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Analytic queueing network models often assume infinite capacity queues due to the difficulty of grasping
the between-queue correlation. This correlation can help to explain the propagation of congestion. We
present an analytic queueing network model which preserves the finite capacity of the queues and uses
structural parameters to grasp the between-queue correlation. Unlike pre-existing models it maintains
the network topology and the queue capacities exogenous. Additionally, congestion is directly modeled
via a novel formulation of the state space of the queues which explicitly captures the blocking phase. The
model can therefore describe the sources and effects of congestion.

The model is formulated for networks with an arbitrary topology, multiple server queues and block-
ing-after-service. It is validated by comparison with both pre-existing methods and simulation results. It
is then applied to study patient flow in a network of units of the Geneva University Hospital. The model
has allowed us to identify three main sources of bed blocking and to quantify their impact upon the dif-
ferent hospital units.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Detecting the sources and effects of congestion within a net-
work allows us to better understand its behavior and to improve
its performance. The study of congestion is relevant in a variety
of sectors ranging from the analysis of spillbacks (i.e. the back-
wards propagation of congestion) in urban traffic or pedestrian
traffic (Cheah and Smith, 1994) to that of hospital bed blocking
(Koizumi et al., 2005) or prison cell blocking (Korporaal et al.,
2000).

The most common approach to analyze network congestion is
the development of simulation models that capture the details of
the underlying system. They are cumbersome to use within an
optimization framework. On the other hand, analytic models natu-
rally fit within such a framework but are rarely developed due to
the complexity of modeling the propagation of congestion while
preserving a flexible model. We focus on analytic models and more
specifically on analytic queueing network models.

When modeling a network using a queueing theory framework
it is crucial to capture the interactions between the queues. Con-
sider a network of hospital units (e.g. operative and post-operative
units) where each unit is modeled as a specific queue and where it
is the patient flow that is of main interest. For such a network
ll rights reserved.
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understanding the correlation between the occupation of the dif-
ferent units can help to avoid bed blocking and to improve a pa-
tients recovery procedure. More generally, the between-queue
correlation helps to explain the propagation of congestion as well
as its effects (such as spillbacks). Moreover, in networks containing
loops spillbacks are of special interest because they may lead to
deadlocks (also known as gridlocks) (Daganzo, 1996).

The most researched queueing network model is the Jackson
network model (Jackson, 1963, 1957) which assumes infinite
capacity for all queues. Infinite capacity is a strong assumption that
is often maintained due to the difficulty of grasping the between-
queue correlation of finite capacity networks. In order to capture
this correlation we resort to models with finite capacity queues.
The main challenge of such an approach lies in adequately grasping
this correlation while also maintaining a tractable model.

Exact finite capacity queueing network (FCQN) models exist
only for networks with two or three queues with specific topolo-
gies. For more general networks FCQN models are based on
approximation methods. Existing analytic FCQN models based on
approximation methods either revise queue capacities or vary
the network topologies. If queue capacities are revised then they
become endogenous parameters. Moreover, approximations need
to be used to ensure their integrality and their positivity is only
checked a posteriori. We propose an FCQN model which preserves
these parameters as exogenous.

Moreover, in this model congestion is not regarded as an under-
lying phenomenon but is directly modeled. More specifically, we
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propose a novel formulation of the state space of the queues that
explicitly models the blocking phase. Few analytic models incorpo-
rating blocking have been developed and there is a recently recog-
nized need for them: ‘‘The next generation of the methodology
would include an approximation of the blocking of patients in
the queueing model” (Cochran and Bharti, 2006). Our formulation
yields performance measures that describe both the sources and
the effects of congestion.

This paper is structured as follows. We describe the FCQN
framework and then review the existing models. The proposed
model is then described, followed by its validation versus both
pre-existing methods and simulation results. The model is then ap-
plied to the study of patient flow within a network of units of the
Geneva University Hospital.

2. General framework

We are interested in evaluating the performance of a network of
queues. A job is the generic name for the units of interest that flow
through the network, e.g. a pedestrian, a prisoner, a patient. We
consider open queueing networks where jobs are allowed to leave
the network and where the external arrivals arise from an infinite
population of jobs. We now describe the general process that a
job goes through upon arrival to a queue. Jobs arriving to a queue
are either served immediately or wait until a server becomes avail-
able. Once a job is served it is routed to its next queue according to a
probabilistic routing model. We call this queue the target queue. If
this target queue has finite capacity then it may be full. If it is full
then the job is blocked at its current location. Once there is a place
at the target queue the job is unblocked and proceeds to the target
queue. The jobs are unblocked with a first in first out (FIFO)
mechanism.

Various blocking mechanisms have been defined in the litera-
ture (Balsamo et al., 2001). They differ either in the moment the
job is considered to be blocked (e.g. before or after-service) or in
the routing mechanism of blocked jobs. The blocking mechanism
that we have just described is known as blocking-after-service.

The average arrival rate to queue i is denoted ki. Queue i has ci

parallel servers, each one serving with an average rate li. The total
number of jobs allowed in the queue is called the capacity of the
queue, ki, the buffer size is ki � ci. The possible routings among
queues are given by the transition probability matrix ðpijÞ, where
pij denotes the probability that a job at queue i is routed to queue j.
3. Literature review

A first survey of FCQN models was made by Perros (1984), who
later on also wrote a historical overview of the research motiva-
tions and advances in networks with blocking (Perros, 2003). A de-
tailed introductory book was written by Balsamo et al. (2001).
Surveys focusing on specific application fields exist for the soft-
ware architecture sector (Balsamo et al., 2003), the production
and manufacturing sector (Papadopoulos and Heavey, 1996) and
on retrial queues for the telecommunications sector (Artalejo,
1999).

The joint stationary distribution of the network, which contains
the probability of each possible state of the network, allows us to
derive the main network performance measures. We distinguish
between models that allow the exact evaluation of this joint sta-
tionary distribution and those based on approximation methods.

3.1. Exact methods

Exact methods consist of either closed form expressions or
numerical evaluation of the joint stationary distribution. For an
FCQN the between-queue correlation suggests a non-product form
joint stationary distribution. Thus closed form expressions are dif-
ficult to obtain and are only available for single server networks
with two or three queues in tandem topologies (Grassman and
Derkic, 2000; Langaris and Conolly, 1984; Latouche and Neuts,
1980; Konheim and Reiser, 1978; Konheim and Reiser, 1976) or
two queues in closed networks (Akyildiz and von Brand, 1994; Bal-
samo and Donatiello, 1989).

