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Computation offloading is a protuberant elucidation for the resource-constrained mobile devices to
accomplish the process demands high computation capability. The mobile cloud is the well-known
existing offloading platform, which usually far-end network solution, to leverage computation of the
resource-constrained mobile devices. Because of the far-end network solution, the user devices ex-
perience higher latency or network delay, which negatively affects the real-time mobile Internet of
things (IoT) applications. Therefore, this paper proposed near-end network solution of computation
offloading in mobile edge/fog. The mobility, heterogeneity and geographical distribution mobile devices
through several challenges in computation offloading in mobile edge/fog. However, for handling the
computation resource demand from the massive mobile devices, a deep Q-learning based autonomic
management framework is proposed. The distributed edge/fog network controller (FNC) scavenging the
available edge/fog resources i.e. processing, memory, network to enable edge/fog computation service.
The randomness in the availability of resources and numerous options for allocating those resources
for offloading computation fits the problem appropriate for modeling through Markov decision process
(MDP) and solution through reinforcement learning. The proposed model is simulated through MATLAB
considering oscillated resource demands and mobility of end user devices. The proposed autonomic deep
Q-learning based method significantly improves the performance of the computation offloading through
minimizing the latency of service computing. The total power consumption due to different offloading
decisions is also studied for comparative study purpose which shows the proposed approach as energy
efficient with respect to the state-of-the-art computation offloading solutions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

to meet the computation demands of such type of mobile devices
and applications the outsourcing of computation is the demand in

The massive growth of mobile devices (e.g. smart phones, lap-
tops, tablet pc’s, mobile [oT’s and automobiles) and their compu-
tation demands imposed a huge scarcity in communication net-
work and computation resources. Some of the application services
e.g.image processing and real-time translation services require ex-
tensive computation, the resource-constrained mobile devices are
not the feasible domiciles to process those applications. Therefore,
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need.

Computation offloading is a relocation mechanism of processes
or modules of software applications or systems from resource-
constrained devices to the resource-rich platforms. Mobile cloud
is the well-known platform for computation offloading of mobile
devices. Mobile cloud computing is becoming a popular method
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for mobile services e.g. mobile video games, video streaming, ed-
ucation, social networking, messenger and mobile healthcare ser-
vices [1].

However, the key barriers to offloading computation in mobile
cloud are the network bandwidth and latency. Data travels a longer
hazardous path from mobile device to the mobile cloud during
offloading and thus consumes huge network bandwidth [2]. The
bandwidth scarcity, and internet bottlenecks and traffic conges-
tions are the catalysts for the higher latency of offloading compu-
tation. Real-time applications are highly latency sensitive and thus
it requires to compute data in a close proximity of mobile devices
or users. So, mobile fog can be the effective and suitable platform
for offloading mobile computation.

Fog computing [3] is introduced by Cisco Systems Inc. to extend
the cloud computing paradigm to the edge of network especially
for Internet of Things (IoT) services. Mobile Fog is the complemen-
tary model of fog computing especially prototyped for seamless
and latency-aware mobile services [4]. However, the key research
questions for offloading computation in mobile fog are (1) How
to offload computation in the mobile fog? (2) Which module or
process of mobile application should offload? (3) Where to of-
fload the module or process for minimizing the latency of service
computing? Moreover, the mobility, heterogeneity and geograph-
ical distribution mobile devices impose additional challenges of
computation offloading in mobile fog. This research contributes to
finding the answer to the above questions. The key contributions
of this research are as follows.

e A code offloading framework is proposed for computation
offloading in mobile fog environment. The code analyzer unit
of the framework determines which basic blocks of the code
are computation hungry and subject to offload.

e A deep Q-learning [5] based computation offloading method
is proposed for the autonomic management of massive of-
floading request. The trained code offloader unit of the pro-
posed framework takes the offloading decision considering
resource demand, resource availability and network status to
minimize the latency of service computing.

e The performance of the proposed model studied through sim-
ulation. The performance gain in terms of latency and energy
efficiency justifies the dominance of the proposed autonomic
offloading model.

Rest of the paper is organized as follows. In Section 2, we
discussed the related works. The system model of mobile fog is
presented in Section 3. The deep Q-learning based autonomic code
offloading method in mobile fog is illustrated in Section 4. We
presented the simulation and performance study results in Section
5. Finally, we concluded the paper in Section 6 with some future
directions.

