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Abstract. The thresholded t-map produced by the General Linear
Model (GLM) gives an effective summary of activation patterns in func-
tional brain images and is widely used for feature selection in fMRI
related classification tasks. As part of a project to build content-based
retrieval systems for fMRI images, we have investigated ways to make
GLM more adaptive and more robust in dealing with fMRI data from
widely differing experiments. In this paper we report on exploration of
the Finite Impulse Response model, combined with multiple linear re-
gression, to identify the “locally best Hemodynamic Response Function
(HRF) for each voxel” and to simultaneously estimate activation levels
corresponding to several stimulus conditions. The goal is to develop a
procedure for processing datasets of varying natures. Our experiments
show that Finite Impulse Response (FIR) models with a smoothing fac-
tor produce better retrieval performance than does the canonical double
gamma HRF in terms of retrieval accuracy.

1 Introduction

As a method for watching “how the brain works”, fMRI has become a powerful
research tool in many aspects of neuroscience studies in the past decade [1]. More
recently, classification of fMRI images, based on similarity between activation
patterns, shows promising transition to clinical diagnosis [2,3,4]. These methods
usually select features (that is to say, voxels or areas in the brain and their
activation levels) and train models to best distinguish uncommon cases from
so-called “typical” ones.

We investigate content-based indexing of fMRI images. For any “query” fMRI
image that is presented, we ask whether we can retrieve images that represent
the same or similar cognitive processes (“success”). The potential applications
include, but are not limited to, the following: 1) helping doctors to diagnose
brain disorders, by looking at the clinical history of persons with similar fMRI
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patterns; 2) helping researchers to find similar studies and related research work;
3) helping researchers to discover hidden similarities among superficially different
cognitive activities.

Our experimental studies are performed in the framework of information re-
trieval (IR) [5]. This framework is best known for applications such as search
engines, which usually have a huge database of documents and images. In an
IR framework, as in classification tasks, a dataset is represented in terms of a
set of features. However, the IR framework is usually built to retrieve similar
datasets from a very large database, in which it is generally difficult to assign
class labels to each dataset. In contrast to seeking “class boundaries” optimized
for specific classes, IR techniques use a more general “distance” measure. The
IR framework is more extensible, and thus is preferable for an anticipated large
database of fMRI datasets from miscellaneous sources.

In recent few years, a number of papers have been published on content-based
fMRI retrieval [6,7,8]. These papers present matching methods based on features
selected using General Linear Model (GLM) [9] t-maps.

In this paper, instead of testing matching methods with given features, we
explore the possible ways to provide better features. Particularly, we find that
inaccuracies in the assumed Hemodynamic Response Function (HRF), or in the
associated stimulus time series may increase error in feature selection, and un-
dermine the precision of subsequent processing. For example, in an experimental
study of morality and decision-making [10], the subject presses a button when
he/she thinks there is a moral issue to be resolved. In the reported analysis of
this data, the beginning of the process of “moral reasoning” is set to be 8 sec-
onds before the button is pressed, and the duration of this “stimulus” is set to 16
seconds. This approach works well with the specific method used in [10], but we
find it can not be used in conjunction with general linear model in other typical
settings [7]. In dealing with large heterogeneous data collections, we would not
be able to generate either specialized HRF or stimulus configurations. Instead,
we seek an adaptive HRF model, robust in handling cognitive processes with
poor time definition, and efficient enough to allow large scale data processing.

The contributions of this paper can be summarized as follows. Firstly, we
investigate the smoothing given by the Maximum A Posteriori (MAP) FIR model
[11] as an adaptive HRF model for feature selection. This model exhibits better
results in our experimental evaluations on real data than does the canonical HRF
model. Secondly, we have extended this MAP FIR model to support multiple
stimulus conditions, and propose a bilinear regression approach. This work has
potential to be developed in a number of ways and the preliminary results show
that it merits further study.

