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ABSTRACT
The move towards high-performance computing (HPC) ap-
plications comprised of coupled codes and the need to dra-
matically reduce data movement is leading to a reexami-
nation of time-sharing vs. space-sharing in HPC systems.
In this paper, we discuss and begin to quantify the perfor-
mance impact of a move away from strict space-sharing of
nodes for HPC applications. Specifically, we examine the po-
tential performance cost of time-sharing nodes between ap-
plication components, we determine whether a simple coor-
dinated scheduling mechanism can address these problems,
and we research how suitable simple constraint-based opti-
mization techniques are for solving scheduling challenges in
this regime. Our results demonstrate that current general-
purpose HPC system software scheduling and resource al-
location systems are subject to significant performance de-
ficiencies which we quantify for six representative applica-
tions. Based on these results, we discuss areas in which ad-
ditional research is needed to meet the scheduling challenges
of next-generation HPC systems.

Categories and Subject Descriptors
D.4.7 [Operating Sytems]: Organization and Design; C.5.1
[Computer System Implementation]: Super (very large)
computers; C.1.2 [Multiprocessors]: Parallel Processors

Keywords
Scheduling, time-sharing, performance

1. INTRODUCTION
System software stacks for next-generation high-perfor-

mance computing (HPC) systems face a range of schedul-
ing and resource allocation problems due to changes in ap-
plications and hardware. For example, large-scale scien-
tific applications are beginning to perform simulation and
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analysis concurrently instead of sequentially. Also, hard-
ware memory and network bandwidth restrictions and po-
tential system power caps motivate the need to minimize
data movement and power down unneeded hardware com-
ponents whenever possible.

Together, these constraints are leading to a reexamina-
tion of the strict spatial allocation of HPC nodes to single
application codes. New usage models attempt to co-locate
related functional components onto single node in order to
avoid data movement and meet power budgets [6]. Recent
research has also demonstrated the potential of time-sharing
processors between related application and analytics codes,
provided they are appropriately scheduled [30].

As an example of this trend, consider the exploratory a-
nalytics application [6] shown in Figure 1. Each portion
of the coupled-application in this example runs in its own
enclave, a set of system resources allocated to an applica-
tion [2]. In this example, Enclave 1 is a simulation enclave
with components running on nodes 1 and 2, and Enclave 2
contains an analysis code co-located with Enclave 1 in node
1. Each enclave has its own Enclave OS (EOS) that provides
a runtime customized to its needs. The underlying node op-
erating system allocates resources to each enclave running
on the node, potentially based on information provided by
a higher-level system-wide resource allocation system. The
higher-level component is similar to the provisioner used in
modern cloud computing systems to partition a node be-
tween virtual machines. Efficient operation depends on all
three components (system, enclave, and node-level operating
systems) managing complex hardware and application fea-
tures including the impacts of limited memory bandwidth,
frequency and voltage scaling, and system power caps.

Figure 1: Example. Exploratory analytics applica-
tion

Neither current HPC nor Cloud scheduling systems ad-



Figure 2: Different resource allocation approaches

dress many of the scheduling and resource allocation prob-
lems presented by this example. Existing HPC resource al-
location is generally space-shared, with each enclave mapped
to its own node. In addition, current HPC and Cloud sys-
tems generally support limited scheduling policies even though
NUMA constraints and power caps are increasingly impor-
tant. Finally, while some Cloud software systems share
nodes using hardware virtualization techniques, these sys-
tems fully isolate virtual nodes from one another, and are
not designed for cooperative scheduling between virtual ma-
chines or cross-node gang scheduling techniques.

In this paper, we provide the first evaluation of the po-
tential performance impact of each of these scheduling chal-
lenges by assessing them on six representative HPC applica-
tions. Specifically, we characterize the new scheduling chal-
lenges faced by exascale applications on time-shared systems
and provide a quantitative evaluation of the impact of those
challenges through experiments using a set of applications.
Finally, we discuss research challenges in scheduling that
must be addressed for emerging exascale architectures.