On the other hand, exact numerical evaluation of the joint sta-
tionary distribution can be obtained by solving the global balance
equations (these are detailed in Section 4.1). A detailed description
of these numerical methods can be found in Stewart (2000). These
equations require the construction of the transition rate matrix, i.e.
the description of the transition rates between all feasible states of
the network. This time consuming task is therefore only conceiv-
able for small networks (i.e. small in the number of queues and
their capacity). This approach also lacks flexibility because changes
in the network topology require redefining the transition rate ma-
trix. If the networks of interest have a more general topology or an
arbitrary size then their analysis is done by models based on
approximation methods.

3.2. Approximation methods

Models based on approximation methods can be classified into
either simulation-based or analytic models. The use of simulation
models is the most popular approach to evaluate the performance
of finite capacity queueing networks. Surveys of simulation models
exist for sectors such as transportation (Nagel, 2002; Ben-Akiva
et al., 2001), healthcare (Fone et al., 2003; Jun et al., 1999), com-
puter science (Sadoun, 2000; Obaidat, 1990) and the analysis of
call centers (Koole and Mandelbaum, 2002; Mandelbaum, 2001).
This approach although more realistic and detailed, is cumbersome
to optimize, and its accuracy is strongly dependent on the quality
of the calibration data (Korporaal et al., 2000). Analytic models are
simpler, less data expensive and more flexible.

The main motivation of analytic models based on approxima-
tion methods is to reduce the dimensionality of the system under
study. Decomposition methods achieve this by decomposing the
network into subnetworks and modeling each subnetwork inde-
pendently. The structural parameters of each subnetwork (e.g.
average arrival and service rates) depend on the state of other sub-
networks and thus capture the correlation with other subnetworks.
The main difficulty lies in obtaining good approximations for these
parameters so that the stationary distribution of the subnetwork is
a good estimate of its marginal stationary distribution. Given a
subnetwork its stationary distribution can be obtained by either
establishing a behavioral analogy with a network whose distribu-
tion has a closed (and often product) form, or by exact numerical
evaluation of the global balance equations which now have a smal-
ler dimension but are often nonlinear.

Existing models based on decomposition methods have defined
subnetworks consisting of single queues, pairs of queues or trip-
lets. We call these methods single, two queue and three queue
decomposition methods, respectively. If not stated otherwise the
models concern open finite capacity networks with exponentially
distributed service times.

The most commonly used decomposition method is single
queue decomposition. The first model based on this method dates
back to the work of Hillier and Boling (1967) who considered tan-
dem single server networks. One of the most used models based on
single queue decomposition concerns single server feed-forward
networks where each finite capacity queue is transformed into
an M/M/1 queue, and the blocking is taken into account by revising
the arrival and service rates of the queues (Takahashi et al., 1980).
An extension of this model to queues with multiple servers is given
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by Koizumi et al. (2005). Each queue is treated as an M/M/c queue
for which closed form expressions of the performance measures
are used. The buffers are considered infinite for each isolated
queue. This approximation holds if the capacity of adjacent
predecessor queues can accommodate the average queue length
of the downstream queues. This constraint is checked only a
posteriori.

A model applicable to networks with an arbitrary topology is
given by Korporaal et al. (2000). The individual queues are mod-
eled as M/M/c/K queues for which closed form performance mea-
sures are used. As for the method of Koizumi et al. (2005) the
capacity of the queues are revised. Here the average queue length
updates the capacity of predecessor queues. They use linear inter-
polation in order to ensure the integrality of the capacities, and
their positivity is verified a posteriori.

The Expansion method (Kerbache and Smith, 1988, 1987, 2000),
was developed for networks of M/M/1/K queues. Here a network
reconfiguration expands all finite capacity queues to artificial infi-
nite capacity holding queues, which register the blocked jobs. This
model was later extended to multiple servers and applied to pedes-
trian traffic flows by Cheah and Smith (1994). Gupta and Kavustur-
ucu (2000) applied this model to production feed-forward systems,
where service interruptions are allowed. Singh and Smith (1997)
used it to evaluate network performance measures within a buffer
allocation problem. A similar transformation where all GE/GE/c/K
queues are transformed into GE/GE/c queues, and thus the joint
distribution is approximated by a product form joint distribution,
was proposed by Tahilramani et al. (1999).

Models based on single queue decomposition have also been
proposed for single server networks with phase-type service distri-
butions for both tandem (Altiok, 1982) and feed-forward topolo-
gies (Altiok and Perros, 1987). Jun and Perros (1988) have
extended this work to an arbitrary topology and have also consid-
ered general service times for an open tandem network in Jun and
Perros (1990). The use of a phase-type service distribution ac-
counts for all possible blockings but, as stated in Altiok and Perros
(1987), it requires the construction of very detailed phase-type ser-
vice mechanisms, which is a cumbersome and CPU intensive task
for large networks. In these models queue capacity is also aug-
mented in order to allow for storage of all predecessor queue
capacities.

Few authors have considered subnetworks larger than single
queues. Models based on two queue decomposition methods have
been proposed for open tandem networks (Alfa and Liu, 2004;
Brandwajn and Jow, 1988; Brandwajn and Jow, 1985) and for an
arbitrary topology (Lee et al., 1998). Two queue decomposition
was used by van Vuuren et al. (2005) to study multiple server tan-
dem queues with generally distributed service times. As an exten-
sion of the work by Brandwajn and Jow (1988), Schmidt and
Jackman (2000) proposed a model based on a three queue decom-
position method for a single server arbitrary topology network.
Subnetworks consisting of more than one queue can theoretically
provide more accurate results than single queue decomposition,
but are computationally more intensive (Perros, 1994).

In order to acknowledge the finite capacity property of the net-
works the existing models modify either the network topologies or
the queue capacities. In both cases a posteriori validations are re-
quired. Additionally, if queue capacities are revised then approxi-
mations are needed in order to guarantee their integrality. We
believe that a flexible and optimization friendly model is one that
maintains the network topology and its configuration (number of
queues and their capacities) as exogenous parameters. We propose
such a method. We are also interested in explicitly modeling the
blocking phase within our analytical approach. The outputs of this
model therefore provide a description of both the causes and the
effects of congestion.
4. Model

In this section, we describe a model that allows the analysis of a
network of finite capacity queues. The model accounts for multiple
server queues with an arbitrary topology and blocking-after-ser-
vice. The model is based on a decomposition of the network into
single queues. Let pðiÞ denote the stationary distribution of the iso-
lated queue i. The main aim of our method is to make pðiÞ a good
estimate of the marginal stationary distribution of queue i.

