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Abstract—This paper investigates reactive elasticity in stream processing environments where the performance goal is to analyze
large amounts of data with low latency and minimum resources. Working in the context of Apache Storm, we propose an elastic
management strategy which modulates the parallelism degree of applications’ components while explicitly addressing the hierarchy of
execution containers (virtual machines, processes and threads). We show that provisioning the wrong kind of container may lead to
performance degradation and propose a solution that provisions the least expensive container (with minimum resources) to increase
performance. We describe our monitoring metrics and show how we take into account the specifics of an execution environment. We
provide an experimental evaluation with real-world applications which validates the applicability of our approach.
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1 INTRODUCTION

B Ig data is a challenge in various computing system
domains. It is present in IoT with the proliferation of

connected devices, grows with the increasing scale of high
performance computing systems and is coupled with the
expanding Internet and social network activities. It is a
major topic in the data intelligence business.

There are two major techniques to process big data:
batch processing and stream processing. In batch processing,
data is first stored in huge databases and is processed
later, usually with scalable programming models such as
Google’s MapReduce [1]. However, with the ever growing
size of data, the cost of data transfer and storage becomes
prohibitive [2], [3]. Moreover, in multiple domains, what
is important is not to keep the initial data but to analyze
it as fast as possible to produce valuable intelligence [4],
[5]. To tackle these issues, stream processing systems put the
emphasis on reactivity and analyze data as it is produced.
Recent years have seen the emergence of multiple stream
processing solutions [6], [7], [8], [9].

If with batch processing the size of data is fixed and
known in advance, in stream processing data arrives con-
tinuously and at varying rates. Indeed, consider an appli-
cation detecting Denial-of-Service attacks. To reliably detect
an attack, the application is to intercept and analyze, on
the fly, all incoming service requests. However, the number
of requests received within a time period will depend on
the clients’ activity. There will be calm periods with few
requests, as well as peak periods with numerous requests.
As the application needs to provide a timely answer in all
cases, its resources requirements will vary with the scale
of the input workload. It will require few computational
resources during calm periods and will increase its demands
during active periods. If resource provisioning is statically
estimated using a worst case scenario, resources will be
underutilized. If the estimation uses an average load, the
application will suffer from performance degradation.

The performance problems of static provisioning have
motivated the use of elasticity where resources are allocated
on-demand. If existing proposals share the same goal of

minimizing resource consumption while maintaining appli-
cation performance, they differ in their responses to why,
when and how to scale resources. In terms of performance
goals (the why question), existing solutions pursue cost
efficiency [10], [11] or aim at enforcing QoS guarantees
on applications’ latency [12], [13] and throughput [14]. To
decide when to adapt the quantity of allocated resources, so-
lutions either try to prevent performance problems through
predictive application models [13], [15], or react to perfor-
mance degradation using application monitoring. As for
the how question, solutions use migration to relieve over-
loaded resources [16] or replication to adapt the parallelism
degree of computations [12], [13], [14], [17]. In all cases,
however, the elasticity strategy is elaborated with a focus
on the application and abstracts many issues related to the
execution platform. In particular, existing proposals have a
homogeneous view of execution resources and ignore the
hierarchy of execution containers (VMs, processes, threads)
onto which application components are mapped. In this
work, a container is any entity that provides execution re-
sources to a computation.

In our proposal we tackle the elasticity problem the other
way round: we focus on the execution environment and
investigate how changing the number of different execu-
tion containers impacts application performance. The basic
idea is that different execution containers have different
capacities that come with different costs. Provisioning a
higher capacity container, typically a VM, is more costly,
in resources and time, than provisioning a lower-capacity
one, such as a process or a thread. However, a thread
only exists in the context of a machine and cannot be
provisioned of there are no available resources. Our goal
is to automatically provision the least expensive resources
capable of satisfying the applications’ performance needs.
In a hierarchy of containers, our solution leverages the
resources of higher-capacity containers using lower-capacity
container consolidation.

Considering the widely spread pay-as-you-go cloud
computing model, we propose a container-aware reactive
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elasticity solution for streaming applications. We place our-
selves in the context of Apache Storm [7] and investigate the
different conditions requiring the provisioning of different
execution containers. We identify when a streaming appli-
cation can scale using lower-level execution containers (and
stay within the limit of already provisioned VMs) and when
new VMs should be provisioned.

More in detail, our contributions are:

• Metrics for Application Congestion. We propose
a simple metric for detecting local congestion in
streaming applications. The idea is that an applica-
tion component becomes a bottleneck if it cannot
absorb all incoming data i.e. if its data processing
rate is lower than its arrival rate.

• Multi-level elastic resource provisioning. We pro-
pose an elastic strategy which considers different
levels of execution containers. The intuitive idea is to
provision the minimum number of heavy containers
(e.g. VMs or processes) and to maximize resource
usage by multiplying the number of lightweight con-
tainers (threads). More importantly, the strategy ac-
counts for the performance impact of different ex-
ecution containers as provisioning the wrong type
of resource can actually decrease performance. We
devise a simple yet efficient strategy to benchmark
applications and to experimentally discover the min-
imal (cheapest) configuration for a given workload.

• Transparent integration into Apache Storm. We
implement our proposal in Apache Storm [7], a top-
level Apache project supported by an active commu-
nity including large companies such as Twitter and
Yahoo. Our implementation preserves the Storm API
and provides for provisioning of execution contain-
ers at different levels. We automatically benchmark
applications, discover the minimal configurations to
support a given workload and generate elasticity
controllers to manage application bottlenecks. We
validate our approach with two real-world appli-
cations cases. The first is an industrial DDoS1 ap-
plication processing real workloads. The second is
an online data analysis of results produced by the
CoMD [18] simulation application.

The paper is organized as follows. Section 2 investigates
the performance impact of different execution containers
on stream processing applications. Section 3 presents our
elasticity proposal. Section 4 discusses the implementation
in the Storm processing environment. Section 5 presents the
evaluation of our approach in the cases of the DDoS and
CoMD analysis applications. We discuss related work in
Section 6 and conclude in Section 7.

