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With the growing interest in using the technique of index decomposition analysis (IDA) in energy and energy-
related emission studies, such as to analyze the impacts of activity structure change or to track economy-wide
energy efficiency trends, the conventional single-level IDAmay not be able tomeet certain needs in policy analysis.
In this paper, some limitations of single-level IDA studies which can be addressed through applying multilevel
decomposition analysis are discussed. We then introduce and compare two multilevel decomposition procedures,
which are referred to as the multilevel-parallel (M-P) model and the multilevel-hierarchical (M-H) model. The
former uses a similar decomposition procedure as in the single-level IDA, while the latter uses a stepwise decom-
position procedure. Since the stepwise decomposition procedure is new in the IDA literature, the applicability of
the popular IDA methods in the M-Hmodel is discussed and cases where modifications are needed are explained.
Numerical examples and application studies using the energy consumption data of the US and China are presented.
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1. Introduction

Index decomposition analysis (IDA) has beenwidely used to study the
driving forces behind aggregate energy consumption changes, sectoral
and economy-wide energy efficiency trends, and differences between
countries in energy consumption or carbon emissions. See, for example,
Ang and Zhang (2000), EERE (2003), Bataille et al. (2007), IEA (2007),
OEE (2009), and Ang et al. (2010). In economy-wide studies, total energy
consumption is often given as a sum of consumption in various energy
consuming sectors. Each sector in turns comprises subsectors and so on.
This leads to a well-defined hierarchy of energy consumption data,
where IDA studies can be conducted at different levels of sector disaggre-
gation. Generally, changes in the aggregate energy consumption at a spe-
cific level are often decomposed to give the contributions of factors linked
to overall activity change, activity structure shifts, and energy efficiency
improvement. The choice of level may vary from one study to another
due to differences in study scope and objective, or in data availability
and quality.1

We refer to the IDA studies conducted at a specific level as those
using a single-level decomposition model. Such studies, comprising
the majority of IDA studies in the literature, give decomposition results
meaningful for the chosen level. Take, for example, an energy
5 6777 1434.

st of the paper refers to level of
consumption data hierarchy with two levels of sector disaggregation
as shown in Fig. 1. Assume that the energy efficiency change at level 0
is the indicator of interest and is to be estimated using IDA. It can be ob-
tained using either the data at level 1 or level 2. In each case, a single-
level decomposition model will be used. Generally the results obtained
at the two levels are different and the linkages between them are not
formally established.

It is pointed out in the IDA literature that the energy intensity effect
estimated at a finer level gives a better proxy for energy efficiency
change. However, when the structure effect is studied using a single-
level decomposition model, a finer level may lead to a higher degree
of cancellation among sub-category effects (Ang, 1993). As a result,
some compromise is needed in determining the “right” level to give rep-
resentative estimates of the structure and energy intensity effects in a
single-level study. This makes the single-level analysis decomposition
results somewhat specific.

Due to the above limitations, some IDA studies have reported the re-
sults obtained at several different levels of a data hierarchy. See, for ex-
ample, Jenne and Cattell (1983), Boyd et al. (1987), Ang and Skea
(1994), Sinton and Levine (1994) and González and Suárez (2003).
Since decomposition analyses in these studies were derived indepen-
dently using single-level IDA models applied at different levels, the
issues of consistency in result aggregation and interpretation arise.2 To
2 That is, whether the results obtained at a finer level can be consistently aggregated to
give those obtained at a more aggregate level, and how differences between the results at
different levels are to be interpreted.
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Fig. 1. Energy consumption hierarchy.

3 For the sake of conciseness, we only provide themultiplicative decomposition formu-
lae. Similar analysis can be conducted for an additive decomposition scheme.

4 For example, in Sun and Malaska (1998), CO2 emission changes in developed coun-
tries are decomposed. The large structure effects of individual countries offset each other,
leading to a marginal structure effect for the entire country group.
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overcome these limitations, multilevel index decomposition analysis
has been proposed. Some early studies include Li et al. (1990),
Gardner (1993), Huang (1993), and Alam (2002). These studies all
dealtwith industrial energy usewhere industry subsectors are classified
into the energy-intensive group and the non-energy-intensive group.
Decomposition analysis was conducted based on a two-level energy
consumption hierarchy tomeasure the contribution of activity shifts be-
tween the two industry groups, as well as among subsectors in each of
these two groups.