The remainder of this paper is organized as follows. In
Section 2, we provide additional background on the new
scheduling challenges faced by exascale systems. In Section
3, we begin to quantify the potential impact of these chal-
lenges in three areas: the cost of uncoordinated time-sharing
on HPC application performance, the viability of node-level
coordinated scheduling to address these costs, and the abil-
ity of recently-proposed quadratic programmings to solve
the resource allocation problem. Based on these results, Sec-
tion 4 analyzes and discusses potential scheduling research
directions in exascale operating systems. Section 5 then dis-
cusses related work in this area, and Section 6 concludes.

2. NEW SCHEDULING CHALLENGES IN
EXASCALE SYSTEMS

In current HPC systems, resource allocation is space-shared.
For example, applications performing in-situ analytics fre-
quently use a subset of the entire compute node set for ana-
lytics. This leads to expensive data movement between sim-
ulation nodes and analytics nodes, as shown in Figure 2(a).
Even when the analytics portion is co-located on nodes with
the simulation portion, as shown in Figure 2(b), the OS
services required to support complex analytics may result in
OS noise that slows down application simulation [8]. Finally,
pure spatial partitioning of a node can result in excess data

movement between processors and NUMA memory banks in
the node.

These features have led to recent HPC system software de-
signs that propose using virtualization to separate the sim-
ulation OS from the analytics OS on the same node [6, 14].
Figure 2(c) shows this example. Similarly, researchers have
recently demonstrated that it is possible to cooperatively
schedule analytics and simulation on the same nodes with
minimal impact of the analytics on simulation [30].

The combination of these two techniques portend a ma-
jor change in scheduling and resource allocation for HPC
systems and present major scheduling challenges. In the re-
mainder of this section, we discuss the implications of these
and related trends to scheduling in HPC system software.

2.1 Efficient Node-level Resource Allocation
Co-locating and cooperatively scheduling multiple enclaves

within a single node complicates the already difficult prob-
lem of node-level resource allocation. In particular, the
scheduler must determine which enclave processes to place
on the same processor while simultaneously taking into ac-
count NUMA memory placement. The appropriate schedul-
ing criteria is also complex, involving energy and perfor-
mance tradeoffs, as well as power constraints.

Figure 3: HPCC random access benchmark perfor-
mance for different numbers of NUMA domains. 1-2
stands for one NUMA domain and two cores.

Various numerical optimization approaches have been re-
cently proposed as potential solutions. For example, re-



searchers have proposed using techniques from bin-packing
heuristics [28], genetic algorithms [22], and convex optimiza-
tion [4] to address this problem. Successfully solving these
problems, however, has proved troublesome and much of
the work described above has focused only on single appli-
cations, not more complex coupled codes.

To illustrate the importance of resource allocation in even
simple examples, we ran the HPCC Random Access bench-
mark [19] on the Susitna-PRobE machines [10]. For this
simple demonstration, we co-locate threads of a single ap-
plication. Figure 3 shows the results obtained from run-
ning the benchmark with different numbers of threads and
NUMA domains. In this figure, the x-axis shows the num-
ber of NUMA domains and the total number of CPUs used
to run the benchmark and y-axis shows the time to solu-
tion. These results show that the performance of even this
simple benchmark is highly sensitive to scheduling decisions.
For example, from the 64-threads test, we found that per-
formance is improved if we restrict the threads to a single
NUMA domain. For this case, performance is further im-
proved if we use just one physical core instead of eight. More
generally, this simple example shows the need of scheduling
frameworks that provide proper interfaces and mechanisms
to allocate resources to applications based on data locality
and resource contention behavior.

2.2 Efficient Intra-node and Inter-node Syn-
chronization/Coordination Mechanisms

Next-generation system software must perform in increas-
ingly complex environments where synchronization/coordi-
nation mechanisms may introduce new requirements between
node-level schedulers, as illustrated in Figure 2(c). For ex-
ample, codes that perform either intra-node or inter-node
communication may require gang-scheduling strategies to
minimize performance slowdowns associated with blocking
communication. Blocking collectives remain a stalwart of
HPC application design, and the growing scale of HPC sys-
tems potentially dramatically increases the need for tech-
niques to mitigate OS noise. This is particularly true for
dynamic applications that magnify OS noise when they be-
come load-imbalanced. To make matters worse, the com-
plexity and scale of emerging computer architectures are
leading to system resilience techniques that yield a large
amount of additional interference.