2 MOTIVATION FOR MULTI-LEVEL ELASTICITY

After introducing the system model (Section 2.1) and the
performance metrics (Section 2.2) we consider, we present
our study of Apache Storm (Section 2.3). We show that
provisioning execution containers at different levels has
different performance impacts and that non considering the
container hierarchy may lead to performance degradation.

1. Detection of Denial-of-Service

data stream

computation (operator)

data source

Application

Fig. 1: A stream processing application

2.1 System Model

Our application model captures the common features of
most existing streaming processing environments [6], [7],
[19], [20], [21]. In this model, an application is represented
by a directed acyclic graph whose nodes represent compu-
tation operators and edges represent data streams (Fig. 1).
The operators are application-specific and may range from
simple filters to complex data transformations. The data
streams are composed of tuples each containing a key and
a payload. The payload is the data to be processed while the
key is used for grouping and routing data streams among
operators. The input of an application is data produced by
external systems. Among others, it may ship logging infor-
mation, customer tracking data and sensor measurements.
The output may be a visual representation, a result saved
on a persistent storage or a data stream.

An application is deployed on a cluster of execution
nodes which are managed by a master node (Fig. 2). The
master monitors the nodes and manages scaling and recov-
ery. The nodes provide hierarchically organized execution
containers that serve as execution support for applications.
Typically, a node may be a virtual machine running multiple
multi-threaded processes.

Application computations may be parallelized using
multiple instances. These instances are mapped to the small-
est containers i.e the ones at the bottom of the container
hierarchy. Changing the number of instances requires a
change in the level of parallelism of execution containers
which can be done at different granularity levels. If instances
are executed by threads for example, a new thread may
be created in an existing process, in a newly-provisioned
process on the same machine or on a new machine.
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Execution environment

container (thread)
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Fig. 2: Stream processing execution environment
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2.2 Performance Metrics
In the context of stream processing, the major performance
criterion is the application’s capacity to process the input
workload and produce a timely result. We do not consider
the application operators in the initial topology graph but
characterize the processing activity of individual instances.
We propose to use the following sampling metrics:

• Number of received tuples. This metric, denoted by
receivedT (c), quantifies the tuples received by an
instance c for a given period of time T .

• Number of processed tuples. This metric, denoted by
processedT (c) , quantifies the tuples processed by
an instance c for a given period of time T .

• Processing activity. Using the previous metrics, we
define the health of an instance as the proportion
of the tuples it processes and the tuples it receives
for a given period of time T :

healthT (c) =
processedT (c)

receivedT (c)

If an instance has a health of 100% it is able to
timely process all incoming tuples. On the contrary,
if healthT (c) < 100%, there are tuples waiting to be
processed. If this situation lasts, the instance becomes
a performance bottleneck for the application.

Whether an application meets its specific time con-
straints depends on multiple factors including the available
resources on the used execution nodes, the properties of the
network connections, the variations in the input workload
and the application computations. In this work we consider
typical streaming applications that process a high number of
small-size messages (e.g. Twitter posts, sensor log messages,
etc.). The performances of such applications are bound
by the available computation resources and do not suffer
from network saturation. As the resources provisioned for
the applications are the ones allocated to the application’s
execution containers, at the level of an execution node
they are limited by the node’s memory and CPU capacity.
We therefore monitor resource usage using the following
metrics:

• CPU occupation. This metric, denoted by
totalCPUT (n), provides the average CPU usage of a
given execution node n for a given period of time T .

• Memory occupation. This metric, denoted by
totalMemT (n), indicates the average memory
usage of a given node n for a given period of time T .
Like the previous metric, it is given as percentage of
the total available memory.

Given these two metrics we can follow the execution
load of a node. If neither is saturated, the node has unused
resources that can be allocated to additional containers. If
either CPU or memory usage goes over a threshold, the
node is considered saturated and needs an appropriate
scaling decision.

2.3 Performances of Storm
To illustrate the fact that the level of parallelism of different
execution containers affects differently application perfor-
mance, we have used Apache Storm [7]. Storm is a top-level

Apache project providing a fault-tolerant distributed stream
processing framework. Storm applications are called topolo-
gies and are composed of spouts, which act as data stream
sources, and of bolts, which process (receive, transform and
emit) data streams.

The execution environment of Storm distinguishes four
levels of execution entities, namely nodes, workers, ex-
ecutors and tasks. The nodes are the physical or virtual
machines on which the application runs. Workers are pro-
cesses, i.e. Java virtual machines, whose number per node is
configured by the administrator. Workers contain executors,
i.e. Java threads, that execute tasks that correspond to the
instances of spouts and bolts.

We have used Storm 1.2.2 on a virtualized cluster man-
aged by OpenStack [22]. The physical nodes are provided
by the Grid’5000 platform [23] and feature 2xIntel Xeon
E5-2630 v3 CPUs with 128 GB of RAM, 2x600 GB HDD
and 2x10 Gbps network. The OpenStack stack has been
itself deployed using the enos tool [24]. For the virtualized
cluster we have used three classical VM flavors: m1.small
(1 vCPU, 2GB RAM, 20 GB disk), m1.medium (2 vCPU,
4GB RAM, 40 GB disk) and m1.large (4 vCPU, 8GB RAM,
80 GB disk). The deployment and measurement process
for all experiments has been scripted and is automatic and
reproducible.

In the following we show the results from a simple
filter application deployed on m1.large nodes. The appli-
cation consists of one spout sending strings to one bolt that
matches them against known patterns. We make the spout
emit a linearly increasing load and consider the processing
capacity of the bolt. We deploy the bolt on one node and
vary the number of tasks, executors and workers. For this
4vCPU VM configuration, we have made tests with 1, 2 and
4 workers, 1, 2, 4 and 8 executors per worker and 1, 16
and 64 tasks. All experiences have been executed 5 times.
The graphics illustrate representative results and show the
mean values with the standard deviation error.

2.3.1 Task parallelism
When varying the number of tasks, we observe the same
system behavior in all considered configurations. In Fig. 3
we show the results for the configurations with one worker
and four executors. 1-4-4 instantiates one task per executor,
1-4-16 instantiates 16 tasks (4 tasks per executor) and 1-4-
64 has 64 tasks (16 tasks per executor). The three graphics
being very similar, the important conclusion to draw from
these results is that increasing task parallelism has no impact
on the application performance.