Further improvements have been made in more recent multilevel
studies. Ma and Stern (2008) study energy efficiency change in China
using a three-level energy data hierarchy. It is shown that structure
changes at more aggregate levels have increased China's industrial en-
ergy consumption, while structure changes at the finer level have con-
tributed to a decrease. In Petrick (2013), changes in CO2 emissions in
Germany's industry are studied at the industry subsector level and
plant level. The results show that both structure change at the subsector
level and that at the plant level have contributed to reduce the CO2

emissions. Multilevel index decomposition models have also been
adopted in some national energy efficiency accounting systems, such
as those developed by Canada (Bataille and Nyboer, 2005) and the
United States (EERE, 2003).

These multilevel IDA studies reported in the literature are generally
empirical studies. An analytical study that looks into the conceptual and
methodological aspects is lacking. For instance, why shall we develop
multilevel IDA models? What is the practical significance of applying
multilevel IDA? In terms of IDA decomposition identity and procedure,
what is the difference between multilevel IDA and single-level IDA?
What are the methodological issues that are unique to multilevel stud-
ies? In this paper, we attempt to fill some of these research gaps.

In the rest of the paper, we start with a discussion on the limitations
of single-level IDA in Section 2. Two different multilevel IDAmodels are
thereafter introduced in Sections 3 and 4. Section 5 presents two simple
examples which reveal the main features of multilevel analysis.
Section 6 discusses the applicability and some relevant methodological
issues of popular IDA methods in the multilevel IDA context. Section 7
presents two case studies regarding the application of multilevel IDA.
Section 8 concludes.

2. Single-level decomposition analysis

Refer to the energy consumption data hierarchy in Fig. 1. Let E be the
energy consumption. The energy consumption at level 0, EL0, may be
written in terms of the variables defined at level 1 and level 2 respec-
tively as follows:

EL0 ¼
X
i

EL1i ¼
X
i

AL0 A
L1
i

AL0

EL1i
AL1
i

¼
X
i

AL0S0;1i IL1i ð1Þ

EL0 ¼
X
j

EL2j ¼
X
j

AL0 A
L2
j

AL0

EL2j
AL2

j

¼
X
j

AL0S0;2j IL2j ð2Þ
where A denotes activity, S denotes activity structure, and I denotes en-
ergy intensity. The superscript indicates the level of disaggregation, and
the subscripts i and j indicate the sub-categories at level 1 and level 2,
respectively. In a multiplicative decomposition scheme, a change in
the total energy consumption from time 0 to T, i.e. Dtot

L0 = ET
L0/E0L0, can

be estimated at level 1 and level 2 as:

DL0
tot ¼ DL0

act � D0;1
str � DL1

int ð3Þ

DL0
tot ¼ DL0

act � D0;2
str � DL2

int : ð4Þ

Fromboth equations, the total energy consumption change at level 0
is decomposed into the contribution of the overall activity effect at level
0 (Dact

L0 ), and the structure effect (Dstr
0,1, Dstr

0,2) and energy intensity effect
(Dint

L1, Dint
L2) at the respective disaggregate levels.3

According to the practices in the literature, the results for the struc-
ture effect and energy intensity effect estimated at level 1 and level 2 are
usually not the same. Since energy intensities given at a more disaggre-
gate level is a better proxy of energy efficiency, the energy intensity ef-
fect computed at level 2 is generally preferred if tracking energy
efficiency trends is the objective. However, the structure effect comput-
ed at a finer level may not be necessarily better. This is due to the fact
that the significance of a structure effect is closely linked to the level se-
lected. For example, in an economy-wide study, activity structure
change amongmain economic sectorswill likely be used to capture pos-
sible transformation of an economy, while activity structure change
among end-uses might be too detailed to provide information that is
useful in this case. Furthermore, a very fine level may cause substantial
cancellation of the impacts of structure shifts. As a result, the results ob-
tained can be ambiguous unless further analysis is conducted.4 With
these trade-offs between the structure effect and energy intensity effect,
IDA conducted at a single-level provides decomposition results that are
somewhat specific. Much useful information especially that related to
structure change at different levels is masked.