It is not clear if previous strategies [13,16,26,27] for sche-
duling synchronization-sensitive applications are sufficient
for solving this problem. Vsched [16], for example, uses an
Earliest Deadline First (EDF) scheduler-based approach [18]
to provide gang scheduling support; however, it does not
consider co-location with cooperative workloads, nor the dis-
similarity of utilization factors across the processors in the
gang.

2.3 Co-location of Cooperative Enclaves
In addition to coordinated scheduling across nodes and be-

tween cores within a node, efficient time-sharing of processor
resources will require careful scheduling of cooperating en-
claves. Recent work on co-locating analytics and simulation
in the Goldrush system [30], for example, has shown that co-
located analytics that are co-scheduled with simulation can
dramatically reduce simulation performance without special
measures. The Goldrush work addresses this at the applica-
tion level by explicitly yielding the processor between pro-

cesses running in the same operating system; introducing
multiple enclave OSes could significantly complicate such
efforts, and more general OS-level scheduling mechanisms
to support such systems (e.g., more general and usable than
user-driven SIGSUSPEND) are also very desirable.

3. IMPACT OF THE NEW SCHEDULING
CHALLENGES ON HPC APPLICATIONS
PERFORMANCE

We conducted a variety of experiments to understand the
scope of the challenges on HPC applications performance,
as well as to gain insight into the potential power of some
previously-proposed solutions. First, we examined a simple
numerical scheduling technique for node-level resource allo-
cation. We then examined the potential for traditional gang
scheduling techniques inside virtualized nodes, and how such
techniques translate to systems with cooperative schedul-
ing needs derived from co-located workloads. Each of these
experiments were conducted in the context of the Palacios
virtual machine monitor [14] using Linux as the host OS.

3.1 Numerical Optimization of Node-level Re-
source Allocation

Constrained optimization mechanisms have recently been
proposed as a potential technique for resource allocation in
HPC systems. Such techniques are attractive because they
can handle a range of optimization criteria and constraints.
When the optimization problem is convex, a wide range of
relatively inexpensive numerical techniques may be used to
solve these problems. When the problem is non-convex, ap-
proximation techniques can be used.

To provide an initial evaluation of the viability of such
techniques, we explored the use of constrained quadratic
programming (QP) to address processor allocation challenges
in HPC systems. The goal of Quadratic Programming is
to minimize a quadratic objective function with linear con-
straints [5]. We sought to use this technique to efficiently
map Palacios virtual cores running an HPC application to
the underlying NUMA domains, sockets, and cores.

3.1.1 Problem Formulation Process
We considered a number of possible formulations for the

underlying quadratic programs; convex quadratic programs
generally failed to encompass important aspects of the prob-
lem. Non-convex quadratic programs, in contrast, were able
to encompass all aspects of the problem, but were more com-
putationally expensive to solve (non-convex quadratic pro-
grams are potentially NP-complete to solve precisely).

In a first approach, we attempted to state our problem as
a convex quadratic program, as proposed in [4], which per-
mits fast and scalable solutions. Our optimization variable
was a vector that contains the percentage of a physical core
allocated to each virtual core. However, given the variety
of factors that must be considered in the objective function,
convexity can not be guaranteed.

A second approach relied on framing the problem as a non-
convex quadratic program. Since the optimization variable
takes real values, we observed that in some cases more than
one physical core was allocated to a virtual core–a solution
that is not suitable for our one-to-one mapping formulation.

Then, we formulated the problem as a binary quadratic
program, where the optimization variable is a vector which



express only mapping (as in [25]). This technique correctly
handles mappings of a single physical core to a virtual core,
avoiding the problem presented by the second approach.

3.1.2 Binary Quadratic Programming Problem For-
mulation

To reduce the scope of the problem, we formulated the
problem as a sequence of non-convex binary quadratic pro-
gramming problems, where each level of the problem mapped
virtual cores to a level of system resources. In the first level,
virtual machines (VMs) are mapped to sockets (SKs). In the
second level virtual cores (VCs) belonging to those virtual
machines are mapped to NUMA nodes (NMs). Finally, in a
third level of mapping, virtual cores previously mapped to a
NUMA node are mapped to physical cores (PCs). At each
level, we estimate the performance impact of interference
between co-located workloads and do not take in account
potential cooperative behavior.