4.1. Global balance equations

The distribution pðiÞ can be obtained via the global balance
equations along with the use of a normalizing constraint:

pðiÞQðiÞ ¼ 0;P
s2SðiÞ

pðiÞs ¼ 1;

8<
: ð1Þ

where pðiÞs denotes element number s of pðiÞ. The global balance
equations involve the state space of queue i, SðiÞ, as well as the
transition rate matrix, QðiÞ, which is a square matrix. We now de-
fine these two elements.

4.1.1. State space, SðiÞ
Since, we are interested in explicitly modeling the blocking

phase that a job may go through we define the processing of a
job as follows. A job

1. arrives to a queue,
2. waits if all the servers are occupied,
3. is served (this is called the active phase),
4. is blocked if its target queue is full (this is called the blocking

phase),
5. leaves the queue.

The state of queue i at any point in time is thus described by the
number of active jobs Ai, blocked jobs Bi and waiting jobs Wi. The
sample space of this triplet of random variables (Ai;Bi;Wi) is called
the state space and is defined as SðiÞ ¼ fða; b;wÞ 2 N3; aþ b 6
ci; aþ bþw 6 kig, where ci is the number of servers and ki is the
capacity.

4.1.2. Transition rate matrix, QðiÞ
The matrix QðiÞ contains the transition rates between all pairs

of states in SðiÞ. Hereafter all rates are rates averaged over time.
The non-diagonal elements, QðiÞsjs–j, represent the rate at which
the transition between state s and j takes place. The diagonal ele-
ments are defined as QðiÞss ¼ �

P
j–sQðiÞsj. Thus �QðiÞss represents

the rate of departure from state s. Each equation of the system of
global balance equations can be written asX
j–s

pðiÞjQðiÞjs ¼ �pðiÞsQðiÞss;

it therefore balances the inflow and the outflow for a given state s.
We define QðiÞ as a function of the following structural parameters:

� ki: the arrival rate to queue i;
� li: the service rate of a server at queue i;
� Pi: the probability of being blocked at queue i;
� ~lib: the unblocking rate at queue i given that there are b blocked

jobs. The vector that considers all possible values of b is denoted
~li� .

These four parameters allow us to describe the transition rates
between the different states of queue i. We write QðiÞ ¼ f ðki;li;
~li� ;PiÞ.
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As emphasized by Korporaal et al. (2000), the main challenge of
models based on decomposition methods is to appropriately
approximate these structural parameters so that pðiÞ is a good esti-
mate of the marginal stationary distribution of queue i. We now
describe how this is done.

4.2. Transition rates

Assume that queue i is in a given feasible state s such that
s ¼ ða; b;wÞ. The possible transitions with their corresponding rates
are displayed in Table 1. The set of possible states to where a tran-
sition can take place are tabulated in the second column, the cor-
responding transition rate is in the third column and the
conditions under which such a transition can take place are in
the last column. The first two lines of the table distinguish between
an arrival that can be served immediately and an arrival that must
queue before being served. The next two lines concern the comple-
tion of an active phase that is not followed by a blocking phase. In
the first case, the freed server remains available. In the second case,
the freed server immediately starts serving a job that was waiting.
The fifth line concerns jobs that have completed their service and
become blocked. The last two lines relate to the completion of
the blocking phase. They differ in whether the server that was
blocked stays available or immediately starts serving a job that
was waiting. This table describes how we approximate the transi-
tion rates using structural parameters. We now describe the
approximations used for these structural parameters.

4.2.1. Arrival rate, ki

We model each queue as an M/M/c/K queue (the distributional
assumptions are detailed further on). For these models, known as
loss models, all the arrivals that arise while the queue is full are
considered to be lost. In our model we assume that only external
arrivals may be lost, whereas arrivals that arise from within the
network are blocked if the target queue is full. We therefore
approximate the arrival rates by combining flow conservation with
loss model information. We denote by

� ki: the total arrival rate to queue i (includes potentially lost
arrivals);

� keff
i : the effective arrival rate to queue i (accounts only for the

arrivals that are actually processed, i.e. excludes all lost
arrivals);

� ci: the external arrival rate to queue i.

Accounting for the lost arrivals we have

ki ¼ keff
i =ð1� PðNi ¼ kiÞÞ; ð2Þ

where Ni denotes the total number of jobs at queue i, and PðNi ¼ kiÞ
is known as the blocking probability.

In most existing decomposition methods the arrival rate is ob-
tained via the flow conservation equations. In the loss model con-
text, the flow conservation laws hold for the effective arrival rates
and are approximated as follows:
Table 1
Transition rates of queue i

Initial state s New state j

ða; b;wÞ ðaþ 1; b;wÞ
ða; b;wÞ ða; b;wþ 1Þ
ða; b;wÞ ða� 1; b;wÞ
ða; b;wÞ ða; b;w� 1Þ
ða; b;wÞ ða� 1; bþ 1;wÞ
ða; b;wÞ ða; b� 1;wÞ
ða; b;wÞ ðaþ 1; b� 1;w� 1Þ
keff
i ¼ cið1� PðNi ¼ kiÞÞ þ

X
j

pjik
eff
j : ð3Þ

Inter-arrival times to queue i are assumed to be independent
and identically distributed exponential variables with parameter
ki.

4.2.2. Probability of being blocked, Pi

The probability of being blocked at queue i, Pi, helps us to de-
scribe the rate at which a job gets blocked after-service. It is
approximated by the weighted average of the blocking probabili-
ties of all target queues

Pi ¼
X

j

pijPðNj ¼ kjÞ: ð4Þ
4.2.3. Service and unblocking rates, li and ~lib

The average service rate of a server at queue i is li. It accounts
for the active phase. It is an exogenous parameter.

