outcome exhibits design.

As Dembski’s decision process eliminates natural laws as the first decision
step, it “privileges design as an explanation” (Elsberry and Shallit 2011).
Hence, it will assign design to structures that are poorly understood. The
choice should be between natural laws and design not chance and design.

Dembski’s arguments have evolved (1998, 2002b, 2005), presumably
because of weaknesses in earlier approaches. As no workable example of
the process is given, there are difficulties in applying it—only possibilities
are suggested. In the Design Inference Dembski (1998) defines an abstract
function ϕ to specify the event that might exhibit design, together with
an argument based on the likelihood of the event occurring by chance
over many observations. No Free Lunch focuses rather on Fisher’s rejection
of region T to eliminate a chance event. Dembski recognizes (1998, 167;
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2002b, 61), the resource-bound algorithmic complexity could be used to
specify the outcome, but for Dembski it is just one of several ill-defined
possibilities. Later, Dembski (2005) gets remarkably close to the Martin-
Löf approach by using a specification process based on how much an
algorithmic description can be compressed. However, he then vaguely
defines a descriptional complexity measure for a general outcome. But rather
than using the Martin-Löf approach, he feeds this into Fisher’s statistical
significance test.

This further suggests, as is discussed below, that if a workable version of
the Dembski approach is to be found, it will end up using the deficiency in
randomness. In which case the measure should be fed into the Martin-Löf
randomness approach, rather than Dembski’s design template.

THE UNIVERSAL RANDOMNESS TEST FOR DESIGN

The argument behind the universal randomness test can be illustrated by
a simple example using the fact that, in general, there are only 2k+1– 1
strings of length k or less. This provides an upper limit on the number
of algorithmic descriptions shorter than k. Given a string of length n
where say n = 8, how many strings can be generated by a program that
is more than 3 bits shorter than the length 8 that is compressed by 4 bits
or more? These are the strings of length 4, 3, 2, or 1 bits. No more than
28−3 = 32 strings can be compressed this much. Of the 256 strings of
length 8, only 32 can be compressed by 4 bits or more. One example is the
string 11111111 as it can be simply described. While a random 8-bit string
cannot be compressed, a string that can be algorithmically compressed by
more than 3 bits is relatively ordered. But, as there are fewer than 32 such
strings, the probability of getting such an outcome by chance is 32/256.
One can say that these short strings can be rejected as random at level 3.
In general, a string is rejected as random at level m when the string can be
compressed by m + 1 or more bits. Given that there are 2n strings of length
n fewer than 2n−m can be compressed by m + 1 or more. These strings
can be rejected as random at level m and the probability that it is possible
to find such a compressed description is at most 2n−m/2n = 1/2m . As this
argument shows there are limits to the number of ordered strings available,
therefore the approach can become a test for randomness.

While there are many tests for randomness that satisfy the Martin-Löf
criteria discussed below, the test function used here and illustrated in the
previous paragraph is based on the deficiency in randomness. Furthermore,
it is a universal Martin-Löf test. Basically, this test identifies the lack of
randomness (and hence the level of order) in a string s , by how much the
shortest algorithm that generates string s compresses it. Using the defi-
ciency in randomness to quantify the amount a string can be compressed,
d (s |n) ≥ m + 1. It follows that d (s |n) − 1 ≥ m bits. This allows a test
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function that satisfies the Martin-Löf randomness test requirements to be
defined as Test(s ) = d (s |n) − 1 bits.

The general Martin-Löf randomness test places two requirements on a
test function Test(s ) (Li and Vitányi 2008, 135), that is, that

(1) Test(s ) ≥ m, and
(2) The cumulative probability for all strings compressed more than m,

must be no more than 1/2m for all n. Or equivalently, the number
of such string is no more than 2n−m .

If these criteria are satisfied, the string s can be rejected as random (and
therefore can be considered ordered) at level m. The first requirement is
that the Test(s ) identifies the greatest value of m that defines a set of ordered
strings containing s . The second requirement ensures that the fraction or
number of these strings the test selects is consistent. While there are many
valid tests, the deficiency in randomness is the most suitable for addressing
the ID question.

As an example, the outcome s = 200 ones, generated by tossing 200
heads in a row, can be compressed to a program slightly more than
8 bits long, ignoring overheads (and if self-delimiting coding is used,
the O(log2) term). That is, as a typical or random string would need 200
bits to be specified, the ordered string can be compressed by at least 192
bits giving Test(s ) ≥ 191 with the test function d (s |n) − 1. The prob-
ability of a string being compressed to 8 bits or less is no greater than
1/2m = 1/2191. It is therefore a valid test and can be rejected as random
for any m ≥ 191. Furthermore, because m is so large, the result 200 heads
in a row is extremely unlikely to be observed by chance.