Our QP formulation is inspired by Sheng et al. [25]. We
first defined constraints to ensure that a virtual core was
mapped onto precisely one physical core, and that the max-
imum utilization of

∀iεV
Np∑
j=0

xij = 1 (1)

∀jεP
Nv∑
i=0

Uijxij ≤ 100 (2)

where V is the set of virtual cores, P the set of physical
cores, Nv the number of virtual cores, Np the number of
physical cores, Uij indicates the percentage of physical core
j allocated to virtual core i (this is a real value between 0
and 100), and xij is set to 1 when virtual core i is mapped
into physical core j.

We then defined an objective function at each level that
mapped the result of the allocation to projected system per-
formance, based on expected VM and core interference if
mapped to the same socket, NUMA domain, or core. For
example, the objective function for mapping VMs to sockets
used was:

min

Nvm∑
u=0

Nvm∑
v=0

Nsk∑
s=0

Nsk∑
t=0

(IV MS(u, v)S(s, t))xusxvt (3)

where Nvm is the number of virtual machines, Nsk the num-
ber of sockets, IV MS(u, v) indicates the interference between
two virtual machines when allocated to the same socket,
S(s, t) is 1 if s = t or 0 otherwise, and xij is 1 if VM i is
mapped to socket j.

3.1.3 Performance Results
We solved this optimization problem using Matlab’s bi-

nary quadratic programming solver described in [3]. For
this experiment we used the Susitna-PRobE machines [10],
which contain 4 x86 AMD Opteron(TM) 6272 processors,
for a total of 64 cores and 8 NUMA nodes. These machines
ran Ubuntu 12.04 LTS. We used the Mantevo suite’s bench-
marks [11] MiniMD, MiniFE, HPCCG, and CoMD and run
8 VMs each one with 4 VCs. A coefficient of sensitivity
to interference was calculated for each memory domain (i.e.
socket, NUMA, physical core) by creating contention with
the sledge benchmark described in [20].

Our goal with these experiments is to determine how well
an approximate solution to this optimization problem com-
pares to a known-good solution in a simple case. If the
approximation cannot handle simple cases, it is unlikely to
perform well in more complex cases (e.g. with power, energy,
and bandwidth bounds). On the other hand, if this approach
is comparable to a hand-generated mapping in simple cases,
it may be promising to examine its ability to handle more
complex cases where what constitutes an “optimal” schedule
is much less clear.

Figure 4: Mini-applications performance when allo-
cated with the quadratic programming mapper.

Figure 4 shows the performance of the VMs mapped using
the quadratic programming mapper compared with a map-
ping with no contention. Except for VMs 0 to 2, the per-
formance of the mini-applications is very close to the ideal
case in which they run in isolation within a NUMA domain.
Performance degradation in the first three VMs is a result
of the mapping solution obtained, which is a local minima
solution, given to the non-convex nature of the problem.

Overall, these results demonstrate the potential viability
of using numerical optimization techniques to allocate re-
sources in HPC systems. An ideal mapping strategy is not
a feasible approach due to its calculation cost, but our QP
mapping approach achieves comparable performance while
remaining computationally feasible. The results also demon-
strate the challenges faced by these techniques. In particu-
lar, expressing scheduling problems in a way that fully en-
compasses the problem to be solved while remaining compu-
tationally feasible is challenging. New techniques emphasiz-
ing different formulations or different approximations that
achieve solutions that are “good enough” are potentially of
high impact.

3.2 Synchronization Mechanisms
Next, we implemented an EDF-based gang scheduler sim-

ilar to that proposed by vsched [16] in order to examine
its ability to schedule enclaves with synchronization/coordi-
nation demands. In this case, we mapped all virtual cores
which run the enclaves of the gang to different physical cores.



We use partitioned EDF schedulers on each logical core, in
order to offer gang scheduling capabilities. We set slice (S)
and period (T) for all the virtual cores running applications
of the gang to the same value.

Experiments were run on a Dell PowerEdge R15 machine
with two AMD Opteron(tm) 4170 HE processors. This ma-
chine has two sockets, each socket has a single NUMA do-
main and 6 (2100 Mhz) cores. We used four physical cores
for our experiments. For all the experiments, we launched
two virtual machines, each one with four virtual cores. Each
virtual core has a CPU utilization of approximately 38%.
We mapped each virtual core to a separate physical core
(cores 0 to 3) in NUMA domain 0. Thus, we mapped two
virtual cores to each physical core and they did not migrate
to other physical cores during the experiment. This setup
resulted in 76% utilization for each physical core. Figure 5
shows the topology used for the experiments.

