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A B S T R A C T

Greening extraction techniques to improve the sensitivity and the selectivity of analytical methods is
the sustainable alternative to classical sample-preparation procedures used in the past. In this update,
we review the main strategies employed in the scientific literature to reduce deleterious side-effects of
extraction techniques. We demonstrate that the evolution of sample-treatment procedures is focused
on the simultaneous improvement of the main analytical features of the method and its practical aspects,
including the economic case.
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1. The green wave

In a changing world, with the tremendous impact of human pres-
ence, the urgent need for sustainability of all of our activities has
accelerated the evolution from the chemurgical paradigm to the eco-
logical paradigm in which the environmental side effects of our
chemical activities must be seriously taken into consideration [1].
Green Chemistry [2–4] and Green Analytical Chemistry (GAC) [5–9]
evolved from the academic sphere to the real world, so there is a
tremendous research activity on greening all aspects concerning the
analysis of any kinds of sample, not only those for environmental
studies. We are absolutely convinced that GAC will be really useful
in the years ahead. The application of cheap, fast and environmen-
tally safe procedures in environmental, clinical and food analysis
will improve the quality of life in developing countries [10]. So, it
can be seen that GAC has been the key tool to move from the
chemurgical paradigm to the ecological paradigm in analytical chem-
istry and to create sustainable tools for challenges in the increasing

demand in analysis for a clever combination of environment-
friendly and cheap methodologies (see Fig. 1).

Based on the 12 principles of GAC [11], many green methods were
proposed in recent years, and scientific journals have published
special issues regarding GAC practice in research and applied labo-
ratories, as can be observed in Table 1, so creating a wave that
modified the concepts and the practice of analysis.

In summary, GAC has been well accepted by the scientific com-
munity. However, the change from qualitative to quantitative
observation of the green character of analytical methodologies has
evolved much more slowly than the scientific production in the field.
In this sense, Life Cycle Assessment (LCA), a holistic tool encom-
passing all environmental exchanges (i.e., resources, energy,
emissions, and waste) occurring during all stages of the life cycle
of activities, is a useful tool, especially when applied to products
or services for which the life-cycle concept and its stages are clearly
defined [12]. An additional semi-quantitative criterion was devel-
oped by the Green Chemistry Institute (GCI) of the American
Chemical Society (ACS). The criterion was applied to the National
Environmental Methods Index (NEMI), a free Internet-searchable
database of environmental methods [13]. The profile criterion was
based on four key terms concerning reagents employed as:
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(1) persistent, bioaccumulative and toxic (PBT);
(2) hazardous;
(3) corrosive; and,
(4) the amount and the nature of waste.

A similar criterion includes energy as a key point to be consid-
ered [14]. The addition of energy as a criterion is important due to
the high reliance on non-renewable resources for production of elec-
trical energy.

In recent years, an ecological scale was developed for the eval-
uation of analytical methods based on the introduction of penalty
points [15]. According to it, a 100 score corresponds to a com-
pletely eco-friendly methodology, but subtracting penalty
points of the method due to the volume and the toxicity of re-
agents consumed, energy consumed, emissions, operator hazard
and waste generation. Methods are classified according to the eco-
scale as:

• excellent green analysis (>75 points);
• acceptable green analysis (>50 points); and,
• inadequate green analysis (<50 points).

More recently, a new criterion was proposed to relate the penalty-
point values to the volumes of reagents consumed and wastes
generated using mathematical expressions and to associate the eco-
scale value to a category class (A–G) in a so-called Green Certificate
[16].

2. Greening analytical procedures

Remote sensing and direct measurements on untreated samples
are the green dream of analysts and many strategies have been
developed for the analysis of target compounds based on the use
of spectroscopy and electroanalytical signals [17] and image pro-
cessing [18]. However, in most analytical methodologies, sample
treatment is an unavoidable step and the use of a classical meth-
odology, similar to that in Fig. 2 (sampling, sample transport and
sample preparation before the acquisition of analytical measure-
ments) is absolutely necessary. Typical sample-treatment methods
include homogenization, filtration, centrifugation, clean-up, analyte
extraction, preconcentration and/or derivatization. On evaluating
the environmental impact of methods, sample preparation is,
by far, the most challenging step regarding both the main
features and the green parameters of the methods. Sample disso-
lution and analyte extraction involve the use of reagents and
energy, and special care must be taken to select the procedure as
simple as possible at room temperature, and the least hazardous
reagents. In this context, options for greening methods must be
based on avoidance of the use of toxic reagents and a strong
reductions in consumption of energy and reagents, waste genera-
tion, time taken and operator effort. As a result, minimization and
automation have been the basic tools for greening the analytical
methods.

3. Facing the problem of sample treatment

Sample treatment has been the focus of intensive research from
the GAC perspective in the past 20 years, since it is the bottleneck
of analytical procedures.

It is worth stressing that the sample-preparation step largely de-
termines the quality of the results obtained and is the main
source of systematic errors and random lack of precision of ana-
lytical methodologies. The sample-treatment step must guarantee
a quantitative recovery of target analytes, avoiding contamination
and providing matrix isolation as far as possible, in order to reduce
potential interferences and matrix effects during the measure-
ment step.

We should notice that there is no universal sample-preparation
technique suitable for all types of sample, and that sample prepa-
ration depends on the matrix, the nature of analytes and the final
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Fig. 1. Green Analytical Chemistry: shift from chemurgical paradigm to ecological paradigm.

Table 1
Special issues of journals on Green Analytical Chemistry

Journal Special issue (no. of
papers)

Year, vol. (no.)