In fact, tasks have a different nature compared to work-
ers and executors. If the latter are clearly related to re-
source allocation, tasks are logical units of computation
and a single task is executed by a single executor. In a
Storm topology, the number of tasks actually defines the
maximum number of executors this topology can use. As a
consequence, the tasks’ number should be big enough to not
limit performance (cf. Section 2.3.2).

If we look at the performance results more in detail, we
gain some interesting insight into the system’s dynamics.
First, in Fig. 3a we see that the spout succeeds in injecting
all the input workload in the system as the colored lines of
the spout’s emitted tuples closely follow the black line of the
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Fig. 3: Impact of task parallelism. Plotted configurations (workers-executors-tasks) are 1-4-4, 1-4-16, 1-4-64.
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Fig. 4: Impact of executor parallelism. Plotted configurations (1 worker-x executors-1 task per executor) are 1-1-1, 1-2-2, 1-4-4, 1-8-8.
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Fig. 5: Impact of worker parallelism. Plotted configurations (workers-executors-tasks) are 1-4-4, 2-4-4, 4-4-4.

workload. Then, if we look at the bolt’s activity in Fig. 3b,
we observe that the bolt successfully processes all incoming
tuples until around 250s and then its health declines. Given
the values of the workload at 250s, we deduce that the
bolt processes successfully up till 20000 tuples per second
(tuples/s).

The explanation of the bolt’s degraded performance after
250s can be found in the monitoring information about
the CPU and memory usage of the execution node. Fig. 3c
shows that at 250s, the CPU usage of the node reaches 100%.
As a result, the bolt’s computational resources reach a limit
and it cannot further increase its processing capacity. As
incoming tuples need to wait, they are stored in memory
and provoke an increased memory consumption ( Fig. 3d).
When the memory is saturated, the node crashes.

2.3.2 Executor parallelism
The level of parallelism at the executor level increases the
bolt’s performance as long as the number of executors does
not exceed the number of CPU cores (Fig. 4). Let us consider
the configurations with one worker, one task per executor
and one (1-1-1), two (1-2-2), four (1-4-4) and eight executors
(1-8-8). We see that passing from one to two and then to four

executors (one to two to four cores in our 4vCPU VMs) im-
proves the bolt’s performance (Fig. 4b), while passing from
four to eight does not (red and cyan configurations). With 1-
1-1, the bolt’s health goes below 0.9 at 100s. With 1-2-2, this
happens at 160s. For the last two, their health declines at
250s. Correlating this with the incoming workload (Fig. 4a)
gives that compared to the 20000 tuples/s of the red and
cyan configurations, the blue and green ones respectively
reach only 5000 tuples/s and 10000 tuples/s. Here again,
the performance is directly related to resource usage. When
the CPU saturates (Fig. 4c), the load cannot be processed
in time and the bolt’s health declines. The memory con-
sumption starts increasing (Fig. 4d) and ultimately leads to
a crash.

2.3.3 Worker parallelism
Provisioning more than one worker decreases the perfor-
mance. If this is obvious in the case of one-vCPU machines
where multiple processes compete for the CPU, the effect
is more subtle in the case of multiple processors. If we
consider three configurations featuring respectively one (1-
4-4), two (2-4-4) and four (4-4-4) workers on our 4vCPU
nodes (Fig. 5b), we see that the red configuration is the
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first to decline and crash. For the two others we do not
observe any difference while the bolt is in good health but
looking further we see the two-worker configuration is less
stable and crashes sooner. The explanation lies in the fact
that multiple workers occupy more memory and reach more
easily the node’s limit (Fig. 5d).

2.3.4 Conclusions
Our experimental results show that adapting the level of
parallelism of the different Storm containers has different
impact on the processing performance. If tasks do not really
influence performance, increasing the number of executors,
up to the limit of physically available resources, does in-
crease performance. On the contrary, increasing the number
of workers leads to performance degradation.

3 A STRATEGY FOR MULTI-LEVEL ELASTICITY

We consider the system model presented in Section 2.1 in
which an application is executed on a cluster of nodes. The
environment is not multi-tenant and the nodes are dedicated
to the application.

An application is deployed in containers which are
hierarchically organized. Each instance is supported by a
dedicated container at the finest granularity (lowest) level.
To be provisioned, such a container needs to be encapsu-
lated in a full container hierarchy. This typically translates
the fact that a thread cannot exist outside a process which
needs a machine to be executed. Lower-level containers
(e.g. threads) need less computational resources than higher-
level ones (e.g. processes) and are therefore less costly and
faster to provision.

We suppose that we are in the case of streaming appli-
cations processing small-size messages and therefore that
network connections are wide enough. Possible congestion
is therefore caused by insufficient computational resources
(memory and CPU) allocated to the execution containers of
application computations.

If an application operator is parallelized, the data stream
it needs to process is evenly partitioned among its instances.

The stream processing system is able to manage the state
of stateful application operators as in [7].

3.1 Elasticity Control

We propose a reactive approach which monitors the compu-
tation activity of an application using the metrics introduced
in Section 2.2. Basically, if the application does not process
the input workload fast enough, it needs a scale out and is
to be allocated more resources. If it can process its workload
with less resources, it is to be scaled in.

We build automatic elasticity controllers that take into
account the specificity of both the target execution envi-
ronment and the target application. We propose a three-
step methodology which considers in order: 1) the per-
formance impact of execution containers, 2) the discovery
of appropriate application configurations for a given input
workload and 3) the construction of application-specific
elasticity controllers.

The first step deals with the container hierarchy in the
system model and the fact that different types of containers

may be provisioned to provide the resources needed by an
application. To be able to decide what containers to provi-
sion, we need to know how the parallelism level of different
containers impacts performance. This information may be
already available after an extensive use of the platform,
be provided by a platform administrator or be discovered
through platform benchmarking, as in our Section 2.3.

In the second step, we automatically benchmark the
application to establish a relation between a given level of
input workload and a suitable application configuration. We
start with a minimal application configuration in which all
application operators are not parallelized and run on the
same machine. The idea is to vary the level of input work-
load and to discover the needed parallelism degree (and the
corresponding containers) for application operators.