2 Method

2.1 GLM Based Feature Selection Schemes

In the GLM, observations (the time dependence of the signal at each voxel) y
are to be explained by an intermediating variable X as y = Xb. X denotes the
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design matrix, and every one of its columns is an “Explanatory Variable”(EV)
generated by convolving a “condition Stimulus” time series with an HRF. A
popular choice for the HRF is the so-called “Canonical HRF” [1], which should
be represented as the difference of two gamma functions: H(t) = f(t; 6, 1) −
1
6f(t; 16, 1), where f(t; α, β) = 1

βαΓ (α) t
α−1e−t/β for t > 0. For each voxel, a t-

value can be calculated, which indicates the significance of the voxel’s activation
by the corresponding condition. A 3D image of these t-values for all brain voxels
will be referred to as a “t-map”.

The first step of our feature selection scheme is based on the construction
of t-maps and will be followed by selection of subset of the voxels with highest
t-values. One straightforward idea is to set a threshold for t-values themselves,
and take all voxels above this threshold as the features. Despite its superficial
attractiveness, large variation of t-values of fMRI images for a large database
of diverse experiments will make this mechanism unusable. In our database, for
example, the maximum t-value is only about 3 for some experiments, while others
can have t-values larger than 10, making it hard to set a reasonable threshold
for all experiments. In our experiments, therefore, we uniformly select 1% of the
voxels with the most significant t-values. We choose this “magic number” of 1
percent for two reasons: 1) indexing large databases calls for small feature sets,
and 2) our main objective is to construct a robust HRF for information retrieval
purposes, not to set some optimal threshold. In fact, we tried several different
thresholds which resulted in similar relationships among different HRF models.

2.2 Finite Impulse Response (FIR) Model

Despite its simplicity, the canonical HRF model obviously fails to allow variations
across multiple subjects or multiple brain regions. Temporal derivatives of EVs
are sometimes included in design matrix to address very minor time shift [12],
but the timing errors in real data may be much larger. As an alternative, more
flexible models such as the Finite Impulse Response (FIR) have been proposed
[11]. In these models, the activation of a certain voxel at time t is the weighted
sum of the stimulus values (si, i ∈ [t − n + 1, t]) at the preceding n time points,
i.e., ŷt(w) =

∑n
i=1 wist−(i−1) + w0.

The optimal estimate of w = [w0, w1, w2, ...wn]T is taken to minimize the
total squared error between the observations and the model. To avoid overfitting
problems, Goutte et al. [11] adopted a maximum a posteriori (MAP) parameter
estimation similar to ridge regression, wMAP = (ST S + σ2Σ−1)−1ST y, where
Σij = v exp(−h

2 (i− j)2), h is a smoothing factor, v is the strength, and σ2 is the
variance of noise [11]. Such a smoothing induces a correlation among parameters
and prevents sudden changes (spikes) in the local form of the HRF. We shall
refer to this model as “MAP FIR” in the rest of this paper.

2.3 FIR Model for Multiple Conditions at the Same Time

The aforementioned FIR model can only deal with a single stimulus condition.
However, it is quite common that several conditions occur in a single fMRI run.
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Although we could deal with this by using each condition separately in single
regression, there is a potential problem with that approach. Suppose several con-
ditions have similar effects on one voxel. If we consider only one condition, then
the residual sum of squares RSS will be greater in comparison to considering all
conditions simultaneously, and this results in a smaller t-value. In other words,
voxels whose time series are in fact just noise have a better chance to be selected.
An example is shown in Figure 1.
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Fig. 1. Upper: 3 conditions, marked as stimulus1,stimulus2 and stimulus3. Lower:
voxel V1 responds to all 3 stimuli with strength 1, while voxel V2 to only the first
stimulus, with strength 0.5. Both of them are subject to the same noise time series of
N(0,4).

In Figure 1, we apply the GLM with multiple conditions or single condition to
these two voxels, and inspect their t-values for condition stimulus1. As shown in
Table 1, the two methods select different voxels. For multiple regression, the t-
value of V1 is greater than V2; for single regression it is the other direction. This
is because, in single regression, the two other stimuli are considered as noise,
lowering the confidence level associated with stimulus1.