There is no clear distinction between random and nonrandom strings.
Rather, the choice of the value of m at which randomness can be rejected
defines the boundary between random and nonrandom (Martin-Löf 1966).
The set of strings categorized by m, nests the less random strings with
higher values of m. At m = 0, all strings are included below the cutoff and
therefore none can be rejected as random. While at m = 1, no more than
half the strings can be rejected as being random and so on.

The use of the algorithmic entropy H(s ) provides for a more intuitive
test process. This formulation, known as the sum P-test (Gács 2010, Li
and Vitányi 2008, 278), is also a Martin-Löf test and is universal (Li and
Vitányi 2008, 278–79). In essence, this procedure identifies an ordered
string by a betting argument. Player A places a $1 bet claiming that an
awaited outcome, based on tossing a coin 200 times, will not be a random
sequence as the coin toss is rigged. To test this, A requires that the payoff
for the bet is 2δ, where δ is the difference between 200, the length of a
random outcome, and the shortest algorithmic description of the string
that eventuates. As is shown below, because the bet is structured so that the
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expected return is no more than $1, it is a fair bet. This means that a high
return shows the outcome is a surprise and could not have happened by
chance. The greater the level of surprise for such an outcome, the greater
the payoff.

The proof that this will work is based on the requirement for self-
delimiting coding, namely, the Kraft inequality, which requires that∑

(1/2H(s )) ≤ 1.
The bet takes a hypothetical payoff function, based on the self-delimiting

deficiency in randomness, to be 2δ(s |P (s )). This is a fair bet as the expected
return for a $1 bet is

∑P (s )/(2H(s ) P (s )), which is less than $1 because
of the Kraft inequality. In general, if a $1 bet is placed assuming the
uniform distribution, the payoff is $2(n−H(s )). The typical payoff in tossing
a coin 200 times is expected to be ≤ $1 while for the surprise outcome
200 heads in a row, the payoff is enormous at $2192 = 1064. Even if the
outcome is a string that is compressed as little as 10 bits, the payoff is
$1,024. In general, if the outcome s eventuates, the largest value of m that
satisfies δ(s |P (s )) ≥ m + 1, determines the payoff to be at least $2m+1.
For random strings m ≈ 0. Strings can be ranked by the payoff, the greater
the payoff, the greater the value of m, and the more ordered is the string.

Particular randomness tests are said to be universal in that any com-
putable randomness test (including any workable version of Dembski’s
test) can always be expressed as a universal test (Li and Vitányi 2008,
134). Furthermore, no computable randomness test, either known, or yet
to be discovered, can do better than a universal test. As the deficiency
in randomness, either in its simple form (Li and Vitányi 2008, 139), or
in its self-delimiting form is a universal test (Li and Vitányi 2008, 279),
the measure can be used to provide a robust decision process to identify
nonrandom structures. Either test should replace Dembski’s design filter
as they both avoid the confusion of the Dembski test and the need for the
specification concept or a process to eliminate chance. The deficiency in
randomness fulfils all Dembski’s specification requirements and provides
an upper limit on the probability of a particular outcome in the set of
possible outcomes. If a string can be rejected as random at a sufficiently
large value of m, the probability of it occurring by chance will be less than
1/10m. Any string that is deemed not random for large m, exhibits what
Dembski would call CSI as it has a much simpler description, and the
probability that it would occur by chance is low. However, whether this
implies ID or not, depends on whether a natural explanation is realistic.

COMPARISON BETWEEN THE DEMBSKI DESIGN TEMPLATE AND

THE MARTIN-LÖF TEST

The left-hand column of Table 1 shows how the Dembski test aligns
with the universal test shown in the right-hand column. Let s D be the
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uncompressed string representing the outcome E. Dembski denotes this
by D. The question is whether this string would be a surprise outcome in
the set A.

As was outlined in the section on Dembski’s decision process, once a
natural explanation is eliminated, the Dembski process attempts to estab-
lish whether the string D representing the outcome E can be specified and
whether chance is eliminated. Chance must be eliminated by taking into
account all the probabilistic resources, that is, all the opportunities for the
outcome to occur and be specified. If the probability of the event occurring
by chance is still extremely unlikely, the string is said to show CSI, in which
case, Dembski argues CSI indicates ID.