Algorithm 1 Application benchmarking

1: procedure BENCHMARKAPPLICATION
2: for inputLoad← 0 to initLoad step= ∆L do
3: injectLoad(inputLoad,∆)
4: end for
5: for inputLoad← initLoad to maxLoad step= ∆L do
6: injectLoad(inputLoad,∆)
7: while in current ∆ time interval do
8: find i ∈ sortedInstances such that
9: health(i) < minHealth

10: if i 6= null then
11: SCALEOUT(i.getOperator(), inputLoad)
12: end if
13: end while
14: end for
15: end procedure

The benchmarking process is described in Algorithm 1. It
works with a linear load injector sending a given number of
tuples per second (tuples/s) to the application. We consider
an initial system load (initLoad) and a maximum system
load (maxLoad). The application is benchmarked for the
values in the interval using a load incrementation step (∆L).

If the initial load to consider is greater that 0 tuples/s,
the system is to be warmed up until initLoad is reached
(lines 2-4). Then, each value for the system load is injected
during a fixed time interval ∆ (lines 5-6). During this time
interval, the application is periodically monitored to detect
congestion. If an application is composed of multiple paral-
lelized operators, the monitoring considers each computa-
tion instance individually. The order in which the instances
are considered is given by their distance to the application
data sources (lines 8-9). We prioritize the instances that are
closer to the source of information following the logic that if
there is bottleneck upstream, it will affect the performance
of instances that are further downstream.

An instance is considered to undergo performance prob-
lems when the number of processed tuples falls behind the
number of received ones. When the ratio (the instance’s
health metric) goes below a given threshold (minHealth),
we consider the instance to be congested and trigger a scale-
out which increases the parallelism degree of the corre-
sponding operator (line 11).

The scale-out at the operator level (Algorithm 2) starts by
searching for the least loaded node with sufficient resources
(line 2). As the processing capacity of an application opera-
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Algorithm 2 Operator scale out

1: List〈Node〉 nodes;
2: Map〈Operator, Configuration〉 confs;
3: procedure SCALEOUT(Operator op, Load inputLoad)
4: find node ∈ nodes such that
5: totalCPU(node) = MINn∈nodes(totalCPU(n))
6: if isOverloaded(node) then
7: node← deployNode()
8: nodes.update(node)
9: container ← deployContainerHierarchy(node)

10: else
11: container ← deployOptimalContainer(retNode)
12: end if
13: instance← op.createInstance()
14: op.updateInstances(instance)
15: confs.update(inputLoad, op, instance, container, node))
16: deploy(instance, container)
17: end procedure

tor is mainly related to the CPU, we use the totalCPU metric
(Section 2.2). If all CPUs are fully exploited or the memory
usage is beyond a given threshold (line 3), we consider
that the node cannot efficiently support the execution of a
new operator instance. In this case, a new machine is to be
provisioned and a full container hierarchy is to be deployed
(lines 4 and 6). In our experiments a simple approach with
a threshold of 0.9 for both CPU and memory has been
sufficient. In other words, we have considered a node to
be overloaded if totalCPU > 0.9 or totalMem > 0.9.

If the node still has available resources, the new instance
is to be deployed in an optimal configuration providing
the least expensive container to increase performance. This
decision depends on the platform-specific information we
have obtained in the first step and is encapsulated in the
deployOptimalContainer operation (line 8). In the case of
the Storm platform from the previous section, this operation
will typically capture the knowledge that on an existing
node, a new instance should be created in the already
existing worker but should be supported by a new executor
with one task.

The algorithm keeps in memory the fact that the operator
op has scaled-out when its input workload has reached
inputLevel and that the corresponding execution config-
uration now contains a new instance, executing in the
container on the node node (line 12). We consider that
the time period ∆ is long enough to allow for application
stabilization. In other words, if there is a need to provision
more instances for the scaled-out operator or to increase
the parallelism degree of other instances downstream, all
scaling iterations are managed within ∆. Thus, at the end
of this period, the system has discovered and saved an
application configuration which is capable of processing
the workload at a level inputLevel without congestion.
The configuration has been constructed incrementally by
provisioning the least expensive resources at each step and
ensuring that provisioned nodes are used at maximum.

The information about the configurations discovered
during the benchmarking step is used in the final third step
which creates a dedicated elasticity controller. Knowing the
levels of input workload that are successfully processed by
the different configurations, it is possible to deduce their

workload thresholds. The lower threshold of a configuration
indicates that for lesser workloads the application may use
smaller configurations. The higher threshold gives the max-
imum workload level this configuration can support. Using
the corresponding map, the elasticity controller monitors the
variations of the input traffic and decides whether to trigger
a scale-in or a scale-out. If the monitored level of the input
workload is within the thresholds of the current execution
configuration, the controller does nothing. If the input traffic
exceeds the upper threshold of the current configuration,
the controller computes the needed containers to reach
the configuration that supports the new level of workload
and triggers a scale out. Symmetrically, if the traffic goes
below the lower threshold of the current configuration, the
controller triggers a scale-in to reach a reduced execution
configuration. The victim nodes and executors are chosen in
a LIFO order: the last containers to be provisioned are the
first to be freed. The rationale behind this strategy is to be
able to free nodes (VMs) as soon as possible.

To prevent oscillation, instead of possibly scaling at each
observation, the variation trend may be computed with
linear regression over several observations. In the case of
Storm, our experience has shown that monitoring with the
default frequency of 1minute yields stable observations.
Monitoring every 10seconds however provides results with
significant variations where a scaling decision would need
at least three successive observations.

4 IMPLEMENTATION

To integrate elasticity control in Storm, we substitute the
default Storm scheduler with a scheduler interacting with
an elasticity controller (cf. Fig. 6). Both the scheduler and
the controller run on the Storm’s Nimbus management node
and therefore have access to both the cluster resources and
the application configuration.

Our scheduler is seamlessly integrated in Storm as it
implements the IScheduler interface. It replaces the Storm’s
default round-robin strategy with a strategy that takes into
account reconfiguration orders issued by the elasticity con-
troller. Following the strategy presented in the previous
section (Section 3), the controller triggers reconfigurations
as reactions to applications’ monitoring information. It scales
out an application operator when it detects a bottleneck on
one of its instances. It scales in the application by going back
to a configuration supporting the decreased traffic level.