For each run, we launched an instance of the same bench-
mark on both virtual machines, in this case using the Mini-
MD and the MiniFE applications from Mantevo suite [11]
and the FT, LU, SP, and BT of NAS benchmarks [21]. We
configured the MiniMD application with a problem size of 4
4 4, 3000 iterations and 256 atoms, the miniFE application
with 80*80*80 grid points, and we used class A versions of
NAS (NPB3.3) benchmarks. Each benchmark instance ran
four MPI processes in separate virtual cores.

Figure 5: Topology for gang EDF scheduler experi-
ments

As a baseline test, we ran the described benchmarks on
the Palacios VMM [14] using its default scheduler. Then, we
ran a second experiment using the EDF scheduler. In order
to avoid synchronization, we configured different values of
slices and periods for the virtual cores of each VM based on
equation 4.

V C0 =
S

T
= V C1 =

2S

2T
= V C2 =

3S

3T

= V C3 =
4S

4T

(4)

Notice that the utilization factor is the same for each phy-
sical processor. We will refer to this configuration as Asyn-
chronous EDF. In a third experiment, we used the same
values of slice and period for the virtual cores of the same
virtual machine, in order to force them to run at the same
time. We will refer to this configuration as Gang EDF.

For both EDF configurations, we set S to S = 50ms and
T to achieve the desired virtual core utilization.

Figure 6 shows the benchmark execution time normali-
zed to the time of the default Palacios VMM scheduler. It
shows the importance of a proper setting of the slice and

Figure 6: Performance improvement of gang EDF
implementation over the asynchronous EDF sched-
uler

period parameters: if these parameters are different for the
virtual cores in the VM (Asynchronous EDF), there was a
dramatic degradation in performance; if the slice and period
parameters are the same for the virtual cores in the gang
(Gang EDF), performance improved.

3.3 Co-location of Cooperative Enclaves
Finally, we conducted additional experiments to explore

the impact of co-locating an additional work to a gang-
scheduled core, simulating the effect of co-locating analy-
tics without cooperatively scheduling the workload to min-
imize interference. To do this, we added a third VM to the
gang scheduler experiment of Section 3.2; that VM runs the
HPCCG benchmark in a single virtual core, using only 9%
of the physical core. As a result, the utilization factor for
that processor was 85% while the utilization factors of the
other three processors remain 76%.

Figure 7: Performance degradation when a coor-
dinated workload is co-located with an additional
workload

The virtual cores that share physical core with the new
added virtual core did not experience missed deadlines, which
means that they still received their full CPU reservation.
However, the addition of a new workload affected the syn-
chronization of the gang-scheduled workloads. Figure 7 shows
the degradation in performance for the studied benchmarks.
The completion time is normalized to the completion time of
the benchmarks without the addition of the new workload.
Performance degraded for each application; the most sensi-
tive application was the BT benchmark which experienced



a 200% increase in runtime.

4. RESEARCH CHALLENGES
The results in Section 3 illustrate a number of important

research challenges that must be addressed for new exa-
scale scheduling architectures. In particular, the combina-
tion of time-sharing of cores, virtualization, and cooperative
scheduling presents difficult challenges on next-generation
architectures. In the remaining portion of this section we
discuss these scheduling challenges.

4.1 Workload Coordination/Synchronization
Mechanisms

The results of the previous section demonstrate both the
potential advantages of cooperative and coordinated schedul-
ing, as well as key challenges in that area. In particu-
lar, coordinated scheduling (whether for coupled codes or
co-located virtual machines) can make a dramatic perfor-
mance difference for HPC applications. However, coopera-
tive scheduling of these enclaves, where one enclave expli-
citly yields to another outside of the coordinated schedule,
can completely negate any benefits of simple coordinated
mechanisms. New mechanisms are needed that take into
account both cooperative and coordinated scheduling of co-
located HPC enclaves. Such mechanisms are difficult, how-
ever, because they must work cross-core or even potentially
cross-nodes.