We now describe how we approximate ~lib, the average
unblocking rate at queue i given that there are b blocked jobs. Sup-
pose that queue i is in the state ða; b;wÞ. Then the service rate of the
queue is ali, i.e. the active jobs are being processed by a parallel
servers. In the state ða; b;wÞ there are b blocked servers, but they
do not all work in parallel, as we now describe. Let Dði; bÞ denote
the number of distinct target queues that are blocking the b jobs
at queue i. Each target queue unblocks jobs at queue i at its own
rate, which we call the acceptance rate of blocked jobs. We approxi-
mate the acceptance rate of a target queue by the average accep-
tance rate (the average is taken across the different target
queues), denoted ~la

i . Thus if all b jobs are blocked by the same tar-
get queue, then they can be seen as forming a virtual queue in front
of the blocking queue with a FIFO unblocking mechanism. The
average unblocking rate at queue i is then ~la

i . If the jobs are
blocked by Dði; bÞ distinct target queues then they can be seen as
forming Dði; bÞ virtual parallel queues, each with a FIFO unblocking
mechanism. The average unblocking rate at queue i is then
Dði; bÞ~la

i . More specifically we have

1
~lib
¼

Xminðb;cardðIþÞÞ

d¼1

PðDði; bÞ ¼ dÞ 1
d~la

i

; ð5Þ

where Iþ represents the set of target queues of queue i, and
cardðIþÞ is its cardinality. Eq. (5) holds because we approximate
the acceptance rate of the different target queues by a common
acceptance rate, ~la

i . The approximation for PðDði; bÞ ¼ dÞ is de-
scribed in the Appendix and involves only exogenous parameters.
Thus we write ~lib in the form

~lib ¼ ~la
i /ði; bÞ; ð6Þ

where /ði; bÞ is exogenous and can be interpreted as the average
number of distinct target queues that are blocking the b jobs at
queue i (/ði; bÞ is defined in the Appendix by Eq. (12)). We now
describe how we approximate ~la

i .
Rate QðiÞsj Condition

ki aþ bþ 1 6 ci

ki ðaþ b ¼¼ ciÞ & ðwþ 1 6 ki � ciÞ
alið1�PiÞ w ¼¼ 0
alið1�PiÞ w P 1
aliPi Always possible
~lib w ¼¼ 0
~lib w P 1



Fig. 1. Triangular topology.

Table 2
Increasing service rate scenarios

Scenario 1 2 3 4 5 6 7 8 9 10

l1 1 1 1 1 1 1 1 1 1 1
l2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
l3 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
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4.2.3.1. The acceptance rate of blocked jobs, ~la
i . The scalar ~la

i denotes
the rate at which a target queue of queue i accepts (i.e. unblocks)
jobs that are blocked at queue i. We denote by

� leff
i : the effective service rate of a server at queue i (it includes

service and blocking). We describe its approximation further on.
� ~pij: the transition probabilities conditional on a job being

blocked at queue i, i.e. ~pij ¼ pijPðNj ¼ kjÞ=Pi.
� rij: the proportion of arrivals to queue j that arise from blocked

jobs at queue i, i.e. rij ¼ ~pijk
eff
i =keff

j .

Suppose queue j is blocking jobs at predecessor queues. It is
therefore full and is serving at rate leff

j cj. It accepts jobs that are
blocked at queue i at the rate rijleff

j cj. By averaging over the possi-
ble target queues of queue i we obtain an approximation for ~la

i :

1
~la

i

¼
X

j

~pij
1

rijleff
j cj
¼
X
j2Iþ

keff
j

keff
i leff

j cj

: ð7Þ

Eq. (7) requires an approximation for the effective service rate
of a server, leff

i .

4.2.3.2. The effective service rate, leff
i . The total time spent by a job

in front of a server, called the effective service time 1=leff
i , is com-

posed of the service time (active phase) and for some jobs of the
blocked time (blocking phase). Let TB

i denote the blocked time of
a job conditional on it being blocked. A given job has an average
service time of 1=li, is blocked with probability Pi and once it is
blocked the average time it spends blocked is E½TB

i �. We therefore
obtain the following approximation for the effective service rate:

1
leff

i

¼ 1
li
þPiE½TB

i �: ð8Þ

In this equation, li is an exogenous parameter, the approxima-
tion of Pi is given in Eq. (4), and that of E½TB

i � is detailed in the
Appendix.

4.2.3.3. Distributional assumptions. Service time and the time be-
tween successive unblockings are each assumed to follow an expo-
nential distribution with parameters li and ~lib, respectively. For a
given queue all service times are assumed to be independent and
identically distributed, as are all blocked times. By explicitly mod-
eling both of these exponential phases, the number of jobs in front
of the servers becomes a two-dimensional system ða; bÞ composed
of the active and the blocked jobs. We are thus in the presence of
an M/M/c/K model with a three-dimensional state space ða; b;wÞ.
By working in this space we avoid constructing the CPU intensive
phase-type service mechanisms defined in some of the pre-exist-
ing methods.

4.3. System of equations

The main aim is to obtain the stationary distributions of each
queue, pðiÞ. The main equations consist of the global balance equa-
tions (Eq. (1)), which require the definition of the transition rate
matrix (Table 1). We have directly implemented these equations
as a single set

pðiÞgðki;li; ~li� ;PiÞ ¼ 0: ð9Þ

The system of nonlinear Eqs. (2)–(4), (6)–(9) is solved simulta-
neously for all queues. For each queue the exogenous parameters
are ci; ki; pij;li; ci;/ði; bÞ. The system of equations has been imple-
mented in terms of six endogenous parameters: ki; ~la

i ;leff
i ;

Pi; PðNi ¼ kiÞ; PðBi > 0Þ. For a given queue the dimension of its dis-
tribution is equal to cardðSiÞ ¼ ðci þ 1Þðki þ 1� ci

2Þ. Thus the total
size of the system of equations is

P
iððci þ 1Þðki þ 1� ci

2Þ þ 6Þ.
Pre-existing methods that require a posteriori validations (e.g.
to ensure the integrality of endogenous queue capacities) resort
to iterative methods. For a given iteration the system of equations
for each queue is solved sequentially. Since our method requires no
a posteriori validations we are able to solve the set of equations
associated to all queues simultaneously.

The system is solved by using the Matlab routine fsolve, which
implements a trust-region dogleg algorithm based on the method
described by Powell (1970). The jacobian of the system has been
calculated analytically and implemented. In order to ensure the
positivity of the distributions the system of equations has been
implemented in terms of an auxiliary variable yðiÞ such that
yðiÞ2 ¼ pðiÞ.

The endogenous parameters are initialized as follows. The arri-
val rates, k, are initialized using the arrival rates that satisfy the
classical flow conservation laws. The distributions, p, are initial-
ized using uniform distributions, thus no a priori information con-
cerning the stationary behavior of the queues is required, but such
information could be used if available. The other endogenous
parameters are deduced from these initializations.