3. The multilevel-parallel (M-P) model

Consider a two-level case. Assume that the total energy consump-
tion can bedisaggregated into n sectors at level 1, and sector i can be fur-
ther disaggregated into mi subsectors at level 2. The total energy
consumption at level 0 can be decomposed by the following identity:

EL0 ¼
Xn
i¼1

Xmi

j¼1

EL2ij ¼
Xn
i¼1

Xmi

j¼1

AL0 A
L1
i

AL0

AL2
ij

AL1
i

EL2ij
AL2
ij

¼
Xn
i¼1

Xmi

j¼1

AL0S0;1i S1;2ij IL2ij ð5Þ

DL0
tot ¼ DL0

act � D0;1
str � D1;2

str � DL2
int ð6Þ

whereS0;1i ¼ AL1
i

AL0 is the share of sector i in the overall activity andS1;2ij ¼ AL2
ij

AL1
iis the share of subsector jwithin sector i. Hence Dstr

0,1 gives the impact of
structure changes at level 1, while Dstr

1,2 is the impact of subsector struc-
ture change at level 2 within the corresponding sector at level 1. The
meanings of other notations are the same as those defined in
Section 2. From Eq. (6), the total energy consumption change at level
0 is decomposed to give the impacts of total activity change at level 0,
structural change at each disaggregation level, and intensity change at
the finest level.

Although the data used are collected at different levels in the energy
consumption data hierarchy, the factors in Eq. (6) will be calculated
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Fig. 2. Parallel decomposition structure.
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using a procedure the same as in the single-level IDA. The effects obtain-
ed are therefore treated independently as illustrated in Fig. 2. Since all
the effects appear in parallel, we say that this model has a parallel struc-
ture and refer to it as themultilevel-parallel (M-P)model. For an energy
data hierarchy with a total of k levels, we have:

DL0
tot ¼ DL0

act � D0;1
str � D1;2

str ⋯D
k−1;k
str � DLk

int ð7Þ

where Dstr
k − 1,k is the structure effect within the sub-categories of level

k − 1, and Dint
Lk is the energy intensity effect at level k. The M-P model

retains the feature of simplicity in computation in a single-level IDA
model. This is the multilevel IDA model often used by researchers in
the literature. Examples include Li et al. (1990), Gardner (1993),
Huang (1993), Alam (2002), Ma and Stern (2008), and Petrick (2013).
Interpretations of various structure effects in the M-P model and their
practical significance were also reported in some of these studies.

4. The multilevel-hierarchical (M-H) model

Besides using the parallel structure in a multilevel analysis, we can
follow the energy consumption data hierarchy and decompose the ag-
gregate change step-by-step. Using this concept and for the same exam-
ple in Section 3, we may define the following identities:

EL0 ¼
Xn
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i
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ij
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The total energy consumption at level 0 is thus decomposed hierar-
chically in two steps as:

DL0
tot ¼ DL0

act � D0;1
str � DL1

int ð10Þ

DL1
int ¼ D1;2

str � DL2
int : ð11Þ

Now the total energy consumption change at level 0 is decomposed
at level 1 and the energy intensity effect at level 1 is further decomposed
to give the sub-structure effect and the sub-intensity effect at level 2.
Changes in aggregate consumption

Activity effect Structure effect Intensity effect

Sub-structure
effect

Sub-intensity
effect

Fig. 3. Hierarchical decomposition structure.
This leads to a stepwise decomposition procedure and the decomposi-
tion model has a hierarchical structure as shown in Fig. 3.

For a total of k different levels of disaggregation, we have:

DL0
tot ¼ DL0

act � DL1
str � DL1

int

DL1
int ¼ D1;2

str � DL2
int

⋮
DL k−1ð Þ
int ¼ Dk−1;k

str � DLk
int

ð12Þ

where Dstr
k − 1,k and Dint

Lk are respectively the sub-structure and intensity
(or sub-intensity) effect at level k. The decomposition analysis com-
prises a series of decomposition steps and each of them uses the data
at a specific level in the energy consumption data hierarchy and gives
a specific structure effect. Since the effects are generated hierarchically,
we say that this model has a hierarchical structure and refer to it as the
multilevel-hierarchical (M-H) model.