During scaling operations, we minimize the overhead
as the scheduler does not rebalance the whole application
but maintains the existing mapping between computation
instances and Storm’s execution containers. During a scale
out, all existing instances continue to run where they have
been deployed. Only new instances are started on the newly
provisioned resources. During a scale in, the scheduler
affects only the instances to be destroyed.

The elasticity controller puts together resource man-
agement, application monitoring and application scaling.
For resource management, we consider the deployment of
Storm on a cloud platform and use the available resource
provisioning features. We have defined an unified cloud
interface and have implemented it for Azure, Amazon,
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OpenStack and VMWare clouds. The controller uses this in-
terface to provision or free Storm nodes and thus has an up-
to-date information about the computation nodes (virtual
machines). When provisioning new nodes, the controller
configures them with the appropriate number of workers
(one) and inserts them into the Storm cluster.

For application monitoring, the controller uses the
scheduler’s Thrift interface [25], [26]. To compute the
application-related metrics presented in Section 2.2 we use
the information about the application topology, as well as
about emitted and executed tuples. To compute the number
of received tuples by an operator instance for a given period
of time, we consider the sum of the emitted tuples by its
predecessors. The health metric which characterizes the
processing activity of a given instance thus becomes

healthT (i) =
executedT (i)

ΣpredecessoremmitedT (predecessor, i)

To have access to the metrics characterizing the machine
load, we use the metrics on CPU and memory consumption
provided by the Ganglia monitoring system [27].

5 EXPERIMENTAL EVALUATION

In this section, we show the validity of our work with
two real-world applications and two elasticity contexts. We
consider an application for detection of denial of service
attacks (DDoS) and an application for online data analysis
of HPC simulation results (CoMD). We show how reactive
elasticity may be used for application benchmarking to dis-
cover applications resource needs and how this information
may be used for proactive elasticity.

The experimental setup is the one given in Section 2.3
and summarized in the following table.

Hardware 2xIntel Xeon E5-2630 v3 CPU, 128GB RAM,
2x600 GB HDD, 2x10 Gbps

VM mgt. OpenStack stable/queens
DDoS VM m1.medium (2vCPU, 4GB RAM, 40GB HDD)
CoMD VM m1.large (4vCPU, 8GB RAM, 80GB HDD)
OS Ubuntu 18.04
Storm Version 1.2.2

The section tackles the DDoS and CoMD application in
order.

5.1 The DDoS application
Distributed Denial of Service (DDoS) attacks are a major
threat and their detection and prevention is a challenge for

spout	
Firewall	
paquets

Parser

Aggregator
IP_src

Aggregator
IP_dest

Assembler DDoS
Analyzer

PCA	model

Fig. 7: The DDoS topology

service providers. They consist in sending a great number
of requests to a network target in order to overload it.

In our work we use a DDoS detection application that
initially has been proposed in [28] for the needs of eolas
green data centers [29]. As in many detection systems, the
DDoS application distinguishes between normal and abnor-
mal network traffic. It uses the PCA statistical method [30]
to continuously learn about the changing system behavior
and is able to detect even never seen before attacks.

The application is structured as a lambda architec-
ture [31] including both a batch system and a real-time
processing system. The batch system is used to analyze the
datacenter traffic and generate the PCA models for normal
and abnormal behaviors. The stream processing system is
used to analyze the incoming traffic in real-time against the
computed behavior models and detect attacks.

In our elasticity experiments we focus on the real-time
processing part of the application which is implemented us-
ing Apache Storm. This part (Fig. 7) consists of several com-
ponents. It starts with a spout that receives the packets from
the datacenter firewalls and injects the corresponding tuples
into the topology. A parser bolt groups the tuples by source
and destination IP addresses and computes statistics about
the packets’ inter-arrival time. Aggregator bolts periodically
compute the number and the total payload of the tuples
received for the last time period as defined by the PCA
model. An assembler regroups the tuples produced by the
aggregators to match the initial (IPsource, IPdestination)
couples. Finally, at the end of each period, an analyzer
receives a single tuple of aggregated traffic, applies the PCA
model and produces a list of identified attacks.

The analysis of real traffic logs shows that the work-
load of the DDoS detection application is time-periodic. As
shown in Fig. 8, working days, as well as week-ends, have
similar traffic profiles.

4000

9000

14000

19000

tu
pl
es
/s

Fig. 8: The DDoS periodic traffic at eolas

5.2 Reactive elasticity for application benchmarking
In this section we show how we use our reactive elasticity
approach (Section 3) to benchmark the DDoS application.



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2907950, IEEE
Transactions on Parallel and Distributed Systems

SUBMISSION TO TPDS 8

0 500 1000 1500 2000
Time (s)

0

5000

10000

15000

20000

tu
pl

es
/s

A
D

A
PT

 1

5800.0

A
D

A
PT

 2

14000.0

A
D

A
PT

 3

15466.0

A
D

A
PT

 4

12266.0

A
D

A
PT

 5

9666.0

A
D

A
PT

 6

2000.0

load
parser

(a) Input workload for the parser bolt

0 500 1000 1500 2000
Time (s)

0.0

0.5

1.0

1.5

2.0

H
ea

lt
h

A
D

A
PT

 1

A
D

A
PT

 2

A
D

A
PT

 3

A
D

A
PT

 4

A
D

A
PT

 5

A
D

A
PT

 6

parser

(b) Health of the parser (received/processed)

0 500 1000 1500 2000
Time (s)

1

2

3

4

N
um

be
r 

of
 in

st
an

ce
s

A
D

A
PT

 1

A
D

A
PT

 2

A
D

A
PT

 3

A
D

A
PT

 4

A
D

A
PT

 5

A
D

A
PT

 6
parser
VMs

(c) parser instances

0 500 1000 1500 2000
Time (s)

0

20

40

60

80

100

C
PU A

D
A

PT
 1

A
D

A
PT

 2

A
D

A
PT

 3

A
D

A
PT

 4

A
D

A
PT

 5

A
D

A
PT

 6

A
D

A
PT

 1

A
D

A
PT

 2

A
D

A
PT

 3

A
D

A
PT

 4

A
D

A
PT

 5

A
D

A
PT

 6

(d) CPU usage

0 500 1000 1500 2000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
em

or
y A

D
A

PT
 1

A
D

A
PT

 2

A
D

A
PT

 3

A
D

A
PT

 4

A
D

A
PT

 5

A
D

A
PT

 6

A
D

A
PT

 1

A
D

A
PT

 2

A
D

A
PT

 3

A
D

A
PT

 4

A
D

A
PT

 5

A
D

A
PT

 6

(e) Memory usage

Fig. 9: Reactive elasticity for DDoS

We use the traffic logs that give the limit (lowest and high-
est) values of the typical application workload, detect when
the application suffers from bottlenecks and use elasticity to
provide a resource-sufficient configurations.