2. State-of-the-arts computation offloading methods

Mobile fog interplays with tradition cloud to access its huge
computational resources. Thus, this section discussed state-of-the-
arts resource provisioning methods of legacy cloud computing
paradigm. Afterwards, the pioneer works on computation offload-
ing in the mobile cloud are discussed in this section.

The elasticity and scalability of cloud computing are achieved
through virtualization of cloud resources. The resources of cloud
data centers are managed through VM configuration and place-
ment methods. The optimized placement of virtual machines in
cloud brokering architecture is proposed in [6]. The paper pre-
sented very detail architecture of cloud service broker. The opti-
mized selection of virtual resources of cloud brokers through cloud
scheduler was one of the primary objectives of the paper. The

holistic approach, OPTIMIS, is proposed in [7] to optimize the ser-
vice lifecycle of cloud service provisioning. The paper introduced a
toolkit for reliable, sustainable and trustful service provisioning.

The cost-effective deployment of computing clusters in multi-
cloud infrastructure is presented in [8]. They provided analysis
on the viewpoint of performance and cost. The proposal is only
for loosely coupled many-task computing (MTC) applications. The
proposal overlooks tightly coupled MTC applications, where facts
are highly interdependent and synchronization among the compu-
tational units is necessary.

The optimal allocation of computing and networking resources
in cloud computing networks is proposed in [9]. The authors of
this paper used mixed integer programming to formulate opti-
mal networked cloud mapping problem. In the proposal, the au-
thors modeled cloud request as undirected graph of virtual nodes
and virtual network links and then allocate QoS-aware virtual
resources according to networked cloud request.

Energy-aware resource allocation and provisioning methods
are discussed in [10]. They proposed a green cloud architecture
with power model, VMs placement and migration algorithm. The
proposal is fully devoted to power-aware policy development by
minimizing the migration of VMs among multi-cloud infrastruc-
ture.

A joint or coordinated VM resource provisioning and main-
tenance scheduling method is proposed by the authors of [11].
They formulated the problem as an Integer Linear Programming
problem and then transformed it into an equivalent problem to
obtain linear programming relaxation solution, then they apply
LIST rounding algorithm towards a final approximate solution.
CoTuner [12] is the model-free reinforcement learning based VM
configuration framework. It can configure VM’s on the fly with
changing workloads.

In mobile cloud computing, most of the pioneer works proposed
the VM migration mechanism in a surrogate cloud server. The
cloudlets [13] are the trusted, resource-rich and nearby computing
box to offload mobile data for extensive processing. Cloudlet is
well-connected to the central cloud through internet and it is con-
sidered within one hop communication range of mobile devices.
The cloudlets are also called the little clouds, which act as the
surrogates of centralized mobile cloud to process latency sensitive
application services. The adjacent cloudlets are connected with
each other through mesh connectivity [ 14] and can communicate
and migrate virtual machines (VMs) with one other to support
mobility. Each cloudlet is connected with centralized mobile cloud
to fetch, store, and process necessary data through VM placement.
The physical servers of host mobile cloud and cloudlets are placed
in the fixed geographical locations but because of the arbitrary user
requests and resource requirements the states of VMs change dy-
namically. The cloudlets are placed usually in coffee shops, subway
stations and other public places. The dense deployment of cloudlet
requires a huge investment.

CloneCloud [15] proposed a solution of offloading computation
in cloud servers by introducing an automatic application parti-
tioner, which portioned the mobile application at runtime and
deploys it onto device clones in the computational cloud. The
communication latency and VM formation cause jitter in latency-
sensitive applications. The mobility of mobile users is ubiquitous
and thus we need more efficient solutions which ensure seamless
mobile services.

MobiCloud [16] proposed the Mobile Ad Hoc Networks (MAN-
ATs) as the mobile cloud computing units, where each of the mobile
nodes acts like the service node. Every service node is mirrored
in virtualized cloud servers to provide secure service architecture.
Scavenger [17] is the mobile cyber-foraging system to offload
resource intensive jobs. The framework provides an opportunity
to offload computation to nearby surrogate devices.
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Fig. 1. The system model of mobile fog for computation offloading.

Execution offloading in mobile cloud computing is discussed
in [18]. The authors’ of this paper, proposed an effective way to
offload useful heap objects and partial stack in the run-time of
application. ThinkAir [19] proposed, a method level computation
offloading mechanism for mobile cloud computing. The framework
has the capability of dynamic adaptation and dynamic scaling of
computational power.