On the other hand, the right-hand column of Table 1 recognizes that
the decision in the end is between a design intervention and natural laws,
not chance and design. In summary, the right-hand column in Table 1
involves the following steps:

(1) Can chance explain this event; that is, is it random relative to a
set of alternative outcomes using a universal randomness test? This
involves determining how much the algorithmic description can
be compressed. If the value of d (s D|P (s D)) − 1, or δ(s D|P (s D)) −
1 ≥ m, for large m, the string can be deemed to be nonrandom at
that level of m and is unlikely to have occurred by chance.

(2) If it is not a chance event, because the test indicates the structure is
ordered or nonrandom, is there a possible natural explanation for
the emergence of order? At this point it becomes apparent that most
observed natural structures will show a high degree of order. The
reason is that, as the universe is ordered at one time, at a later time
most of the order remains but in a different form. Most natural
outcomes will, therefore, appear nonrandom on a Martin-Löf test,
but still emerge through natural processes. The critical question,
which should be asked at this stage and no earlier, is whether a
natural explanation is possible.
The only certain way to rule out a natural explanation is to demon-
strate that the system cannot repackage existing structures and eject
sufficient disorder to create more ordered structures. It is not a
question of showing a surprise outcome occurs in nature, as sur-
prise outcomes occur everywhere, but a question of showing that
the surprise outcome is inconsistent with the second law of ther-
modynamics or the conservation of energy. The steps to do this are
as follows.

Can the system eject sufficient disorder to leave an ordered struc-
ture behind? And/or does it have the capacity to access low entropy
external resources or sources of concentrated energy, such as light,
or chemical species that can generate the observed order and eject
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disorder? In effect, the question is whether there is a sufficient
flow through of order, and the right sort of energy that can be
repackaged to create new forms of order—noting that overall the
entropy of the system and its environment will increase. Even in
the unlikely event, a low entropy source has not been identified,
a natural explanation might still become obvious with a deeper
understanding of the fundamental physics behind quantum theory
and gravity, or better understanding of emergent properties.

(3) If, and only if, an observed outcome has no natural explanation
should a nonnatural explanation be considered.

The Dembski design filter fails as natural causes must not be eliminated
before chance is ruled out. The choice is not between chance and de-
sign, but between nonnatural design and an explanation based on natural
laws, recognizing, of course, that the laws themselves may involve natural
selection processes acting on variations in structure.

An example of a specified, highly ordered structure that is unlikely
to appear by chance in the life of the universe is magnetized lodestone
(magnetite). Indeed, the probability of magnetizing a mole of lodestone
by chance is equivalent to tossing something like 1,023 heads in a row.
Nevertheless, because disorder as heat can be passed to the environment,
at a temperature below the Curie temperature all the magnetic spins as-
sociated with each iron atom can align by natural processes. Despite the
low probability of this outcome happening by chance, if one did not know
the mechanisms behind the ordering, natural processes could still not be
ruled out. Natural laws can and do create such structures by the ejection of
disorder or high entropy waste. It might be argued that the appearance of
magnetized lodestone could not be due to design because a natural expla-
nation exists. Even if a natural explanation were not known, the entropy
flow through indicates that such ordering is possible and may even in some
circumstances become likely, as the critical driver of order is the ejection
of disorder. While a particular ordered structure might be improbable in
an interacting mix of structures at a local equilibrium, once entropy or
disorder can be ejected, the structure becomes likely.

When a natural explanation is not known, the decision process should
follow the outline of the right-hand side of Table 1.

Difficulties with the Dembski Examples. However, there are further
serious conceptual problems with Dembski’s approach. Van Till (2002),
in reviewing Dembski’s book No Free Lunch (2002b), points out that at
times what Dembski calls the chance hypothesis H includes (1) chance
as a random process; (2) necessity; or (3) the joint action of chance and
necessity. As Dembski categorizes all three as stochastic processes (Dembski
2002b, 150), he is in effect claiming that his probability approach can,
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and does, take into account all natural causes. Van Till (2002) points
out that the comprehensiveness and inclusiveness of these terms must be
understood in order to see the extremity of Dembski’s numerous claims.
Whatever Dembski might claim in theory, in practice he fails to take into
account any cause except chance. For example, when Dembski attempts
to establish whether the flagellum that provides motility to Escherichia coli
(Behe 1996) exhibit CSI, he eliminates all natural causes except chance.
Dembski describes the structure as a “discrete combinatorial object,” and
only tests the hypothesis that it is formed by the random alignment of the
building blocks of proteins. As his P (E |H) does not take into account
the most likely causal paths, the claim that such a structure is extremely
unlikely to appear by natural processes is unsupported (see Elsberry and
Shallit 2011, Shallit and Elsberry 2004, Miller 2004, Musgrave 2006).
The evidence is that the observed structure in the Behe illustration can be
plausibly explained by natural processes (Jones 2008).