Theoretically, the M-H model has the following good properties.
First, decomposition analysis is conducted hierarchically which is con-
sistent with the energy consumption data hierarchy. Second, since the
energy intensity effect obtained at an aggregate level can be further
decomposed into sub-effects at a finer level, the relationships between
structure effects and intensity effects at different levels can be better un-
derstood. Third, using a stepwise decomposition procedure, the M-H
model, which allows sectors to be further disaggregated, has the flexi-
bility in handling changes and refinements in the data hierarchy. This
property enables an asymmetric hierarchy to be used.

A drawback of the M-H model is that computationally it is more
cumbersome than the conventional decomposition procedure used in
the single-level model and the M-P model. By decomposing changes
more than once, the formulae of sub-effects can be quite complicated.
Using themost popular LMDI-I method as an example, the three effects
and the two sub-effects in Eqs. (10)–(11) can be estimated as:
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It can be seen that the formulae used at thefirst decomposition level,
i.e. Eqs. (13)–(15), are exactly the same as those in a single-level decom-
position procedure, while the formulae at the second decomposition
level, i.e. Eqs. (16)–(17), are more complicated since an explanatory ef-
fect is further decomposed into sub-effects. It can be proved that not all
the IDAmethods are directly applicable or can be transformed and inte-
grated with the M-H model. Further research indicates that whether or
not an IDA method is applicable to the stepwise decomposition proce-
dure will depend on its feasibility for further decomposition to give



Table 4
Multiplicative LMDI-I decomposition results: asymmetric hierarchy and Dtot = 1.28.

Dact
L0 Dstr

0,1 Dstr
1,2 Dint

L2

M-P decomposition 1.5985 1.1179 1.0407 0.6883
M-H decomposition 1.5998 1.1183 1.0395 0.6883

Table 1
Multilevel decomposition: an illustrative example (arbitrary units).

Year 0 Year T

Sector/subsector Level E0 A0 S0 I0 ET AT ST IT

Total 0 50 50 1.0 1.0 64 80 1.0 0.8
Sector 1 1 (30) (10) (0.2) (3.0) (40) (20) (0.25) (2.0)

Subsector 1 2 20 5 0.1 4.0 30 12 0.15 2.5
Subsector 2 2 10 5 0.1 2.0 10 8 0.1 1.3

Sector 2 1 (20) (40) (0.8) (0.5) (24) (60) (0.75) (0.4)
Subsector 3 2 8 10 0.2 0.8 15 30 0.375 0.5
Subsector 4 2 12 30 0.6 0.4 9 30 0.375 0.3

Source: The data are taken from an example in Ang (1995). The data enclosed in brackets
give the sector level totals.

Table 2
Single level LMDI-I decomposition results: symmetric hierarchy and Dtot = 1.28.

Single level models Dact Dstr Dint

Single level decomposition (level 1) 1.5998 1.1183 0.7154
Single level decomposition (level 2) 1.5936 1.2378 0.6489

Table 3
Multiplicative LMDI-I decomposition results: symmetric hierarchy and Dtot = 1.28.

Multilevel models Dact
L0 Dstr

0,1 Dstr
1,2 Dint

L2

M-P decomposition 1.5936 1.1183 1.1068 0.6489
M-H decomposition 1.5998 1.1183 1.1019 0.6493
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sub-effects. More discussions on the applicability of various IDA
methods in the form of a multilevel decomposition model will be pre-
sented in Section 6.

5. Illustrative examples

We compare the single-level, M-P, and M-H models using two ex-
amples. Assume a two-level energy data hierarchy where level 1 com-
prises two sectors and a sector may comprise sub-sectors at level 2.
The first example deals with a symmetric hierarchy, i.e. both sectors
have subsectors, while the second deals with an asymmetric hierarchy,
i.e. only one of the sectors has subsectors.

5.1. Example 1: symmetric hierarchy

Assume the data in Table 1 where level 1 has two sectors and each
has two subsectors at level 2. At level 1, the activity share of Sector 1,
the more energy intensive of the two sectors, increases from year 0 to
year T. At level 2, the activity share of themore energy intensive subsec-
tor also increases for both Sector 1 and Sector 2. Energy intensities de-
crease in all the sectors and subsectors.