Table 1. t-values for stimulus1 on voxels V1 and V2, with multiple regression and
single regression respectively. (Generated with SPSS 11.5).

V1 V2

Multiple regression 6.983 3.636
Single regression 3.570 3.698

Based on these observations, we propose to combine FIR model with multiple
regression, and explore its effect in retrieval performance. This, in turn, allows us
to simultaneously compute estimates for the HRF and for the activation levels.
Specifically, we will assume that the shape of HRF is the same for different
stimuli, at a given voxel, because the HRF describes a physiological feature of
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certain brain region, and that should not depend on how much the region is
engaged in a process, nor on why it is engaged.

Specifically, suppose we have c conditions, whose stimulus time series are:
si

j , i ∈ [1, c], j ∈ [1, N ]. Then an estimate for the activation at time t can be
written in the following parametric form:

ŷt =
c∑

j=1

aj

n∑

i=1

wis
j
t−(i−1) = aT Stw

= (a1, a2, ...ac)

⎛

⎜
⎜
⎝

s1
t s1

t−1 ... s1
t−(n−1)

s2
t s2

t−1 ... s2
t−(n−1)

... ... ... ...
sc

t sc
t−1 ... sc

t−(n−1)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

w1
w2
...
wn

⎞

⎟
⎟
⎠ (1)

For clarity, we omitted the constant terms from Eq. 1. The optimal value for the
entries of weight vector a and the HRF w can be found using an “alternating”
regression. That is, we fix a and w alternately, and calculate the other using
linear regression until the process converges, as shown in Algorithm 1.

Algorithm 1. BilinearRegression(S,Y ,MAP ) Iteratively find HRF and
weights of regressors using alternating regression
1: a ← 0; aold ← −∞; w ← 1
2: iterations ← 0
3: Build SS from S
4: while ‖a − aold‖2 > NormThres and iterations < IterThres do
5: /* Estimate a using w*/
6: U ← (S1w,S2w, . . . ,SNw)T

7: aold ← a
8: a ← (UT U)−UT Y
9: /* Estimate w using a*/

10: V ← (S1
T a,S2

T a, . . . ,SN
T a)T

11: if MAP then
12: w ← (V T V + varΣ−1)−V T Y
13: else
14: w ← (V T V )−V T Y
15: end if
16: iterations ← iterations + 1
17: end while
18: return w

This algorithm is guaranteed to converge, because linear regressions always re-
duces the least square error

∑N
t=1(yt − ŷt)2, which is non-negative. With respect

to landscape of local and global minima, the convergence behavior is not com-
pletely clear at this moment. However, in our validating experiments, we found
that longer voxels time series and fewer conditions yield fewer local minima.
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3 Results

Our testing scheme is built on a standard information retrieval framework, in
which every image is used as a query, and performance is evaluated by checking
the returned ranked lists. A retrieved image is considered “relevant” to the query
only if they are both for the same type of condition. It is possible, of course,
that data with different labels may contain similar brain process. In this case,
the hidden similarity across conditions will increase the rank of items considered
irrelevant, and lower the retrieval performance metric. Thus, the metric that
we calculate should be a lower bound for the retrieval based on real similarity
(including similarities not yet known to cognitive scientists). See [7] for more
details about this framework.

Since the number of examples for each condition may be quite different, we
choose a metric insensitive to data size. We use the “Area Under the ROC
Curve” (AUC) to evaluate each retrieval method. If the AUC is 0.5, then the
retrieval method is no better than random selection. An AUC of 1 is a perfect
retrieval. We use each of the datasets as a query against the rest (excluding the
same subject), calculate AUC for each ranked list, and report the average AUC
of all queries as the performance indicator.

The similarity measure we use between two thresholded t-maps is the Jaccard
distance. Specifically, the similarity between two sets of selected voxels is simply
the size of their overlap divided by the size of their union, similarity(A, B) =
‖A∩B‖/‖A∪B‖. The hyper parameters in MAP FIR model are h = .3, v = .1,
and σ2 = 1.