In contrast to above methods, we propose deep reinforcement
learning especially deep Q-learning based basic block offloading
mechanism in mobile fog. The autonomic management of offload-
ing jobs while ensuring the low latency and energy efficiency in
service computing makes this proposal novel in its approach and
contribution.

3. System model of mobile fog computing

Mobile Fog is the complementary model of fog computing espe-
cially prototyped for seamless and latency-aware mobile services.
The system model of the mobile fog is presented in Fig. 1. The pre-
sented system model is derived from the hierarchical architecture
of LTE (long-term evolution) 3GPP (3rd Generation Partnership
Project) and Wi-Fi (wireless-fidelity) internetworking reference
model [20].

In this architecture, the mobile fog is created on the edge of the
networking modules. We consider the access point (AP) and the
access point controller (APC) units as the fog nodes of mobile fog.
In addition to its regular responsibilities i.e. local authentication of
mobile stations, the evolved Packet Data Gateway, (ePDG) module
acts as the root of the mobile fog and responsible for inter fog
communication. In other words, ePDG is the collaboration unit of
the mobile fog which resides in Evolved Packet Core (EPC). In this

architecture, AP is not only responsible for providing connections
between mobile stations (STA) and IP networks but also having
sufficient storage, processing, I/0 and networking capability to
provide mobile cloud services e.g. 1aaS, PaaS, and NaaS etc. We
consider IEEE 802.11 WLAN interface between STA and AP, and
IEEE Ethernet interface between AP and APC.

Similar to the AP, the APC is not only responsible for commu-
nication handovers but also responsible for code block migration
to support stations mobility in mobile cloud and having sufficient
storage, processing, I/O and networking capability to provide mo-
bile cloud services as well. Therefore, the APC are also considered
as the fog network controller (FNC). The upward and downward
entities are interfaced with IEEE Ethernet interfacing standards.
In Fig. 1, the fog enabled AP and APC are symbolized as F-AP
and F-APC. The 3GPP AAA (3rd generation partnership project’s
authentication, authorization and accounting server) is responsible
for global authentication of mobile stations of a mobile fog through
EAP—AKA (Extensible authentication protocol—authentication and
key agreement) over IKEv2 (Internet key exchange protocol ver-
sion 2) as obtaining authentication vector from home subscriber
server (HSS) unit of LTE network. We assume the Diameter as
the AAA protocol in our mobile IP-based networks [21]. The P-
GW (Packet data network-gateway) enables packet data network
(PDN) access for user equipment’s (UE)or STAs and also responsi-
ble for inter ePDG virtual machine (VM) migration in mobile fog
computing. Public cloud is the traditional service delivery network
of scalable, ubiquitous and pay-as-you-go services which can be
accessed through the internet from static and mobile devices. If
necessary, the mobile fog can utilize the required everything as a
service (XaaS) of public cloud e.g. to leverage computational loads,
to process latency-insensitive data, to archive transactional history
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Fig. 2. The code offloading framework for offloading computation.

etc. The mobile fog can also interplay with public cloud to deliver
cost-effective, ubiquitous and scalable mobile services.

4. Deep Q-learning based autonomic computation offloading

This section discusses the approach of offloading computation
in mobile fog based on the system model presented in Section 3.
The basic block [22] migration policy is used through mobile agents
for offloading code from resource-constrained mobile stations to
resource richer mobile fog. The programming code is partitioned
into code generation and optimization unit of F-APC and deployed
in different F-AP and also in different F-APC. According to the flow
graph[22-24] of the generated codes, the basic blocks are executed
on various fog nodes, where independent basic blocks are executed
in a parallel fashion. To balance loads of different fog nodes, the
basic blocks are migrated in different nodes within the same fog
or in neighboring (or distant) fog. The communication among the
mobile fogs is controlled by the ePDG node but offloading and
migration performed through the tunnel between the F-APC nodes
to support mobility of the mobile stations. The basic blocks can be
migrated through ePDG node in a distant mobile fog for load bal-
ancing and load sharing. The basic blocks are synthesized together
in case of necessary docker-container deployment in public cloud.

4.1. Code offloading framework

The traditional mobile devices have no built-in framework for
offloading computation. Therefore, a middle-ware is required on
top of the smart-devices operating system to perform code of-
floading. The proposed code offloading framework is presented
in Fig. 2, where the compiler translates the high level language
of applications to machine understandable form. The front end
performs syntax and semantic analysis, and also generates inter-
mediate codes. The back end of the compiler generates byte code,
groups the independent byte code syntax to form basic blocks and
prepares the flow graph from the basic blocks as shown in Fig. 3.