The multiplicative LMDI-I method, one of the most popular IDA
methods, is adopted to decomposed the data in Table 1.5 Four decompo-
sition analyses are conducted. The decomposition results of the two
single-level decomposition model using respectively the sector level
data (level 1) and subsector level data (level 2) are shown in Table 2,
while the decomposition results of the two multilevel decomposition
models are shown in Table 3.6 From Table 2 and Table 3, the M-P
model and the single-level model (level 2) give the same estimates for
the activity effect and the intensity effect, while the product of the
two structure effects in the M-P model equals the structure effect of
the single-level model (level 2). By using the M-P model, the cancella-
tion issue of the structure effect in the single-level model due to activity
shiftswithin sectors is revealed. TheM-Pmodel can therefore be seen as
an improvement over the single-level model by distributing the aggre-
gate structure effect into the contribution of detailed sub-structure ef-
fects at different levels, i.e. Dstr

0,2 = Dstr
0,1 ⋅ Dstr

1,2.
Similarly, by comparing the results of the M-H model with those of

the single level model (level 1), the two models obtain the same esti-
mates for the activity effect and the sectoral structure effect.7 The inten-
sity effect at level 1 equals to the product of intensity effect at level 2 and
5 For an overview of various commonly used IDA methods, refer to Ang (2004).
6 Eqs. (13)–(17) are used to obtain theM-H decomposition results. Readers can refer to

Ang (2004) for the formulae for the single-level models and the M-P model.
7 This is to be expected since Eq. (8) is exactly the same as Eq. (1).
the structure effect within sectors. TheM-Hmodel provides a better es-
timate of energy efficiency improvement arising from reductions in the
subsector energy intensities. By using the M-H model, the effect of
structure change within sectors is separated from the energy intensity
effect that would have been obtained had single-level decomposition
(level 1) been adopted, i.e. Dint

L1 = Dstr
1,2 ⋅ Dint

L2. The M-H model, therefore,
can be seen as an improvement over the single-level model by isolating
the impacts of activity shifts at the subsector level from the true energy
efficiency improvement. Furthermore, since the product of the sub-
structure effect and the intensity effect in the M-H model is the same
as the intensity effect of the single-level model (level 1), the linkage
among structure effects and that among intensity effects across levels
can be established.

5.2. Example 2: asymmetric hierarchy

Assume that Sector 2 is a single aggregate, i.e. there is no subsector in
Sector 2. The dataset would be the same as that shown in Table 1 except
that the last two rows are removed. Decomposition analysis is now con-
ducted for an asymmetric hierarchy. Since only the energy consumption
data hierarchy at level 2 has changed while level 1 is the same as in Ex-
ample 1, it is natural to expect identical explanatory effects linked to
level 0 and level 1 (i.e. Dact

L0 and Dstr
0,1) in these two examples. Table 4

shows the decomposition results given by the multilevel models using
the multiplicative LMDI-I method.8 From the decomposition results,
we find that the decomposition results by theM-Hmodel satisfy our ex-
pectation. In otherwords, changes in the energy consumption data hier-
archy will only affect relevant effects in the M-H model. In contrast, all
the effects given by theM-Pmodel are different when there are changes
in the data hierarchy irregardless of the level where the changes occur.
In this respect, the M-H model should be preferred when dealing with
an asymmetric hierarchy.

6. Issues in implementing multilevel decomposition analysis

We present the methodological and practical issues which are rele-
vant to the adoption of the commonly used IDA methods in multilevel
decomposition analysis. In the literature, the properties and features
of these IDA methods have been widely discussed. See, for example,
Greening et al. (1997), Ang and Zhang (2000), and Ang (2004). These
studies are, however, based on single-level decomposition analysis.
We now study them in the context of multilevel decomposition
analysis.

6.1. Applicability of IDA methods

Since the M-P model is very similar to the conventional single-level
model in calculation procedure, the properties and features of all the
8 To make the M-P model applicable to the asymmetric case, we assume that sector 2
has a dummy subsector with energy consumption and activity output exactly the same
as sector 2.



Table 5
Applicability of popular IDA methods in the M-H model framework.