Figure 6 demonstrates the potential for a vsched [16] tech-
nique to introduce helpful synchronization mechanisms to
coordinated workloads. However, co-located enclaves intro-
duce additional complexity such as uneven utilization fac-
tors across cores. Further research to reduce overhead and
improve scalability is needed. For example, the reduction
of timer interrupts and its synchronization across cores as
proposed in [12] has shown great promise. Moreover, low-
overhead global coordination mechanisms should be investi-
gated for inter-node aspects.

Figure 7 shows how the co-location of related workloads
hurts performance when their cooperation is not considered
by the scheduler. Additional mechanisms are needed in or-
der to consider these relationships, as well as the dynamic
nature on the performance requirements of these workloads.
For example, the node-level scheduler may adapt scheduling
parameters to provide tight synchronization when needed;
however, these changing conditions may cause some level of
overhead that should be studied.

4.2 Node-Level Resource Mapping Consider-
ations

Scheduling policies that can schedule co-located, cooper-
ative enclaves for next-generation HPC systems are needed.
While a number of authors have proposed constrained opti-
mization techniques for addressing some of these problems,
additional research is needed to realize this approach, both
in terms expressing realistic scheduling problems in these
frameworks, and in solving the resulting problems. In addi-
tion, cooperative scheduling techniques also impact schedul-
ing policy, as it influences the extent to which co-located
enclaves interfere.

The results shown in Figure 4 show that the resource al-
location problem formulated as a non-convex quadratic pro-
gramming problem generates high quality though subopti-
mal solutions to simple scheduling problems. The viability

of extending this formulation to more complex optimiza-
tion criteria and resource constraints is, however, an open
research question. Additional research is needed for more
complex application interactions (e.g. related simulation and
analytics workloads and gang scheduling), and express addi-
tional optimization constraints like node and system power
caps.

4.3 Power Concerns
Power management presents a wide range of problems

to HPC scheduling systems. Dynamic Voltage and Fre-
quency Scaling (DVFS) techniques influence both coordina-
tion within a core as well as complicated scheduling policy
decisions. For example, asymmetric DVFS decisions across
cores can potentially have large negative performance im-
pacts on coordinated scheduling. Similarly, scheduling pol-
icy on each core and across cores should also factor how
DVFS impacts application performance. Because DVFS can
impact the relative speed of the processor and memory sys-
tems, it could significantly impact any performance predic-
tions used for driving scheduling policy.

5. RELATED WORK

5.1 High-Level Policies Support
Ramant et al. in [23] present a framework which uses

ClassAds to define resource allocation policies on hetero-
geneous environments for workloads with co-location needs.
The grid computing solution, Globus Toolkit [9] defines mo-
nitoring and discovery functions, which enable reporting in-
formation about physical resources through query or sub-
scription mechanisms and use that information for discovery
purposes. These mechanisms are supported in web-service
based WSRF and WS-notification interfaces. Another lan-
guage used to express requirements of jobs assigned to phys-
ical resources used in grid environments is the Job Submis-
sion Description Language (JSDL) [1]. These works could
be used to define appropriate methods to express high-level
policies and translate them to short-term mechanisms.

5.2 Node-level Resource Allocation
Rao et al. in [24] propose a NUMA-aware, contention-

aware scheduler for virtualized systems. They use a me-
tric based in the cost of the remote memory accesses, which
is computed based on some hardware performance monitor
(PMU) metrics. The drawback of this approach is that they
must modify the guest kernel. Quadratic Programming ap-
proaches [4] propose a performance model which produces
fast incremental, optimal solutions. A solution based on
these approaches would permit the node-level resource al-
location strategies needed to support loose provisioning re-
quests.

5.3 Scheduling of Cooperative Workloads
Zheng et al. [30] attempt to run cooperative scientific

workloads by time-sharing resources. This approach effi-
ciently takes advantage of idle times of simulation work-
loads to run analysis workloads. It reduces contention, re-
duces data movement, and optimizes power consumption.
Although this approach does not consider cooperative ap-
plications running on different operating systems or virtual-
ized environments, the addressed problem is closely related
to our work.



Chang et al. in [7] propose an approach in which work-
loads are classified as I/O-intensive or CPU-intensive. In
high speed networks, where the costs of processing huge
amount of packets are elevated, I/O-intensive tasks may not
receive enough access to CPU resources, which are usually
allocated to CPU-intensive tasks. They propose a solution
in which CPU-intensive tasks voluntarily yield CPU cycles
to I/O-intensive tasks. Similar mechanisms could be imple-
mented in our approach in order to support scheduling of
cooperative workloads.