It is assumed that for the first time the application executes on
the host smart device to collect the run time statistics through ex-
ecution analyzer module. The execution analyzer module prepares
a table of usage resources and execution time of each basic block as
shown in Table 1. The application manager assigns Application ID,
Method ID and Block ID of each basic block. The execution manager
also keeps the record of average memory usage, CPU utilization
and execution duration and also number of times the basic block
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Fig. 3. The flow-graph of an example problem (i.e. the simulated example for
performance analysis) with 6 basic blocks, where register values of block b1 is used
by block b3 and b4. Then register values of block b2 is used by block b6 and so
on. The blocks are grouped into 5 compatible sets i.e. those blocks are completely
independent and feasible for parallel execution.

executes in a single run. Moreover, it also defines a basic block as
not offloadable (i.e. set the offloadable flag 0) if the block requires
dedicated peripherals from the smart devices (e.g. smart devices
camera) during its execution.

The code offloader module is responsible for offloading the
codes to nearby Fog nodes. The availability of Fog nodes are re-
alized through network manager. It only offloads the offloadable
basic blocks if necessary. If the average CPU and memory utilization
of the basic block is less than the available memory and CPU then
application manager executes that basic block on the host smart
device. Otherwise it determines the expected execution time of
host processing (i.e. EETy) based on the available memory and
CPU of the host smart device. Then it also requests F-APC for the
expected execution time of Fog processing (i.e. EETr) based on the
available memory and CPU and link bandwidths of the mobile Fog
by sending the history of CPU and memory usage of hosts while
the block processed initially in the host. Then the code offloader
compare these two expected execution time results i.e. EETy and
EETr and make the offloading decision if EETr < EETy.Additionally,
code offloader performs Breadth First Search (BFS) on the flow
graph of back end compiler and find out the independent blocks
of same depth and offloaded in mobile Fog for parallel execution.

To support the mobility of both mobile stations and Fog nodes,
the basic blocks are migrated in different nodes within the same
Fog or in neighboring (or distant) Fog. The communication be-
tween two mobile Fogs is controlled by the ePDG node but offload-
ing and migration performed through the tunnel between the F-
APC nodes to support mobility of the mobile stations. The basic
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blocks can be migrated through ePDG node in a distant mobile Fog
also for load balancing and load sharing purpose.

4.2. Markov decision process for deep Q-learning model

As presented in the system model of mobile fog in Fig. 1, the
mobile fogs are geographically distributed. The distributed fog
network controller (FNC) or F-APC scavenging the available fog
resources i.e. processing, memory, network to enable fog com-
putation service. The randomness in the availability of resources
and numerous options for allocating those resources for offloading
computation fits the problem appropriate for modeling through
Markov decision process (MDP) and solution through reinforce-
ment learning.

According to the system model, three different sites are con-
sidered as feasible platform for offloading computation (1) the
mobile fog in close proximity of end user devices, i.e. site Ly (2)
the adjacent mobile Fog (or distant mobile Fog) to handle mobility
and load balancing issues, i.e. site L, (3) the remote public cloud to
manage huge traffic and computing requirements and archiving,
i.e. site L3.

Intuitable, the deep Q-learning agent will find the best suitable
place for offloading computation among the three feasible sites.
Therefore, the possible action space A of the learning agent can be
defined as (1) ay: offload in location L; (2) a,: offload in location
L, (3) as: offload in location L3 (4) a4: migration from L; to L,
(5) as: migration from L, to L, (6) ag: migration from L; to L3 (7)
az: migration from L3 to L; (8) ag: migration from L, to L3 (9) ag:
migration from L3 to L, (10) a;o: migration within L. So, there are
total 10 possible actions the learning agent can perform.

Now, the state space S for the learning agent can be defined
as the vector of memory, processing, and networking bandwidth
capability of the mobile fog. The fog network controller (FNC) or
F-APC holds the learning engine and scavenging the available fog
resources in a defined time slot. So, the state space can be repre-
sented as S = sy, S, ..., S, Where s; = (mem;, cpu;, band;),i =
1...n

In the considered environment, a particular learning agent does
not have the knowledge of global state space i.e. state spaces of all
other mobile Fogs; the agent only has the knowledge of its local
state space. The agents can communicate and collaborate with each
other to offload basic blocks in a best suitable mobile fog or int the
public cloud.