We have gathered 430 real fMRI datasets from different institutions. Table 2
shows details of this testing database. These data are preprocessed (motion cor-
rection, spatial smoothing, high pass filtering, and registration to standard brain
space) with the software package FSL [13]. To eliminate artifacts introduced by
the fact that different brain regions are scanned in different experiments, we
specifically consider only those parts of the brain that were scanned in all im-
ages. This is similar to the approach used in Mitchell et al. [4].

Our study explores the combination of single or multiple regression, with the
canonical or finite impulse models for the HRF. Table 3 shows the average AUC
for four different combinations of these two aspects. “CAN”, “MAP”, “SIN”,

Table 2. Experiments

Experiment Conditions TR(s) Size
Oddball: Recognition of an out of place image or sound auditory, visual 2.0 8
Event perception: Watching either a cartoon movie of
geometric shapes or real film of a human being [14]

studyActive, houseActive 1.5 53

Morality: Making decisions about problem situations
having or lacking combinations of moral and emotional
content [10]

M+E+, M+E-, M-e- 2.0 150

Recall: Study and recall or recognition of faces, objects
and locations [15]

{S,T,R}{Face, Obj, Loc} 1.8 189

Romantic: People in love seeing pictures of their sig-
nificant others, or of non-significant others [16]

neutralFace, positiveFace 5.0 30
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and “Mul” denoting “Canonical HRF”, “MAP HRF”, “Single regression”, and
“Multiple regression”, respectively. “AAUC (raw)” is the Average AUC for all
430 queries. Since this metric tends to be dominated by conditions with many
samples, we also calculate the mean AUCs for each condition, and refer to the
mean value of those as the “(Macro-)adjusted AUC”.

Table 3. Average AUC for 430 datasets (Mean/Standard Error of the mean)

CAN MUL MAP MUL CAN SIN MAP SIN
AAUC (raw) .662/.007 .719/.006 .677/.007 .715/.007
AAUC (adjusted) .658/.006 .711/.005 .665/.007 .715/.006

We test two hypotheses using these results. H1: “the FIR model performs bet-
ter than canonical HRF in retrieval”. The hypothesis is clearly accepted since
the differences are very significant for both single-variate and multi-variate ap-
proaches. H2: “for series of brain scans with multiple conditions, one multiple
regression with all conditions performs better than multiple simple regressions”.
The conclusion for this hypothesis is not clear yet. Figure 2, which shows the
AAUC for separate conditions (see Table 2), provides further detail on this.
Each method is better for some of the conditions. We return to this point in the
discussion.
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Fig. 2. Average of area under ROC (RAW) curve for 4 methods

4 Conclusions and Discussions

The results of this study are: confirmation of one hypothesis (H1) , and some
tantalizing clues regarding the other. Specifically, the FIR model, with MAP
smoothing, which seems to be a more realistic way to describe the variations,
across the brain, in the anatomy supplying blood, does also yield significantly
better performance in the retrieval setting. This suggest that it may be worth
the added effort to use smoothed FIR analysis when preparing data for retrieval
across different experiments, and different laboratories.

On the other hand, the anticipated superiority of using multiple indepen-
dent regressors to select the voxels characteristic of several cognitive conditions
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occurring in the same run, is not confirmed. This lead us to a more detailed
examination of why it was expected to be better, and a new hypothesis.

Our argument in favor of using multivariate regression relied on the assump-
tion that an individual voxel may be activated by several conditions, all occurring
in the same experimental run. Using all but the condition of interest as a con-
trast has the effect of making the estimates of correlation with the signal less
accurate. This makes the t-value smaller, and makes the voxel less likely to be
selected as a feature. On the other hand, conditions that activate same voxels
are harder to tell distinguish the same run. One or the other of these two con-
tradictory factors may dominate in different experiments. As shown in Figure 2,
for some types of experiments the multivariate regression (e.g., M+E+, M+E-
and M-e-) is more effective, while for some of them (e.g. SFace, SLoc and SObj)
it is not. This relationship will be further investigated in future work.

Another interesting topic is the distribution of estimated FIR weights. It can
not be included here due to page limit. Please see [17] for a brief report.
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