We start with a minimal execution configuration. We use
one execution node (one virtual machine) on which run all
DDoS bolts. The node runs one worker and each bolt is
initially supported by one executor with one task.

The workload we inject in the DDoS application starts
at 0 tuples/s, increases linearly to 16000 tuples/s and then
decreases back to 0 tuples/s. To change the workload level
we use a step of 2000 tuples/s. Each workload level is main-

tained during 2 minutes and the application is monitored
at a 30 seconds frequency.

Following Algorithm 1 presented in Section 3.1, the
system automatically discovers that increasing the input
workload of the DDoS application causes bottlenecks but
only at the parser level. The other bolts do not suffer from
bottlenecks as they receive less traffic or execute simpler
computations. The aggregators receive half of the tuple flow
and perform simpler computations. As for the assembler
and the analyzer, their incoming traffic is negligible as they
receive only one tuple per PCA period (1 tuple/minute).

As providing more resources to the parser solves the
bottleneck and does not shift the problem further down the
topology, in the following we focus on the elastic manage-
ment of the parser bolt.

The observations related to the application of our re-
active elasticity management are shown in Fig. 9. In the
first part (Fig. 9a), we show a zoomed version of the input
workload of the parser bolt. We see that it succeeds in
following the load injected by the spout.

The colored lines (ADAPT1, ADAPT2, etc.) indicate the
moments when elastic reconfigurations are triggered. When
increasing the input workload, they indicate the moments
when the parser’s health drops under the decided minimum
threshold. In our experiments, the threshold is 0.9 meaning
that we trigger elastic reconfigurations when the parser
fails to process more than 10% of its input tuples. When
decreasing the volume of the input traffic, the colored lines
(ADAPT4, 5 and 6) correspond to reconfiguring to smaller
resource configurations. Fig. 9b shows that our elastic recon-
figurations succeed in maintaining the parser’s health and
ensure the processing of the incoming tuples.

Fig. 9c shows the evolution of the provisioned resources
for the application. We see that the initial configuration, with
one instance of the parser (one executor in one worker on
one VM) succeeds in treating the incoming tuples for the
period between 0 and 480s. Correlating this with the input
traffic shows that in this configuration, the parser is able
to process up till 4000 tuples/s but is not able to support
the next workload level of 6000 tuples/s. To be able to
process more, the parser is elastically provisioned with more
resources. We increase the parallelism degree of the parser
and create a second instance. Given that neither the CPU
(Fig. 9d), nor the memory (Fig. 9e) are fully exploited on the
already provisioned VM, this second instance is provisioned
on the same machine but with a different executor. The
configuration thus becomes one VM with two executors
(Fig. 9c). This configuration succeeds in restoring the health
of the parser and maintains it until ADAPT2. The two parser
instances are able to timely process a workload going from
4000 tuples/s to 12000 tuples/s. Beyond this point, as the
CPU of the VM is fully occupied (it is a 2vCPU VM),
to create a third parser instance we need to provision a
new virtual machine. After ADAPT2, the execution config-
uration contains therefore two virtual machines and three
executors (Fig. 9c). This configuration supports the traffic
of 14000 tuples/s but to go to 16000 tuples/s it needs yet
another parser instance (ADAPT3).

When the input workload decreases, the application
is reconfigured to shrink to the configurations discovered
to support the corresponding load. The correspondence
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between execution configurations of the parser and the
supported workload thus becomes the one given in Table 1.

Workload level (tuples/s) Configuration (Σ(VMs,executors))
0 - 4000 (1,1)

4000 - 12000 (1,2)
12000 - 14000 (1,2)+(1,1)
14000 - 16000 (1,2)+(1,2)

TABLE 1: Benchmarking results for the DDoS application

Let us compare our solution to a standard cloud elastic-
ity solution where the resource provisioning is not hierarchi-
cal but done at the VM level. With the latter, the ADAPT1 and
ADAPT3 reconfigurations would trigger the provisioning of
two virtual machines instead of two lower-level execution
contaners (threads). Deploying four m1.medium (2-vCPU)
VMs instead of the two in our solution would not only be
slower but also resource inefficient as the VMs’ CPU usage
would be of 50%.

5.3 Proactive elasticity for DDoS

Given that we have information on the periodic nature of
the input traffic of the DDoS applications, we can trigger
the elastic provisioning of the required resources proactively
(Fig. 10). The first part of the figure (Figure 10a) shows
the input workload of the parser. It has been generated to
reproduce the working day traffic of the DDoS application
using the mean values per hour. In our experimentation,
each such value is maintained 5 minutes.

The traffic variations (Figure 10a) are met with the
corresponding parser configurations (Figure 10c). Following
the benchmarking results of Table 1, the parser starts using
two instances (two executors on one VM) till ADAPT1 as it
receives more than 4000 tuples/s. At ADAPT1, the controller
takes into account the prediction that the traffic will exceed
the threshold of 12000 tuples/s and reconfigures the parser.
The parser requires the provisioning of a new VM and starts
running with three instances. At ADAPT2, the parser goes to
four instances on two VMs.

At ADAPT3, the traffic has gone below 16000 tuples/s so
the parser is reconfigured to go back to three instances. It
goes back to two instances at the end of the day.

The controller triggers application scaling in advance to
take into account the time for virtual machine provisioning
and application reconfiguration. As in our experimentation
the time for the DDoS reconfiguration is insignificant com-
pared to the time for VM provisioning, which in average
takes about 1 minute, the controller is programmed to order
reconfigurations about 2 minutes in advance. This delay is
itself negligible compared to the considered traffic period of
1 hour for which the application is reconfigured.