Additive M-H model Multiplicative M-H model

Divisia-based methods
Logarithmic mean Divisia Index (LMDI) Transformation needed Directly feasible
Arithmetic mean Divisia Index (AMDI) Transformation needed Directly feasible

Laspeyres-based methods
Laspeyres method Directly feasible Transformation needed
Generalized Fisher ideal index – Not feasible
Shapley/Sun method Directly feasible –

Note: formulae of the directly feasible method can be found in Appendix A, while formulae of methods need transformation are given in Appendix B. LMDI includes LMDI-I method and
LMDI-II method.
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existing IDAmethods in the literature are applicable to theM-Pmodel.9

In theM-Hmodel, the effects are estimated step by step.Whether or not
an IDA method is still equally applicable depends on its feasibility for
further decomposition to give sub-effects. Our investigation shows
that it is directly feasible for multiplicative IDA methods linked to the
Divisia index and for additive IDA methods linked to the Laspeyres
index. The details and the relevant formulae are given in Appendix A.
This also means that additive methods linked to the Divisia index and
multiplicative methods linked to the Laspeyres index are not directly
feasible. However, they can be readily incorporated within the M-H
model framework through simple transformations. In the former, we
transform the logarithmic change into the linear change, while in the
latter we transform the index from using the arithmetic mean to the
geometric mean. Further details are given in Appendix B. In summary
and as summarized in Table 5, most popular IDAmethods can be direct-
ly or indirectly applied in the M-H model framework. An exception is
the Fisher ideal index where the formula cannot be transformed to
meet the requirements.

6.2. Computational issues

Adopting different decomposition procedures in themultilevel anal-
ysis, different decomposition results will be obtained for theM-Pmodel
and theM-Hmodel, even though the same IDAmethod is applied. From
Appendix A and Appendix B, we find that for those IDA methods of
which the weights add up to unity, estimates of effects not involving
further decomposition (e.g. activity effect, structure effect at the first
level, etc.) are consistent for both the M-P model and the M-H model.
They include the arithmetic mean Divisia index (AMDI) and the general
parametric Laspeyres methods. For those effects where further decom-
position is performed, nearly all IDA methods except the general para-
metric Laspeyres methods (e.g. the conventional Laspeyres, Passche)
produce different results. Nevertheless, despite this advantage, the gen-
eral parametric Laspeyres methods tend to give a large residual term in
the decomposition results which limits their applicability. To summa-
rize, most IDA methods, especially the popular ones, will give different
results in the parallel decomposition structure used by the M-P model
and in the hierarchical decomposition structure used by theM-Hmodel.

By adopting the parallel decomposition structure as in the conven-
tional single-level model, the M-P model is relatively easy to apply.
This computational advantage applies to most IDA methods. An excep-
tion is the Shapley/Sun method for which the number of terms in the
decomposition analysis formulae increases exponentially as the number
of factors in the IDA identity increases.10 By distributing the factors to
9 As the number of factors in the IDA identity increases, the computation effort in using
the Shapley/Sun method and the generalized Fisher index method can be expected to in-
crease. This applies to the conventional single-levelmodel but theproblem ismore serious
in the case of the M-P model since it tends to have more factors than the single-level
model.
10 In multilevel decomposition, the number of factors is usually more than four which
gives more than 4! = 24 computational terms in the decomposition analysis formulae
for the Shapley/Sunmethod. The number increases to 5!= 120when the aggregate ener-
gy consumption is decomposed to five factors. That is the reason why the Shapley/Sun
method is seldom applied in the IDA identity with more than five factors.
different levels and calculating them in multiple steps, the M-H model
actually reduces the computational effort needed for the Shapley/Sun
method.11 This advantage is even more noticeable when the energy
data hierarchy comprises many disaggregation levels and/or there are
many factors in the IDA identity.

7. Decomposition of United States and China industrial
energy consumption

We now use theM-Hmodel to decompose changes in industrial en-
ergy consumption in the United States and China.12 To be more general
and for better illustration, the multiplicative LMDI-I is used in the US
study while the additive LMDI-I in the China study. The energy data hi-
erarchy in the US study is as follows: the industrial sector has two broad
groups, i.e. manufacturing and non-manufacturing, and manufacturing
has 21 NAICS 3-digit subsectors while non-manufacturing is a single
sector. The data hierarchy therefore has a two-level asymmetric struc-
ture. In the China study, data at both national level and regional level
are collected. The energy consumption hierarchy is as follows: the na-
tional level industrial energy consumption consists of consumptions in
eight geographical regions, and for each region the industrial sector
has 27 subsectors. The data hierarchy therefore has a two-level sym-
metric structure. Further details about the data hierarchies and data
are given in Appendix C.