5. Validation

5.1. Validation versus pre-existing methods

5.1.1. Triangular topology
We first compare our method with that of Altiok and Perros

(1987) and that of Takahashi et al. (1980). The latter considered
a single server network with triangular topology (depicted in
Fig. 1), and the following configuration: p12 ¼ 1

2 ; c1 ¼ 1. They con-
sidered two cases according to the buffer size of the queues: a null
buffer and a buffer of size two. For each case they considered a set
of scenarios with increasing service rates for queues two and three.
These scenarios are displayed in Table 2. The chosen performance
measure was the blocking probability of queue one, PðN1 ¼ k1Þ.
They then compared their estimates with either simulation results
or with exact results derived by using the global balance equations
of the entire network. The relative error of the estimates of the dif-
ferent methods are displayed in Fig. 2. For both cases all methods
yield good estimates, the relative error remaining under 7% for the
first case and 4% for the second case. We yield similar estimates to
those of Takahashi et al. (1980). For the first case Altiok and Perros
(1987) yields the most accurate estimates.

5.1.2. Two queues in a tandem topology
Bell (1982) derived a theoretical upper bound on the mean

throughput rate of M/M/c/K networks. By considering two queues
in a tandem topology under a set of scenarios he showed that
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Fig. 2. Comparison with the methods of Altiok and Perros (1987) and of Takahashi et al. (1980) under two capacity configurations.

Table 3
Increasing buffer size scenarios

Scenario 1 2 3 4 5 6 7 8 9

k1 � c1 1 1 2 2 2 3 4 5 10
k2 � c2 1 2 1 2 3 3 4 5 10

1 2 3 4 5 6 7 8 9
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Fig. 3. Comparison of the mean throughput estimate of various decomposition
methods with the theoretical upper bound derived by Bell (1982).

Table 4
Configuration and scenario definitions for networks A, B and C

Network A i: 1 2 3 4 5 6 7 8 9

ci – 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0
li 0.3 0.3 0.3 0.1 0.01 0.014 0.1 0.4 0.5

Scenario 1 2 3 4

c1 0.1 0.2 0.3 0.4

Network B i: 1 2 3 4 5 6 7 8 9

ci – 0 0 0 0 0 – 0 0
li 0.3 0.3 0.3 0.6 0.6 0.6 0.3 0.3 0.3

Scenario 1 2 3 4 5

c1 0.1 0.3 0.5 0.7 0.9
c7 0.1 0.3 0.5 0.7 0.9

Network C i: 1 2 3 4 5 6 7 8 9

ci – 0 0 0 0 0 0 0 0
li 0.3 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.3

Scenario 1 2 3 4 5

c1 0.1 0.3 0.5 0.7 0.9
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several models based on decomposition methods ‘‘lead to impossi-
ble mean throughput rates”. We compare the mean throughput
estimates of our method with the methods of Singh and Smith
(1997), Kerbache and Smith (1988), Boxma and Konheim (1981),
Takahashi et al. (1980) and Hillier and Boling (1967). The configu-
ration of the network is l1 ¼ 3;l2 ¼ 1; c1 ¼ c2 ¼ 1, and c1 ¼ 1. The
different scenarios are given in Table 3 and the mean throughput
estimates of the various methods are depicted in Fig. 3. Our mean
throughput is estimated by using the effective departure rate at
queue two, keff

2 . Fig. 3 shows that our mean throughput estimate re-
mains near the upper bound, and is similar to that of the Expansion
method of Singh and Smith (1997) and Kerbache and Smith (1988).
For the last three scenarios it violates the bound by 0.3%, 2.2% and
3.8%, respectively. Our method therefore yields consistent
throughputs unlike the methods of Boxma and Konheim (1981),
Takahashi et al. (1980), Hillier and Boling (1967).

5.2. Validation versus simulation results

Of main interest in our method are the distributional estimates,
which allow us to derive the performance measures that describe
congestion. These could not be compared with pre-existing meth-



Fig. 4. Topologies of networks B and C (left and right hand side, respectively).
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ods because we know of no method that defines the state space in
such a way. We resort to simulation results in order to validate our
method on a larger set of scenarios and topologies.

We consider three different topologies. Each network consists
of nine queues, all of which are bufferless with three servers. For
each network we consider a set of scenarios with increasing exter-
nal arrival rates. The network configurations and scenario defini-
tions of networks A, B and C are displayed in Table 4. Network A
is a simplified version of the case study network presented in Sec-
tion 6. Its topology and transition probabilities are the same as that
of the case study. They are displayed in Fig. 8 and Table 7, respec-
tively. The simplifications with regards to the case study concern
the number of servers per queue and the external arrival rates.
The topologies of networks B and C are displayed in Fig. 4. For a gi-
ven queue of network B the transition probabilities are uniformly
distributed among the possible target queues. For network C the
transition probabilities are displayed in Fig. 4. In order to validate
our results we developed the corresponding simulation models
using a discrete event simulator, ProModel version 4.1. Let to de-
note the temporal unit of the transition rates (e.g. minutes, hours).
The simulation runs consisted of 20 replications with a warm-up
time of 10000 to and further run time of 40000 to.

For all three networks, all scenarios, queues and states we con-
sider the errors of the distributional estimates: pðiÞða;bÞ � p�ðiÞða;bÞ,
where pðiÞða;bÞ denotes our estimate of the probability that queue
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Fig. 5. Histogram of the errors of the distributional estimates for all scenarios of
networks A, B and C.
i is in state ða; bÞ and p� is the simulation estimate. Fig. 5 displays
a histogram of the errors of the distributional estimates. There are
a total of 1200 estimates. 70% of the absolute errors are smaller
than 0.0065, 80% smaller than 0.0129 and 90% smaller than
0.0245. Our method therefore yields good distributional estimates.

In order to illustrate the blocking information derived by our
method we consider the scenarios of network C (Table 4). Fig. 6
displays the estimates of the distribution of queue five given by
our method and those obtained via simulation. Each plot considers
a given state ða; bÞ and plots pð5Þða;bÞ and p�ð5Þða;bÞ for all scenarios.
The simulated distribution is depicted as empty squares, whereas
our estimates are represented by filled circles. The scenarios are
in a lighter color as the external arrival rate of queue one increases.
The figure shows that as the external arrival rate increases the
states with blocked jobs become more likely, e.g. states ða; bÞ in
fð1;1Þ; ð1;2Þ; ð2;1Þg. Take for example state ð2;1Þ where there are
two active jobs and one blocked job. The probability Pð2;1Þ gradu-
ally increases from zero at scenario one to 0.14 at scenario five. For
all states our estimates follow the trend of the simulated probabil-
ities. Overall the estimates are very accurate.