4.3. Reward function and deep Q-learning based computation of-
floading

The primary goal of the computation offloading is minimiz-
ing latency of processing each of the basic blocks, which mainly
depends on the available processing and memory capability of a
mobile fog node and the communication bandwidth. While the
offloading request placed to the fog network controller (FNC), it
should be on the request queue of the mobile fog. The FNC de-
termines its processing capability by observing its state space and
estimate the expected response time through queueing theoretic
analysis.

To determine the estimated response time to process the basic
block, the M/M/1/K queueing model is considered. According to
the queueing model each of the fog nodes has a single server, the
maximum number of blocks it can process is K including one under
service, the arrival rate ¢ of processing request follows the Poisson
distribution, and the service time u follows the Exponential dis-
tribution i.e. inter-arrival and service time has memoryless prop-
erty. Therefore, according to the queueing theory [3] the expected

response time E[T] of a fog node in L is shown in (1).

BT, = N (1)
¢ (1—Py)

Where, expected number of blocks on the fog node E[N] and

steady-state distribution or stationary probability of finding K

blocks on the queue Py, and the probability of busy fog node p, and

the probability of zero basic blocks on the queue Py can be defined

as in the following Egs. (2), (3), (4), and (5).

(%) <] —(K+1) (%)K +K (%)Kwﬂ)

RENCOIEES

P, = P koK (3)
Yoot T

Php=1-p (4)

p=2 (5)
"

If the learning agent considers to deploy a basic block in location
L,, that is in adjacent or remote mobile fog then the considered
queueing model is M/M/c /K, where c is the number of servers in
other fogs. The expected response time E[T] of a fog node in L, can
be determined through (6).

E[u] + p(1 — Px)
o(1—Pg)

Where, expected queue length E[u] of a mobile fog in L,, and
steady-state distribution or stationary probability of finding K
blocks on the queue Pg, and the probability of busy fog node p,
and the probability of zero basic blocks on the queue Py can be
defined as in the following Egs. (9), (7), (5), and (8). Here, I, 5 is
the communication latency between Ly and L.
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If the learning agent considers to deploy a basic block in loca-
tion L3, that is in public cloud, the considered queueing model is
M/M/c /oo, where c is the number of servers in public cloud, and
unlimited buffer size. The expected response time E[T] of a cloud
node in L3 can be determined through (10).

Z OCI Ck c +ll3 (10)

Where, the probability of zero basic blocks on the queue is Py, and
the utilization factor p, can be defined as in the following Eqs. (5)
and (11). Here, I; 3 is the communication latency between L; and

s =+ (C —p) “
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Table 1
History of resource usages per basic block.
Application Method Block Memory CPU Execution Number of Offloadable
ID ID ID (K) (%) Duration Execution
(ms) (times)
A0001 MO001 b0001 2790 07 152 5 1
A0001 MO001 b0002 1564 05 143 4 1
A0001 MO001 b0003 253 01 14 25 1
A0001 MO001 b0004 10,342 34 918 24 1
A0001 MO000 b0001 276 01 19 1 0
A0001 MO000 b0002 418 02 72 1 0
Ls. Table 2
. Simulation parameters of deep Q-learning based computation offloading.
1o c N Sites Parameters Values
Po=(3" Ly~ (11) _
AN T (1 _ E) Mobile stations Total number 30
i=0 ¢ Memory per node 1GB
Thus, the estimated response time E;; can be determined Processor 900 MHz
through (]2) Bandwidth 100 MbpS
Fog nodes Total Number 8
E[N] Memory per node 16 GB
1—="Pe)’ Processor 1.6 GHz
¢ ( . ) Bandwidth 1Gbps
If i={1,5,7,10} wherea; e Aands; € S Average hops 2
Cloud nodes Total Number 1 of 8 VMs
Elu 1—P
M + ly.2; Memory per VM 64 GB
Eij= é(1— P) (12) Processor 2.44 GHz
’ If i=1{2,4,9} wherea; € Aands; € S Bandwidth 10 Gbps
Average hops 13

1 1 > o
=+ P
wo p(c—p) ; *cl(ck)

+ 35

If i={3,6,8} wherea; c Aands; €S

While determining the response time of offloading computa-
tioninLq, L, or L3. The learning agent should learn where to offload
for quicker response time. For every best placement i.e. offloading
the agent is rewarded with R(s;, a;) as in (13).