Van Till (2013) highlights another critical flaw in Dembski’s decision
process. Dembski implies that biological evolution is about actualizing (or
forming) a particular biological structure. On the other hand, a biologist’s
concern is how an evolutionary process might generate an adaptive func-
tion. As Van Till argues, the motility function of Escherichia coli, that is
purported to be due to ID, is the critical feature, not its structure. Indeed,
no biologist is interested in complicated structures that have no function,
no matter how they might be formed. Consequently, the biological ques-
tion is: “Can the motility function emerge through relatively small changes
in the genetic code embodied in the ancestors of the bacterium?” In which
case, if M denotes the motility function, given the N possible paths that
might produce such a function, the probability that M will emerge be-
comes P (M|N). This probability is likely to be many, many orders of
magnitude greater than Dembski’s P (E |H)), which is only the probability
that the bacterium flagellum, as a structure, can be randomly assembled
from its constituents parts.

Dembski similarly creates problems with specification. Both Dembski’s
mathematical definition of specification, and his nonbiological illustrations
discussed below, imply that specification is about defining the observed
structure with its pattern. Indeed, one would expect the specification of the
structure to refer to something equivalent to its blueprint, its configuration,
or some description of it. Yet, as Van Till (2002) points out, Dembski
ignores his own mathematical development and states unequivocally that
specification is about function (Dembski 2002b, 148). Similarly, Elsberry
and Shallit (2011) note that for Dembski, function becomes a stand-in
for specification. While the structure might imply certain functions, it is
confusing to argue that one should specify the function rather than the
structure. In other words, there is a strong argument that sees complexity
as primarily related to function, and specification as primarily related to
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structure rather than, as Dembski implies, the opposite. One suspects he
does this because it is easier to provide a hand waving description of a
function, than it is to adequately specify a structure.

Despite the rhetoric, the flagellum example discussed above, with all its
flaws, is the only realistic illustration of what is purported to be ID (Elsberry
and Shallit 2011). While Dembski uses two nonbiological examples to
illustrate his process for recognizing design, because of the vague arguments,
it is unclear how to operationalize his decision process, as the following
shows.

The first nonbiological Dembski example involves a New Jersey official,
Nicholas Caputo, who for a number of years was responsible for fairly
ordering the political parties on a ballot paper. However, as the Democrats
(as opposed to Republicans) appeared first place in 40 of the 41 ballot
papers, it appears Caputo was cheating. In order to verify this, Dembski
determines the probability that the Democrats should come first on the
ballot papers at least 40 times. He then argues that the outcome of at
least 40 Democrats in first place could not have occurred by chance, as it
falls within a defined rejection region using Fisher’s approach to hypothesis
testing. Therefore, Caputo cheated. However, the real issue is: On what
basis could a similar outcome, observed in the biological area, be deemed
to be the result of an external intervention rather than natural processes?
The example is of little help for this situation.

The second illustration is a fictional example from the movie Contact.
In the movie, an extraterrestrial radio signal was found to list the primes
up to 89 in ascending order. Dembski seeks to determine whether such an
observation implies an intelligent source for the signal. Dembski states the
probability of this happening by chance is 1 in 10300. He then claims that,
as the maximum number of computations in the universe is 10150, such
an outcome could not have happened by chance in the life of the universe.
The trouble is that any other signal of the same length, even a random
one, has the same probability and similarly could not have occurred. This
is bizarre. On the other hand, the Martin-Löf approach does not fall into
the Dembski trap, because it clearly distinguishes random outcomes from
surprise outcomes.