5.4 Gang Scheduling
Kato et al. in [13] propose a gang EDF scheduler for multi-

thread applications on multicore systems. In this approach,
they claim that all the threads of a multithread applica-
tion must be scheduled together. For that, they enhanced
the global EDF policy by scheduling the set of threads of
the same application at the same time, only when there are
enough physical cores available. When there are not enough
cores available, threads must wait for a time slice with suffi-
cient core availability. This approach may cause CPU frag-
mentation, priority inversion [15] and execution delay. In
order to solve these problems, Sukwong et al. in [26] pro-
pose a scheduler based built on top of KVM’s Completely
Fair Scheduler (CFS) in which sibling virtual cores are bal-
anced to different physical cores.

The VMWare’s relaxed co-scheduling [27] consists of a
non-strict co-scheduling of virtual cores plus some mecha-
nisms to reduce the skew of lagged virtual cores. It is im-
plemented on the top of a proportional share algorithm.

We consider that synchronized per-core real time schedu-
lers could improve these approaches. This enables real-time
deadline guarantees, minimum QoS levels and deal with the
co-location with cooperative applications through dynamic
adjustment of tasks’ reservation rates.

Bin Lin et al. in vsched work [16] present an approach
based on per-node EDF schedulers which provide gang sche-
duling mechanisms by setting the same slice and period va-
lues to all the applications in the gang. This approach is
optimal when space-shared resource allocation is used and
even works well under some degree of contention. Our ap-
proach attempts to solve the problem of workloads with syn-
chronization needs given time-shared CPUs with coopera-
tive workloads. This is a more complex problem where we
need to add further enhancements to EDF in order to meet
optimization goals of the set of workloads.

In our earlier work [12] we present a run-time system
based approach to avoid interference over large fine-grained
parallel applications generated by short-lived system tasks.
The run-time coordinates system tasks in order to run them
at the same time, which helps to decrease interference in
a meaningful way, allowing parallel applications to be co-
scheduled at precise times, which improve their performance
and scalability. This approach works for both inter-node
and intra-node cases. A similar approach may be adopted
to co-locate coordinated and cooperative enclaves. The use
of a real time scheduler like an EDF scheduler may help to
guarantee a more precise synchronization.

5.5 Real Time Scheduling
Bin Lin et al. in [17] propose periodic real time schedulers

running on local nodes, coordinated by a global controller
through feedback mechanisms. The global controller sets

the target execution rate for each application, and adjusts it
dynamically, based on the feedback received from the local
schedulers. The technique attempts to adjust the applica-
tion CPU utilization toward the target execution rate. This
approach is not focused on HPC environments, where work-
load requirements have a dynamically changing behavior.
Moreover, this model is inflexible in that it assumes nodes
with the same target utilization rate. As an improvement,
the provisioner could supply optimization policies and con-
straints and not specific execution rates; then the local node
schedulers could translate those high-level policies to short-
term scheduling mechanisms.

Zhang et al. in [29] present schedulability analyses of
hierarchically scheduled multi-core systems where real time
schedulers are used as local schedulers. Our approach uses
this concept in high performance virtualized environments
with complex performance goals and constraints.

6. CONCLUSION & FUTURE WORK
In this document we presented emerging scheduling cha-

llenges associated with large-scale high performance appli-
cations. We focused on the node-level mechanisms that new
frameworks must provide to schedule selected HPC appli-
cations. Among the forthcoming needs are the ability to
optimize performance or energy across complex exascale sys-
tems. We quantified the impact of the new scheduling cha-
llenges faced by extreme-scale systems. As future work, we
plan to investigate a set of scheduling challenges which in-
clude: How do we efficiently integrate cooperative and coor-
dinated scheduling across multiple nodes? Which coordina-
tion/synchronization mechanisms between node-level sched-
ulers must be provided by the new frameworks? How do
we efficiently handle high-level provisioning policies through
low-level scheduling mechanisms? What kind of interfaces
must be provided by the node-level schedulers to the provi-
sioner? Which metrics must be reported by the node-level
schedulers to the provisioner?
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