E
R(sj. @) = —— — Py (13)
Elv.l
E. .
L If Eij > Esia
Pga = { Esia (14)
0; Otherwise

The learning agent will receive punishment Ps;4 for the violation
of service level agreement of response time as in (14), where
Esi4 represents the threshold of response time as service level
agreement.

To train the learning agent, the Q-learning approach is used,
which is in the family of reinforcement learning. Therefore, the
agent tries to explore the environment (here, the state space, S) and
perform different actions from the action space A and observing
the reward. As per the characteristics of reinforcement learning, in
respect to the state space, the agent tries to perform the similar
action if the agent receives reward and try to avoid those actions
which causes it to pay penalty. The Q-learning worked as state-
action pairs Q(s;j, a;) and it learns optimal policy without knowing
the internal probabilistic model. Then based on the learning i.e
based on the Q-table it can perform best action to the environment
by using optimal policy. So, finding the optimal policy is the goal
of the agent. However, optimal policy derived from Q-values, and
therefore approximating Q-value is the key function of policy def-
inition.

As the state space of computation offloading is vast. The pos-
sible combination of memory, CPU and bandwidth configuration
are huge especially considering the fractional quantities. Therefore,

the deep Q-learning model is applied to approximate Q-values and
minimize the temporal difference (Ty) in (15).

Ta(ar, st) = R(s¢, ar) + v Taf Q(st41, A1) — QUse, ar) (15)
t+

Where, R(s;, a;) is the reward for current action can be determined

through (13); Q(s;, a;) is the current Q-value and Q(S¢+1, Gr+1) iS

the future Q-values with discount factor y. The applied deep Q-

learning model is presented in Fig. 4.

5. Performance evaluation

The performance of proposed computation offloading in mobile
Fog is evaluated through simulation study. In the simulation topol-
ogy, two adjacent mobile Fogs are connected and each of mobile
fog contains one FNC or F-APC and three F-AP Fog nodes. Both of
the Fog nodes are connected to the cloud node with eight VMs.
We mostly focus on two performance criteria: response time and
energy consumption. The simulation parameters are presented in
Table 2. The flow graph of our studied benchmark applicationi.e. N-
queen problem is presented in Fig. 3. The resource usage history of
the N-queen problem is also presented in Table 1, where the value
of Nis 4.

Fig. 5 shows that smart phone takes longer time to process
the benchmark application, whereas the mobile fog takes shorter
time to place the Queens on the board. The cloud also takes less
time to process the solution because of the execution power of
cloud servers. It shows that computation offloading is sutiable
for faster processing. Fig. 6 shows the energy consumption break
downs of different computing environment. Without offloading
data the processor, display unit and other peripherals of smart
phone consumes huge energy. That is, they consume much energy
which may degrade the mobiles battery life. In contrast, cloud and
fog can compute without display and with low power consumption
unit. Fog consumes lowest energy because of the closest proximity
of fog nodes reduce the radio energy consumption.



Log(Response Time(s))

State space S vector as input

M.G.R. Alam et al. / Future Generation Computer Systems 90 (2019) 149-157

Input Layer
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to 4 queens puzzle are not suitable for computation offloading because of low
computational load.
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Fig. 6. The log-normal energy consumptions of different computing models to
generate outputs for different number of Queens of N-Queen puzzle.

The response time of remote cloud is always higher than the
response time of mobile fog because mobile fog is nearer to the
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Fig. 7. Comparative study with existing benchmark solution of mobile cloud com-
puting. ThinkAir deployed up to 8 colons to solve the 8-Queen problem, whereas
Mobile Fog deployed 8 fog nodes to solve 8-Queen puzzle.
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Fig. 8. Parallel execution of offloaded computation reduces the energy consump-
tion both in ThinkAir and Mobile Fog computing.

mobile stations and remote cloud is generally far from the mobile
devices. Another important aspect of our proposed basic block
offloading mechanism is the ability of parallel execution. ThinkAir
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[19] also executed different methods concurrently, but our offload-
ing mechanism can execute the insider basic blocks of a method in
a parallel fashion. Thus basic blocks have more parallelism options,
which leads lower response time and lower energy consumption as
shown in Figs. 7 and 8.

6. Conclusion

The proposed deep Q-learning based code offloading method
leverage the mobile cloud computing. As it is a multi-agent based
distributed method, agents learn from the environment through
reinforcements. The offloading method deploys basic blocks in
compatible fog nodes to support parallelism. The experimental
results show the improved performance of the proposed offload-
ing method in respect to execution time and latency and energy
consumption.
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