5.3. Convergence of the validation runs

For a given tolerance, tol, convergence was attained when either
the first-order optimality condition was smaller than tol or when
both the sum of squares of the system of equations was smaller
than

ffiffiffiffiffiffi
tol
p

and the change of its relative value was smaller than
maxðtol2; epsÞ, where eps is the machine precision which is of mag-
nitude 10�16. The tolerance was chosen as tol ¼ 10�6. This choice is
based on the criteria given in Dennis and Schnabel (1996). If after
150 iterations there was no convergence the run was stopped and



Table 5
Convergence of validation runs

Case Number of Time (seconds) Total number of scenarios

Initializations Iterations

Triangular Bufferless 1 (0) 7 (1) 0.08 (0.02) 10
Buffer of size 2 7 (4) 65 (13) 0.47 (0.1) 10

Two queues in tandem 3 (7) 37 (51) 0.2 (0.2) 9
Networks A, B and C 10 (11) 57 (46) 1.53 (1.1) 14
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initialized again with a new starting point. A description of the
convergence of the algorithm under the different validation runs
is tabulated in Table 5. Columns two and three contain the average
number of initializations required until convergence and their
standard errors, respectively. Columns four to seven concern the
converged run. They give the average number of iterations, their
standard errors, the average execution time and their standard er-
rors, respectively.

5.4. Tests on larger networks

In order to further evaluate the speed of our method we have
applied it to a set of larger networks. We use network C as a build-
ing block. We construct the full networks by putting a set of C net-
works in a tandem configuration. We evaluated 70 networks,
where the nth network has n instances of network C in tandem.
This corresponds to networks with 9 to 630 queues. Only the first
queue has external arrivals, c1 ¼ 0:3. Recall that the distributions p
are initialized with the uniform distribution (Section 4.3). Note
that in practice a priori information would be used to initialize p.
The average number of iterations required until convergence was
275 with a standard deviation of 125. Fig. 7 displays the time until
converge across the networks in minutes.

Additional tests to examine the robustness of this methodology
to the distributional assumptions are desirable. For applications
where these assumptions do not hold the methods with phase-
type distributions are adequate. This is because the phase-type dis-
tributions are dense within the class of continuous distributions
(Inman, 1999; Altiok, 1989).
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6. Case study

We apply our model to the study of patient flow in a network of
hospital operative and post-operative units. Clinically, bed block-
ing may occur for example when a recovered intensive care patient
cannot proceed to the intermediate care facility due to unavailable
beds. The patient is said to be blocked until his placement is possi-
ble. Studies have acknowledged that bed unavailability renders the
emergency and surgical admissions procedure less flexible and less
responsive (Mackay, 2001).

Modeling bed blocking and estimating its effects would bring
both patient care and budgetary improvements (Cochran and
Bharti, 2006; Koizumi et al., 2005). This shows the importance of
modeling the bed blocking phase within a patients recovery proce-
dure. Although few analytic models incorporating blocking have
been developed, there is a recently recognized need for them
(Cochran and Bharti, 2006). The existing analytic models that ac-
count for blocking in the healthcare sector have limited their study
to feed-forward networks with at most three finite capacity queues
(Koizumi et al., 2005; Weiss and McClain, 1987; Hershey et al.,
1981).

6.1. HUG network

The hospital of interest is the Hôpitaux Universitaires de Genè-
ve (HUG, Geneva University Hospital). The considered units with
their corresponding queue index in parenthesis are the emergency
operating suite (indexed as queue 1), elective operating suite (2),
otorhinolaryngology operating suite (3), surgical intensive care
(4), medical intensive care (5), medical intermediate care (6), neu-
ro-surgical intermediate care (7), elective recovery (8), and otorhi-
nolaryngology recovery (9). Hereafter we refer to the units by
using either their full name or their queue index.

The patients are modeled as jobs and the beds as servers. Since
there is no waiting space each unit is modeled as a bufferless
queue. The blocking-after-service mechanism of our model accu-
rately mimics in-patient bed blocking.

The capacities of the different units were estimated according to
the evaluations of HUG members. HUG members also extracted pa-
tient flow data which we used to estimate the exogenous parame-
ters c;l and pij. Maximum likelihood estimates were used for c and
l, whereas the transition probabilities were estimated by the tran-
sition frequencies. The data consisted of 25336 patient records
ranging over a year.

The configuration of the network is presented in Table 6 and its
topology is given in Fig. 8. In this figure, the dotted lines corre-
spond to two-way arrows. The network consists of nine operative
Table 6
Configuration of the HUG network

i 1 2 3 4 5 6 7 8 9

ci 4 8 5 18 18 4 4 10 6
ci 0.39 0.5 0.25 0.06 0.18 0.03 0.13 0.16 0
li 0.32 0.26 0.34 0.01 0.02 0.01 0.02 0.22 0.52
cardðSiÞ 15 45 21 190 190 15 15 66 28



Fig. 8. HUG network topology.

Table 7
Transition probability matrix of the HUG network, pij

1 2 3 4 5 6 7 8 9

1 – – – .16 .02 – – .71 –
2 – – – .07 – – – .84 –
3 – – – .03 .01 – – – .95
4 .18 .01 .03 – .03 .01 .11 .03 –
5 .05 .01 .01 .01 – .07 – – –
6 .02 – – .01 .1 – – – –
7 .05 – .05 .04 – – – .01 –
8 – – – – – – .01 – –
9 – – – .05 – – .05 .02 –
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and post-operative units, with 31 possible transitions, containing
numerous cycles. This makes the network prone to blocking. Table
7 contains the transition probability matrix. In this table the null
probabilities are denoted by dashed lines. Note that the sum of
the transition probabilities for a given unit (i.e. a given line) may
not sum to 1, in this case 1�

P
jpij represents the probability of

exiting the network given that the job is at queue i.

6.2. Comparison with simulation results

We have also carried out this case study using the simulator.
This allowed us to compare our distributional estimates with those
obtained via simulation. The simulation setup was the same as that
of Section 5.2. The threshold for the stopping criteria of the algo-
rithm was chosen as 10�6. Convergence was attained after 325 iter-
ations and 84 seconds whereas the time required to complete the
simulation was 25 minutes.