Figures 10d and 10e show that the application saturates
the CPU of the first VM before scaling to two VMs. Fig-
ure 10b shows that the elastic changes of the parallelism
degree of the parser succeed in keeping its health at 1 which
means that incoming tuples are processed in time. Our
elasticity decisions thus ensure that the DDoS application
absorbs its normal input traffic with minimum resources. If
the workload goes beyond the expected traffic level, the ap-
plication can switch to reactive mode but more importantly,
trigger an alert for possible DoS attacks.
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Fig. 10: Proactive elasticity for DDoS

5.4 Resource dimensioning for online data analysis

Our second use case lies in the context of interconnect-
ing HPC2 simulations with stream processing applications
for online result analysis. We consider the CoMD appli-
cation which features classical molecular dynamics algo-
rithms [18], [32]. This application simulates the evolution
(in terms of energy and position) of atoms using timesteps
(iterations). The size of the CoMD simulation is given by
three parameters (nx, ny, nz) that define the number of
considered atoms (total_number_atoms=4*nx*ny*nz).

2. High Performance Computing
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The default values for these parameters are nx=ny=nz=20
which gives 32000 atoms. When nx=ny=nz=200 CoMD
simulates 32 million atoms which is half the size of the HIV
virus molecular structure.

CoMD may execute multiple iterations per second, a
typical number being several dozens. To analyze the sys-
tem dynamics, the output results need to be treated in
a timely manner. As developing the analysis treatments
as a parallel application requires high technical expertise,
the HPC community turns to using “big data” processing
tools. The expectations are to succeed in providing efficient
data analysis treatments while taking advantage of simpler
programming models.

In this context, we consider two online data analysis
treatments of the CoMD simulation results. The first com-
putes a position histogram of atoms. The simulation area
being represented as a 3D grid, the histogram reflects the
number of atoms in each cell at each iteration. The second
analysis is more computation intensive as it computes the
travel distance of atoms between two iterations.

Both analysis applications are developed as Storm
topologies with one spout and one analysis bolt. The spout
injects the simulation results into the application, while
the bolt computes the analysis. As there may be impor-
tant queueing issues while transferring data from the HPC
simulation to the Storm analysis treatment, we simulate the
arrival of data at the spout level.

Our reactive elasticity strategy has succeeded in the
automatic dimensioning of the Storm analysis application
as a function of the CoMD simulation size (Fig. 11). We
have considered the default size problem and have varied
the injected load. We have started at 10 iterations per second
(it/s) and increased the rate until 1000 it/s. In size, 1000 it/s
for the default problem (32 thousand atoms) is equivalent to
1 it/s for the real-size problem (32 million atoms).

Before being able to apply the elastic reconfiguration to
the bolt using the health metric, we faced the problem of
the spout not being able to inject enough tuples into the
system. To solve this issue, we adapted our bolt-oriented
strategy to consider the spout activity. Instead of consid-
ering the ratio between the received and executed tuples
(bolt), we considered the ratio between the emitted tuples
and the target workload (spout). It appears that one instance
of the spout has difficulties in injecting more than 300 it/s
as it saturates in memory. To be able to inject 500 it/s we
need two spout instances which translates in provisioning
two VMs. To reach 1000 it/s we need four spout instances
and thus four VMs. We have investigated multiples of two
as this naturally fits the CoMD problem decomposition.

As for the processing bolts, they are CPU-intensive and
increasing the number of instances is done by increasing the
number of executors, one 4-vCPU VM being able to support
four executors. To analyze 10 it/s for the small problem
(Fig. 11), we need one instance for the spout (1 VM, 1 execu-
tor), one instance of the histogram bolt (1 VM, 1 executor)
and one instance (1 VM, 1 executor) of the distance bolt. To
treat 1000 it/s (1 it/s for the 32 million atom problem), the
numbers respectively jump to 4 spouts (4 VMs, 4 executors),
12 histogram bolts (3 VMs, 12 executors) and 24 (6 VMs,
4 executors) distance bolts.

6 RELATED WORK

Elastic resource provisioning has extensively been consid-
ered in the domain of cloud computing [33], [34], [35].
Numerous projects have proposed different elasticity so-
lutions in terms of resource scaling units and strategies
for autonomic adaptation. It is now largely accepted that
elasticity may be applied vertically, by changing the capacity
of resource instances, or horizontally, by adapting their
number.

If there are plenty of cloud-oriented elasticity solutions,
elastic strategies for stream processing systems have started
to be investigated quite recently. In [10], for example, the au-
thors show the usefulness of elastic provisioning of virtual
machines to meet the varying real-time processing needs of
an IoT environment. In FUGU [16], scaling considers CPU-
overloaded or CPU-underloaded hosts and uses operator
migration and not replication.

Among the proposals for stream processing systems
using operator parallelization, neither considers the pro-
visioning of different types of resources. In [12], for ex-
ample, the provisioning of new resources, required in the
case of a bottleneck, is delegated to the user and could
greatly benefit from our multi-level provisioning proposal.
The authors solve the optimization problem of guarantee-
ing latency constraints with minimum resources i.e. with
minimal parallelization. If in our approach we start with a
minimal configuration and consider increasing parallelism
degrees, the authors propose a gradient descent algorithm
that first checks whether the optimization constraints can
be fulfilled with a maximum scale-out before considering
smaller configurations.

Several projects [19], [20], [36] investigate explicit state
management when parallelizing stateful operators and are
thus complementary to our work. StreamCloud [20], for
example, defines an automatic parallelization of the join,
cartesian product and aggregator operators. When the CPU
usage is detected to be out of bounds, elastic reconfig-
uration protocols exchange control tuples to redefine the
computing windows among operator instances, reroute and
load-balance tuples. Resource provisioning is delegated to a
resource manager and does not take into account different
types of resources. A similar approach is developed in [36]
where the authors propose a solution to automatically detect
data-parallel regions and compute the level of parallelism
needed for an operator. The provisioning of new resources is
out of their scope. Finally, ChronoStream [19] defines mech-
anisms for tracking computation progress, as well for state
checkpointing and migration. Contrary to the previously
cited proposals, it explicitly addresses both vertical and hor-
izontal scaling. Horizontal scaling consists in provisioning
of new hosts by external resource managers, as well as in
varying the number of execution containers (processes) per
operator. As for vertical scaling, it manages the number of
threads allocated to an execution container. ChronoStream
does not however address the questions of when and how
many resources to provision.