In the end, as these nonbiological examples assume every outcome is
equally probable, they are too simple to be helpful. On the other hand, for
the flagellum case, the results depend critically on the assumed distribution
and the precursors. Why go down the Dembski track when the Martin-Löf
test avoids the ambiguities in the Dembski process? The decision question
then can be articulated as: “Given the precursors, is this ordered structure
improbable in the set of possible outcomes?” Also, the Martin-Löf process
is mathematically robust and considerably simpler than the Dembski ap-
proach, while satisfying all his requirements. The integer m derived from
the Martin-Löf test identifies the boundary between an ordered region
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of outcomes and a disordered region, avoiding the need to use Fisher’s
statistical approach to reject the chance hypothesis. Critically, if the set of
possible outcomes is appropriate, and the observed event corresponds to a
high value of m, a reliable probability upper bound comes for free, that is,
P (s D) ≤ 1/2m for the rejection region m.

ENTROPY, INFORMATION, AND A FOURTH LAW

OF THERMODYNAMCIS

Dembski (2002a; 2002b, 166, section 3.10) introduces a law of conserva-
tion of information as a fourth law of thermodynamics. This implies that
outcomes that exhibit CSI cannot be generated by natural causes. Effec-
tively, the law is used to argue that as ID is conserved, or can only decrease,
high ID outcomes that indicate design, cannot occur by chance. The Dem-
bski argument for this law involves a somewhat convoluted discussion of
the problems with Maxwell’s demon (Dembski 2002b). Dembski seems
unconvinced that demon paradox disappears once one recognizes that the
demon is constrained by natural laws, as was pointed out by Landauer
(1961), Bennett (1982, 1987), and Leff and Rex (1990). There also seems
to be a circular argument. The appearance of CSI is used to demonstrate
design and, therefore, the fourth law of thermodynamics. But surely one
cannot then use this law to justify design?

Dembski’s information concept also has difficulties (Shallit and Elsberry
2004, Elsberry and Shallit 2011). It is unable to adequately distinguish the
level of surprise in an outcome of 200 heads in a row and an outcome
of 180 heads mixed with 20 tails. Both are equally likely with ID = 200.
While both might exhibit CSI, the first outcome would be considered
a far greater surprise than the second. Once it becomes clear that the
deficiency in randomness is a better measure of D-information than the
one used by Dembski, the meaning of the so-called fourth law emerges.
Instead of the quantifying the amount of D-information in string s D by
ID = −log2 P (E |H), a modified measure ÎD is taken to be ÎD = |s typical| −
H(s D). The D-information contained in s D becomes the number of bits
separating the ordered string from a random or typical one. This makes
sense as more highly ordered strings embody more D-information.

The relationship between D-information and entropy arises because
H(s ) is an entropy measure corresponding to the Shannon entropy for
a set of outcomes (Bennett 1982). However, the relationship with the
thermodynamic entropy can be made specific. Consider the situation where
�H bits shift a system from a macrostate, where each microstate has the
same H(s ), to another set of states each with the algorithmic entropy
H(s ) + �H. The equivalent heat flow into the system that has the same
effect is kB T�Hln2, corresponding to a thermodynamic entropy flow of
kB�Hln2.
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The relationship between the D-information and the algorithmic en-
tropy now makes it clear that the fourth law is just a rephrasing of
the second law of thermodynamics. Rearranging the definition of ÎD,
as H(s D) = |s typical| − ÎD, and as H(s D) is an entropy; the second law of
thermodynamics requires that H(s D) can never decrease in a closed system.
This requires that ÎD can never increase. As ÎD has the requisite properties
of D-information, Dembski’s claim that D-information can never increase
by natural processes is equivalent to the second law of thermodynamics.
What the second law of thermodynamics implies is that more order cannot
arise from less order. If D-information is defined consistently, there is no
need for a law of conservation of information. Current understandings
of the second law explain all that so far needs to be explained. The next
section shows how AIT allows one to track entropy and information at the
scale of the universe.

Order in the Universe. Dembski (2005) takes Seth Lloyd’s (2002)
value of 10150 (2002) as the maximum number operations of the universe.
Dembski uses this as an upper value of the probabilistic resources, that is,
the number of chances the universe has to produce a rare event. However,
the argument is irrelevant, as the states in the universe are not independent,
but highly correlated. This mistake seems to arise because Dembski has
eliminated natural processes, therefore he must rely on chance. But once
order appears in the universe, subsequent states will inevitably show some
order.