7.1. Decomposition results for the United States

Multiplicative LMDI-I and Eqs. (A.5), (A.7) and (A.11) are used to de-
compose the total US industrial energy consumption changes from1985
to 2004, i.e. from 16,212 to 17,471 trillion Btu. The results obtained are
shown in the bar chart in Fig. 4. The first four bars respectively show the
actual percentage change in aggregate energy consumption, and the
contributions to this change from three effects at the first level of the hi-
erarchy. Overall activity growth is the main contributor to the increase
in energy consumption. The small positive structure effect at this level
indicates a small shift in product mix from non-manufacturing to
manufacturing. The results also show substantial improvements in en-
ergy efficiency at the two-sector level. To proceed further, the energy in-
tensity effect at the industry group level (bar four) is treated as a
composite effect of two sub-effects computed at the NAICS 3-digit sec-
tor level. These two sub-effects give the impacts of changes in product
mix at the 3-digit sector level in manufacturing and changes in 3-digit
level energy intensities. Estimates of these two sub-effects are shown
in bar five and bar six in Fig. 4.

The advantages of applying the M-H model as shown above are as
follows. Contributions of the driving forces at the two disaggregation
11 For example, if a four-factorM-P decompositionmodel as Eq. (5) is restructured into a
M-Hmodel as Eqs. (8) and (9), the number of computational terms will be reduced from
24 (=4!) to 8 (=3! + 2!).
12 These two real cases are used to show the practical significance of theM-Hmodel be-
cause it is new in the literature. As to the M-P model, the practical significance has been
illustrated in many previous studies. For conciseness, we will not present and explain
the results given by the M-P model.
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levels are quantified and the linkages between effects and sub-effects at
the two levels are established. The analysis is conducted by taking the
non-manufacturing sector into consideration. Since the data for non-
manufacturing are given as a single aggregate, onemay treat it separate-
ly from the manufacturing sector and the asymmetric hierarchy can be
applied. TheM-Hmodel ensures that anymodifications to the classifica-
tion system at an intermediate level, for example by disaggregating the
non-manufacturing sector into subsectors such as agriculture, and
construction, will not affect the decomposition results obtained at a
higher aggregation level.

7.2. Decomposition results for China

Additive LMDI-I and Eqs. (B.1)–(B.4) are used to decompose indus-
trial energy consumption change from 1997 to 2007 in China, i.e. from
1060 to 2383 million tonnes of coal equivalent (Mtce). The decomposi-
tion results are summarized in Figs. 5–7. From Fig. 5, total energy con-
sumption increased by 1323 Mtce. Value added growth contributed to
an increase of 2016 Mtce at the national level. The marginal negative
structure effect shows that industry value added of the eight regions
grew at fairly consistent rates with the less energy-intensive regions
grew slightly faster than the other regions. The energy intensities de-
creased consistently in all the eight regions, and the results show that
without energy intensity improvement the energy consumption in
2007 would have been 658 Mtce higher. The regional energy intensity
effect can be further taken as a composite effect of two sub-effects at
the sectoral level of the industry hierarchy. The sub-structure effect
quantifies the impact of changes in the composition of industry sector
of the eight regions and their contributions to the national energy con-
sumption change. The sub-intensity effect captures the impact of energy
intensity changes of each of the 27 industrial sectors. From bar five and
bar six in Fig. 5, efficiency improvements achieved in various industrial
sectors in the eight regions led to a reduction of a total of 737 Mtce in
energy consumption, which is higher than the 658 Mtce estimated at
the higher aggregation level. The difference between the two estimates
is due to sector shifts within the industry in the eight regions which is
depicted in bar five. In other words, if the conventional single-level
decomposition at the sectoral levelwas conducted, the sub-structure ef-
fect would be canceled out by the negative regional structure effect and
would not be captured.