The increasing popularity of the Apache Storm stream
processing framework has motivated multiple research ef-
forts. We can distinguish between works that focus on
improving the Storm scheduling algorithm and approaches
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Fig. 11: Needed instances for online data analysis of CoMD simulation results: 1 spout instance requires 1 VM. 1 bolt instance requires 1 executor,
a 4-vCPU VM supporting up to 4 executors.. The left blue point corresponds to 10 iterations of CoMD for 32000 atoms (small problem). The right
blue points correspond to 1 iteration for 32 million atoms (real-size problem).

that explicitly consider elastic scaling. The projects of the
first group tackle the problem of placing a fixed number of
operator instances on a fixed set of resources. R-Storm [37],
for example, proposes a resource-aware scheduling algo-
rithm that takes into account CPU, memory and bandwidth
usage. Using user-provided estimations of tasks’ resource
demands and analyzing the application topology, the al-
gorithm aims at minimizing the network distance between
communicating entities and at choosing the nodes with the
best possible match for the tasks’ resource demand. In [38],
the authors generalize the formulation of the placement
algorithm and show how it can be used for comparison
of scheduling strategies. Finally, [39] pushes the scheduling
effort further as it proposes an online scheduling algorithm
that periodically adapts the placement according to the
measured network traffic and resource usage. It is related
to our multi-level resource provisioning as it differentiates
the scheduling of Storm’s executors and workers.

Similar to our work, the projects considering Apache
Storm elasticity [13], [14], [40] target operator congestion
and scale by adapting the parallelism degree of operator
instances. In AUTOSCALE [13], for example, the system’s
scaling needs are deduced using both local and global
estimations of the input workload and processing capacity.
AUTOSCALE defines an activity level metric that aims at
capturing the balance between the parallelism degree and
the workload of an operator. Low activity levels call for
scale-in operations, while high activity levels trigger scale-
outs. In Stela [14] the scaling decisions are not automatic but
requested by the user who defines the number of machines
to add or to remove. Upon such a request, Stela chooses
operators to scale using a global topology metric that reflects
the operators’ impact on the final throughput. The elasticity
decisions adapt the number of provisioned executors for an
operator so as to maintain the same number of operator
instances (load-balancing) over the machines. In [40], the au-
thors support our approach as they observe that the scaling
of operators does not necessarily need to translate into the
same resource scaling decisions. Focusing on CPU-bound
applications, the authors use advanced application profiling
and learning algorithms to establish thresholds triggering
scaling. From the resource point of view, however, the three
projects operate at the executor level and discard the aspects
of hierarchical provisioning. Moreover, the configurations
specifying the number of workers per machine and the
number of executors per worker are decided a priori and
in most cases in an ad-hoc manner.

7 CONCLUSION

The focus of our paper is on the impact of different execu-
tion containers on the performance of an elastic stream pro-
cessing system. We have explicitly considered the hierarchy
of execution containers (machines, processes and threads)
and have shown that their provisioning comes at a different
cost. More importantly, we have shown that provisioning
the wrong type of containers may decrease performance.

We have proposed an elastic resource management for
the Apache Storm system which scales an application while
using the cheapest resource configuration. Our implemen-
tation is transparent to applications as it preserves the
Storm API. As shown with two real-world applications, our
system succeeds in maintaining the end-to-end latency of
applications by detecting and healing local bottlenecks. The
minimal execution configurations to support given levels
of workload are discovered during a preliminary phase of
application benchmarking. This approach is straightforward
yet efficient in reflecting both the specific execution envi-
ronment and application needs. In our future work we are
interested in integrating explicit models of any preliminary
knowledge about system.

An exciting perspective is to bring together existing ad-
vanced elasticity solutions [15], [36] and our work on multi-
level containers. On one hand, existing solutions need to
account for the underlying execution hierarchy. On the other
hand, our proposal for a preliminary benchmarking may be
too costly or even impossible for some applications. It would
be interesting to integrate a control loop which dynamically
integrates new facts about the current execution and adapts
the elasticity management accordingly.

Future developments will also focus on the largely
spreading container technologies such as Docker [41] and
Singularity [42]. Elastic management could benefit from
their lightweight management but would need to account
for performance interference. To advance towards generic
elasticity control, the way to go is to explicitly dimension
execution containers. Indeed, in Storm there is already the
possibility to define resource requirements for application
operators. In Heron [8], [43], proposed as a successor of
Storm, application operators are isolated as deployed using
containers like those managed by Mesos [44]. The possi-
bility to explicitly define the resource usage of execution
containers brings, however, other challenges. Applications
would need to be well-profiled to discover the resource
needs of different operators. To prevent resource over-
provisioning at the container level, application components
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would need to be deployed in containers with different
capacities which in turn call for multi-dimensional-bin-
packing-oriented scheduling [45].

ACKNOWLEDGEMENTS

The experimental work presented in this paper would not
have been possible without the existence of the Grid’5000
platform and the help of the supporting teams. The authors
would also like to thank the enos team who made the
Openstack deployment process a child’s play.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Process-
ing on Large Clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[2] D. Duellmann. (2015) Big data and storage management at the
large hadron collider.

[3] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma, “In situ visual-
ization for large-scale combustion simulations,” Computer Graphics
and Applications, IEEE, vol. 30, no. 3, pp. 45–57, May 2010.

[4] R. . Young, “Big data: changing the way businesses compete
and operate,” http://www.ey.com/Publication/vwLUAssets/
EY_-_Big_data:_changing_the_way_businesses_operate/\$FILE/
EY-Insights-on-GRC-Big-data.pdf, 2018.

[5] Oracle, “Oracle fast data: Real-time strategies for big data
and business analytics,” http://www.oracle.com/us/solutions/
fastdata/fast-data-gets-real-time-wp-1927038.pdf, 2013.

[6] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant Streaming Computation at
Scale,” in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. ACM, 2013, pp. 423–438.

[7] “Apache Storm,” https://storm.apache.org.
[8] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,

J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream
processing at scale,” in SIGMOD Conference, 2015.

[9] “Amazon Kinesis,” http://mesos.apache.org/.
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