Shortly after the Big Bang, the universe was in a highly ordered configu-
ration. If the physical laws were completely known, the string representing
this initial configuration would be highly compressed algorithmically in
terms of these laws. However, because the algorithm that specifies a par-
ticular configuration of the universe at a later time must halt, the length
of this algorithm, representing the algorithmic entropy, must contain in-
formation about the number of steps t to reach that halt configuration.
Over time the number of steps increases and the algorithmic description
grows as the steps to the halt state increases. This leads to an increase of the
algorithmic entropy. Ultimately, at equilibrium, the shortest algorithmic
description will be the one that specifies a random string in the set of equi-
librium states. If physical laws are taken as given, this equilibrium value
is identical to the Shannon entropy of the equilibrium set. Nevertheless,
on our time scale, physical laws do create highly ordered or low entropy
subsystems (i.e., high D-information structures), provided the subsystem
is open. In such cases, new forms of order emerge by repackaging existing
order, or by accessing stored energy to create new ordered structures while
at the same time ejecting heat and/or disordered waste elsewhere in the



Sean Devine 63

universe. Nevertheless, the overall entropy of the universe increases over
time.

There is no point in arguing, as Dembski does (2002b, 173), that an
unlikely local entropy decrease can only occur because of an injection
of information, unless it can be shown that there is no natural way of
generating the local order. So far, the observed order of the earth’s biosystem
is a consequence of solar energy being used to create more ordered structures
while disorder, mainly as heat, is ejected.

CONCLUSION

There are several serious flaws with Dembski’s claim that an explanatory
filter can be used to provide clear evidence that structures observed in the
universe require a design explanation outside of nature. In summary:

� Dembski’s design template eliminates natural causes too early,
thereby forcing a design explanation when none is warranted. The
choice is not between chance and ID, but between natural laws and
ID.

� Dembski’s attempt to define an information measure, CSI to iden-
tify ordered structures is inconsistent. A modified measure based on
Kolmogorov’s deficiency in randomness is a much more consistent
and useful measure of order.

� Dembski’s randomness test is too ambiguous and unclear to be
workable, as is demonstrated by the fact it has not been credibly
applied to any realistic situation. Moreover, as any workable ran-
domness test can be expressed in terms of a universal Martin-Löf
randomness test (Li and Vitányi 2008, 134), even if the Dembski
test could be made operational in a convincing manner, it is simpler
and more convenient to replace the Dembski test by a universal
Martin-Löf test based on Kolmogorov’s deficiency in randomness.

� Even if Dembski’s information measure is modified to be made
consistent, the modified measure, defined here makes it clear that
the law of conservation of information is no more than the second
law of thermodynamics. Dembski seems to need a new law to justify
the injection of external order into the universe for ideological
reasons.

While the questions Dembski raises are worth considering, a better ques-
tion is to ask where the initial order in the universe came from, rather than
searching for the injection of order in an evolving universe. Furthermore,
there is no evidence that Dembski’s approach offers anything from a scien-
tific point of view, as the universal randomness test, and the more rational
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decision process considered here does it all. As a consequence, the scien-
tific community should only engage in any discussion on the possibility of
design interventions in nature if the discussion is articulated in terms of
AIT. Discussion on any other basis will achieve little.
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Martin-Löf, Per E. R. 1966. “The Definition of Random Sequences.” Information and Control

9:602–19.
Miller, Kenneth. R. 2004. “The Flagellum Unspun: The Collapse of ‘Irreducible Complexity’.”

In Debating Design: From Darwin to DNA, eds. William A. Dembski and Michael Ruse,
81–97. Cambridge, UK: Cambridge University Press.

Musgrave, Ian. 2006. “Evolution of the Bacterial Flagellum.” In Why Intelligent Design Fails: A
Scientific Critique of the New Creationism, ed. Matt Young and Taner Edis, 72–84. New
Brunswick, NJ: Rutgers University Press.

Shallit, Jeffrey, and Wesley Elsberry. 2004. “Playing Games with Probability: Dembski’s Complex
Specified Information.” In Why Intelligent Design Fails: A Scientific Critique of the New
Creationism, ed. Matt Young and Taner Edis, 123–38. New Brunswick, NJ: Rutgers
University Press.

Shannon, Claude E., and Warren Weaver. 1949. The Mathematical Theory of Communication.
Urbana: University of Illinois Press.



Sean Devine 65

Solomonoff, Ray J. 1964. “A Formal Theory of Inductive Inference.” Information and Control
7:1–22 (part 1), 224–254 (part 2).

Van Till, Howard J. 2002. “E. Coli at the No Free Lunchroom: Bacterial Flagella and Dem-
bski’s Case for Intelligent Design.” Posted AAAS website, DoSER section. Available at
http://www.metanexus.net/essay/e-coli-no-free-lunchroom.

———. 2013. Private Communication.