We consider once again the absolute errors of the distributional
estimates, their 90th, 95th, and 99th percentiles are 0.008, 0.02 and
0.07, respectively. We have four estimates that have an absolute
error larger than 0.1. Overall the distributional estimates are very
good. The cumulative distribution function for the total number
of jobs at each queue are depicted in Fig. 9. The estimates of our
method are represented by filled circles, whereas the simulation
estimates are denoted by empty squares. All queues except queues
seven and nine have excellent estimates.
F

Three of the four previously mentioned estimates with large er-
rors concern queue seven, the fourth error concerns queue nine.
Explaining the cause of these large errors is not a straightforward
task given the correlation between the endogenous parameters of
our system of equations. The detailed distributions of queues seven
and nine are displayed in Fig. 10. The estimates of our method are
represented by filled circles, whereas the simulation estimates are
denoted by empty squares. The states ða; bÞ are ordered by increas-
ing number of active jobs and then increasing number of blocked



Table 8
Transition probabilities conditional on a patient being blocked, ~pij

1 2 3 4 5 6 7 8 9

1 – – – .76 .04 – – .19 –
2 – – – .59 – – – .41 –
3 – – – .87 .13 – – – .01
4 .12 – – – .02 .04 .82 – –
5 .11 – – .05 – .83 – – –
6 .13 – – .16 .71 – – – –
7 .34 – .01 .65 – – – .01 –
8 – – – – – – 1 – –
9 – - – .18 – – .82 – –

C. Osorio, M. Bierlaire / European Journal of Operational Research 196 (2009) 996–1007 1005
jobs. This figure shows that for queue seven the state (4,0) is
underestimated and for queue nine it is the blocked states (0,1)
and (0,2) that are underestimated. These misestimations may be
correlated since ~p97 ¼ 0:82 (displayed in Table 8 and discussed la-
ter on), i.e. given that a job is blocked at queue nine the probability
that is has been blocked by queue seven is 0.82. Thus the underes-
timation of the occupation of queue seven may lead to an underes-
timation of the blocking at queue nine.

6.3. Congestion analysis

6.3.1. The sources of congestion
The outputs of our model help us to quantify the blocking and

also investigate its causes. The transition probabilities conditional
on a patient being blocked, ~pij, are displayed in Table 8. These prob-
abilities can help us to determine the source of blocking. The prob-
abilities have been rounded to 10�2, those smaller than 0.005 are
denoted by a dashed line. For a given unit (i.e. a given line in the
table) we can identify the target units that are more likely to block
patients.

This table helps us to detect three main sources of blocking. The
medical intensive care and the medical intermediate care units
mutually block each others patients ð~p56 ¼ 0:83; ~p65 ¼ 0:71Þ. The
same holds for the surgical intensive care and the neuro-surgical
intermediate care units ð~p47 ¼ 0:82; ~p74 ¼ 0:65Þ. This first type of
blocking (mutual blocking) may be irrelevant in practice given that
the swapping of patients can be identified and carried out easily.
The second source of blocking which may be more difficult to solve
is the blocking at the operating suites due to the surgical intensive
care unit ð~p14 ¼ 0:76; ~p24 ¼ 0:59; ~p34 ¼ 0:87Þ. Moreover, the perfor-
mance of the emergency operating suite is strongly linked to its
responsiveness, which is deteriorated by blocking. The third source
of blocking occurs at the recovery units and is due to the neuro-
surgical intermediate care unit ð~p87 ¼ 1; ~p97 ¼ 0:82Þ.

6.3.2. The frequency and effects of congestion
By explicitly modeling the blocking phase our model yields novel

performance measures that quantify the occurrence as well as the
impact of congestion. Table 9 displays several performance mea-
sures of the different units. It also recalls the capacity, ki, and the
average service time, 1=li, of the units which are exogenous param-
eters. 1=li is given in hours. It is important to notice that although
Pi quantifies the occurrence of blocking at a given unit, it does not
capture the impact that a given blocking event may have on the unit
Table 9
Performance measures for the HUG network

i 1 2 3 4 5 6 7 8 9

ki 4 8 5 18 18 4 4 10 6
1
li

3.1 3.9 3.0 76.9 66.7 71.4 66.7 4.6 1.9
Pi 0.02 0.01 0.00 0.06 0.02 0.01 0.01 0.00 0.03
E½Bi� 0.04 0.01 0.01 0.22 0.04 0.01 0.01 0.00 0.06
E½Ni� 1.37 2.00 0.77 14.03 12.56 2.46 3.19 4.04 0.53
or the patient which is blocked. Take for example the otorhinolaryn-
gology (ORL) recovery unit where P9 ¼ 0:03, that is the probability
of a patient getting blocked at that unit is 0.03. In this unit the aver-
age service time is 1.9 hours ð1=l9Þ and blocking is mainly due to the
neuro-surgical intermediate care unit ð~p97 ¼ 0:82Þ where the aver-
age service time is 66.7 hours ð1=l7Þ. Thus the average blocked time
at the ORL recovery due to the neuro-surgical intermediate care unit
has a strong impact on the ORL recovery unit. This can also be seen
when comparing E½Bi�=E½Ni�with Pi. The fact that E½Bi�=E½Ni� is larger
thanPi also indicates that although blocking may be rare the impact
that it may have on the unit or on the patient is not to be ignored. In
the case of the ORL recovery unit E½Bi�=E½Ni� and Pi are equal to 0.11
and 0.03, respectively.

7. Conclusions and future work

We have presented an analytic queueing network model that
preserves the finite capacity property of the real system. The
model is formulated for multiple server finite capacity queueing
networks with an arbitrary topology and blocking-after-service.
The model is based on a decomposition of the network into
single queues. The structural parameters of the queues are approx-
imated so that they can account for the between-queue correla-
tion. Unlike pre-existing methods the network topology and its
configuration (number of queues and their capacity) are preserved
throughout the analysis thus no constraints need to be checked a
posteriori.

The originality of this method also lies in its ability to explicitly
model the blocking phase that jobs may go through under con-
gested traffic conditions. The model yields performance measures
that describe congestion in terms of its sources, its frequency and
its impact.

Performance measures have been validated by comparison with
pre-existing methods on networks with varying buffer size or ser-
vice rates. The distributional approximations have been compared
with those obtained via simulation on a set of networks under a set
of scenarios with varying arrival rates, namely under high intensity
traffic. In both types of validations the results illustrate the good
accuracy of our model. The comparisons versus a simulation-based
approach also highlight the important gain in computation time
since the time to estimate the parameters of our model is negligi-
ble compared to that of running a simulation.