Using the M-H model, we can also split the sub-effects as shown in
Fig. 5 into the contributions of components at sub-category level. As a
result, the differences among the eight regions are revealed. The contri-
butions of the eight regions to the sub-structure effect and the sub-
intensity effect are shown in Figs. 6 and 7 respectively. The results
show that almost all the regions experienced activity shifts towards
more energy-intensive sectors, especially in the North Coast, Central
and Western regions. The only exception is the Northeast region
where “transport, storage, postal and telecommunications services”
and other non-manufacturing industries developed rapidly (Fig. 6).
Energy intensity of industrial subsectors decreased in all the regions
and as a result relatively large energy savings were achieved at the na-
tional level (Fig. 7).
8. Discussion and conclusions

We discuss the limitations of single-level decomposition in IDA ap-
plied to energy and study how multilevel analysis can help to address
these limitations. We introduce two multilevel decomposition models,
the M-P model and the M-H model, and study their features. The M-P
model, the multilevel decomposition model often used by researchers
in the IDA literature, adopts the same calculation procedure as conven-
tional single-level model. In contrast, the M-H model adopts a stepwise
decomposition procedure which is totally new in the IDA literature. To
extend from single-level to multilevel analysis using the M-H model,
modifications via transformations are needed to some popular IDA
methods. We further discuss the practical significance of the M-H
model and present real cases to illustrate.

A pertinent question that arises is that if multilevel data are avail-
able, which of the two multilevel models, the M-P or the M-H, is pre-
ferred. A direct answer to this question is that it depends on the study
objective and/or the analyst's own preference. From the discussion in
this paper, if the energy consumption data hierarchy is symmetric,
both models can be seen as improvements to the conventional single-
level IDA models, while if the data hierarchy is asymmetric, the M-H
model is recommended. The M-P model is easier to apply regarding
the effect estimation formost IDAmethods. If the objective is to conduct
the multilevel analysis with less computational effort, the M-P model
shall be preferred. An exception is the Shapley/Sun method where the
stepwise procedure used by theM-Hmodelwill help reducing the com-
putational effort.

The main difference between the two multilevel decomposition
models is the decomposition procedure adopted. With a parallel de-
composition structure, the numerical results given by the M-P model
are sensitive to changes in the data hierarchy. Even changes at a fine
level can affect the results of the explanatory factors defined at the ag-
gregate level. The hierarchical decomposition structure used by the M-
Hmodel, on the contrary, can provide consistent decomposition results
and changes in the data hierarchy will only affect the results of the ex-
planatory factors defined at relevant levels. Further discussion on
these two decomposition structures and the causes of their differences
are needed to clarify the preference of these two multilevel models.
These are possible research areas for further study.

The use of multilevel decomposition model will help to improve re-
sult presentation andusability. For example, Fisher-Vanden et al. (2004)
decompose China's energy intensity changes at six different levels of in-
dustry disaggregation. If the multilevel decompositionmodel was used,
the six sets of results could be integrated into a multilevel decomposi-
tionmodel in a hierarchicalmanner and be interpreted in amore coher-
ent way.Wu (2012) decomposes aggregate energy intensity of China at
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both the national level and regional level, and investigates the drivers of
changes at these two levels. Similarly, if the multilevel decomposition
model was applied, valuable information about industrial relocation in
the country would be revealed. Besides industry, multilevel decomposi-
tion analysis could also be fruitfully applied to other sectors of energy
usewhen sector classification ismore than one level or complicated. Ex-
amples of such studies are Mairet and Decellas (2009) for the service
sector, Papagiannaki and Diakoulaki (2009) for passenger transport,
and Hojjati andWade (2012) for the household sector. It is also possible
to incorporate the multilevel decomposition model to track economy-
wide energy efficiency trends where currently the single-level decom-
position model is the norm for studies conducted by most countries
and international organizations.

Application of the multilevel decomposition model is not limited to
obtaining the hierarchical structure effects studied in this paper. It is ac-
tually a general decomposition technique that can be applied to decom-
pose any aggregate with multiple disaggregation levels. For example, it
can be used to study the impact of fuel mix change and factors contrib-
uting to changes in energy-related greenhouse gas emissions. Examples
for such studies where it can be applied are Steenhof (2006), Lescaroux
(2008), and Hammond and Norman (2012). In addition, analysts have
recognized the need to investigate emissions from electricity consump-
tion using a two-stage analysis. See, for example, Nag and Kulshreshtha
(2000) and Lu et al. (2012). Electricity as an energy source is at the same
time a product of energy service.With this special property, its emission
coefficient in IDA can be further decomposed to give effects linked to
electricity generation.13 This is an application that can be achieved by
using the stepwise property of the M-H model.
13 See Steenhof and Weber (2011) for an example of explanatory effects linked to elec-
tricity generation.
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