The model has been applied to study patient flow in a network
of operative and post-operative units of the Geneva University
Hospital. We identified three main sources of bed blocking and
quantified their impact upon the different hospital units. The per-
formance measures of the model also revealed that although bed
blocking may be a rare event its impact upon the performance of
a given unit is not to be ignored.

Additional validation runs to test the sensitivity of the approx-
imations would be desirable. Further work will focus on combining
this model with a simulation model within an optimization frame-
work, while ensuring consistency between the two models. The
aim of this framework is to allow us to benefit from an optimiza-
tion friendly analytic model, while accounting for fine details that
can be reproduced by the simulation tool.

Like pre-exiting methods that allow for feedback topologies we
have assumed that no deadlock occurs or that it is solved instanta-
neously (e.g. by swapping). Nevertheless we believe that it is of
interest to investigate analytic deadlock detection methods.
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Appendix

Approximation of PðDði; bÞ ¼ dÞ

PðDði; bÞ ¼ dÞ represents the probability that d distinct queues
are blocking the b blocked jobs at queue i. Consider Rði; b; dÞ the
random vector containing the b target queues of the blocked jobs,
d of which are distinct, and let Rði; b; dÞ be its sample space. In
order to approximate PðDði; bÞ ¼ dÞ we sum over all possible real-
izations of Rði; b; dÞ.

PðDði; bÞ ¼ dÞ ¼
X

r2Rði;b;dÞ
PðRði; b;dÞ ¼ rÞ ¼

X
r2Rði;b;dÞ

~pir1
~pir2 � � � ~pirb

¼
X

r2Rði;b;dÞ

Y
j2Iþ

~p
‘ði;b;dÞj
ij ;

where ‘ði; b;dÞj is the number of jobs blocked by queue j at queue
i (given that there are a total of b blocked jobs that are blocked by
d distinct target queues). This last equation shows that for a given
realization of Rði; b;dÞ, what is of interest in determining
PðDði; bÞ ¼ dÞ is the occurrence of each target queue (i.e. the vec-
tor ‘ði; b;dÞ), the ordering of the target queues is not important.
Thus instead of summing over Rði; b; dÞ, we sum over the set of
‘ði; b;dÞ vectors. This reduces the size of the space over which
we sum. The set of such vectors is noted Lði; b; dÞ and is defined
by

‘ði; b;dÞ 2Lði; b; dÞ ()

P
j2Iþ

‘ði; b;dÞj ¼ b;

P
j2Iþ

1ð‘ði; b;dÞj > 0Þ ¼ d;

‘ði; b;dÞj P 0 8j 2 Iþ;

8>>>><
>>>>:

ð10Þ

where 1ðxÞ is the indicator function. The first equation of the system
of Eqs. (10) means that there are a total of b jobs blocked at queue i.
The second means that these jobs are blocked by d different target
queues. For a given vector ‘ði; b; dÞ that satisfies the system of Eqs.
(10) there are b!=ð

Q
j2Iþ‘ði; b;dÞj!Þ different realizations of Rði; b;dÞ

that are associated with it. This corresponds to the number of per-
mutations of a vector of b elements where element j is repeated
‘ði; b;dÞj times. Therefore, we obtain

PðDði; bÞ ¼ dÞ ¼
X

‘ði;b;dÞ2Lði;b;dÞ

b!Q
j2Iþ‘ði; b;dÞj!

Y
j2Iþ

~p
‘ði;b;dÞj
ij :

Coming back to Eq. (5) and replacing PðDði; bÞ ¼ dÞ by the
approximation that we have just derived we obtain:

1
~lib
¼ 1

~la
i

Xminðb;cardðIþÞÞ

d¼1

1
d

X
‘ði;b;dÞ2Lði;b;dÞ

b!Q
j2Iþ‘ði; b; dÞj!

Y
j2Iþ

~p
‘ði;b;dÞj
ij : ð11Þ

The size of the space Lði; b; dÞ is still considerably large there-
fore when approximating ~lib we use an exogenous approximation
of ~pij:
~pij ¼
pijPðNj ¼ kjÞ

Pi
¼

pijPðNj ¼ kjÞP
lpilPðNl ¼ klÞ

�
pijP

lpil
:

This approximation makes both summations of Eq. (11) exoge-
nous. These two summations are therefore evaluated only once
when solving the entire system of equations. This approximation
is appropriate if the blocking probabilities of the target queues
have the same magnitude, otherwise it is inadequate. The only
endogenous parameter remaining in Eq. (11) is ~la

i . Thus we have
written ~lib in the form ~lib ¼ ~la

i /ði; bÞ, where

1
/ði; bÞ ¼

Xminðb;cardðIþÞÞ

d¼1

1
d

X
‘ði;b;dÞ2Lði;b;dÞ

b!Q
j2Iþ‘ði; b;dÞj!

�
Y

j2Iþ

pijP
kpik

� �‘ði;b;dÞj
: ð12Þ
Approximation of E½TB
i �

Given a blocked job at queue i, E½TB
i � represents its expected

blocked time. Recall that Bi denotes the number of blocked jobs
at queue i. We approximate E½TB

i � by conditioning on the length
of the blocked queue:

E½TB
i � ¼ E½E½TB

i jBi�� ¼
X
bP0

PðBi ¼ bjBi > 0Þ E½TB
i jBi ¼ b�

¼
X
bP1

PðBi ¼ bÞ
PðBi > 0Þ E½TB

i jBi ¼ b�:

Let Tði; bÞj denote the blocked time of the job that was un-
blocked in jth position given that there were b blocked jobs. We
have

E½TB
i jBi ¼ b� ¼ 1

b

Xb

j¼1

E½Tði; bÞj�:

We know that the average time between successive departures
given that there are b blocked jobs at queue i is represented by
1=~lib, thus we approximate the average blocked time of the first
job to be unblocked by 1=~lib, that of the second job to be un-
blocked by 1=~lib þ 1=~liðb�1Þ and that of the jth by

E½Tði; bÞj� ¼
Xb

k¼b�jþ1

1
~lik

:

Putting the last two equations together and then interchanging
the summations we obtain:

E½TB
i jBi ¼ b� ¼ 1

b

Xb

j¼1

Xb

k¼b�jþ1

1
~lik
¼ 1

b

Xb

k¼1

1
~lik

Xb

j¼b�kþ1

1 ¼ 1
b

Xb

k¼1

k
~lik

:

Therefore, our approximation of E½TB
i � is given by

E½TB
i � ¼

X
bP1

PðBi ¼ bÞ
PðBi > 0Þ

Xb

k¼1

k
b

1
~lik

: ð13Þ
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