The Analyst (RSC) Environmentally
Conscientious Analytical
Chemistry (5)

1995, 120 (2)

Spectroscopy Letters Green Spectroscopy and
Analytical Techniques (18)

2009, 42 (6–7)

Trends in Analytical
Chemistry

Green Analytical Chemistry
(10)

2010, 29 (7)

Analytical and Bioanalytical
Chemistry

Green Analytical Methods
(7)

2012, 404 (3)
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measurement mode. Moreover, an appropriate method for a target
analyte may not be good for comprehensive screening of compounds.

In recent years, sample-preparation methodologies evolved from
hard strategies to soft methods based on room-temperature,
ultrasound-assisted leaching [19–21] or microwave-assisted diges-
tion using closed systems [22–24], so providing a fast, safe
methodology, especially for sample digestion and sample dissolution.

Analyte extraction has the double purpose of matrix isolation
and analyte preconcentration, and the appropriate selection of sol-
vents and reagents and the control of the preconcentration process
are absolutely necessary in order to:

• separate quantitatively the target analyte from the matrix; and,
• increase the concentration level of the target analyte in the final

solution to be measured.

Sometimes, solid samples are difficult to analyze due to the need
to transfer the target analytes to a liquid phase. Leaching the analyte
(i.e., solid–liquid extraction or lixiviation) is one of the easiest, most
widely used sample treatments. Classically, leaching has been widely
carried out by maceration, based on the correct choice of solvents
and the use of room temperature or controlled temperature and/
or agitation to increase the solubility of compounds and the rate
of mass transfer. In general, heating the system increases the solu-
bilization power of the reagents or solvents used, but involves
environmental side-effects (i.e., energy consumption). Despite the
extensive use of leaching, it is characterized by long extraction pro-
tocols with low efficiency.

In 1879, Franz von Soxhlet developed Soxhlet extraction, which
is the most widely used leaching technique [25]. Soxhlet extrac-
tion is a primary reference against which performance in new
leaching methods is measured. It is still an attractive option for
routine analysis because of its general robustness and relatively low
cost. The Soxhlet system is simple and easy to use, and it enables
the use of a large amount of sample (i.e., 1–100 g). However, the
main drawbacks are long extraction times and large amounts of
solvent required, which also mean that the solvent must be evapo-
rated to concentrate the analytes before their determination [26].

However, when samples are water or aqueous solutions with a
complex matrix (e.g., wastewater or seawater, body fluids or juices)
it can be necessary to move from the original solution to a new phase

using immiscible solvents or solid phases, suitable to extract the
analytes selectively.

In short, there are several strategies proposed in the literature
for analyte extraction [27,28], involving liquid-liquid extraction (LLE)
[29–31] and solid-phase extraction (SPE) [32,33]. LLE and SPE are
the most widely used techniques for the extraction of liquid samples.
In the first type, an appropriate selection of the extraction solvent
permits removal of the analyte from the original solution to the new
phase, directly or after a previous derivatization.

From our point of view, SPE is probably the best option to improve
analyte concentration and to separate it from a complex matrix. Gen-
erally, SPE consists of four steps:

• column conditioning;
• sample loading, which implies analyte retention into the solid

phase;
• column post-wash; and,
• analyte elution from the solid phase using an appropriate solvent.

The most common design applied in SPE is the polypropylene
cartridge with placed sorption phase, which varies in size from
micro-sized disks in 1 mL syringes to 6 mL syringes. SPE can manage
relatively high volumes of samples for analyte preconcentration being
suitable to be eluted on-line with microliters of an appropriate
solvent to do their determination.

The sample-preparation step can be performed off-line, at-line
or on-line. At-line procedures are performed with a robotic system
or autosampler and no manual preparation is required, which is the
case for off-line systems. On the other hand, on-line procedures
combine directly the sample-preparation step with the measure-
ment mode, usually via a multiport valve.

4. Green extraction solutions

Fig. 3 shows, as a scheme, the different variables to be consid-
ered on greening the extraction steps which, in short, involve the
nature and the amount of reagents used and the reduction of the
energy employed for extraction.

As it has been mentioned above, leaching of the analyte from a
solid sample is one of the easiest and most widely used sample treat-
ments. As a consequence, a variety of sample-preparation methods
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Fig. 2. Strategies for greening an analytical method.
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have been developed over the past decades with the objective to
improve the extraction performance as well as to reduce overall
analysis time and cost. Recent developments based on ultrasound-
assisted treatments [34,35] enhance the solid-liquid equilibrium,
reducing the extraction time. Ultrasonic energy causes an effect
known as cavitation, which generates numerous tiny bubbles in
liquid media and mechanical erosion of solids, including particle
rupture. Sonication provides an efficient contact between the solid
and the extractant, usually resulting in a good recovery of the analyte
[36].

On the other hand, there are no doubts on the need for a quan-
titative evaluation of the energy requirements of extraction steps
and it is one reason to look for greener alternatives to traditional
Soxhlet [37]. Pressurized liquid extraction (PLE), also named accel-
erated solvent extraction (ASE) [38–40] and microwave-assisted
extraction (MAE), can be used instead of Soxhlet for the extrac-
tion of organic compounds, providing a clear improvement of the
extraction processes based on a dramatic reduction in time and tem-
perature and solvent requirements.

Moreover, different alternatives combining the different strate-
gies previously commented have been developed to overcome the
main drawbacks of Soxhlet extraction. For instance, high-pressure
Soxhlet extraction in which the extractants do not reach supercritical
conditions and the time required and the solvents consumed are
dramatically reduced [41]. The combination of Soxhlet and
ultrasound-assisted extraction has been developed to take advan-
tage of both methodologies and reduce the number of Soxhlet cycles,
greening the methodology [41].

Of the attempts to improve Soxhlet performance, the most suc-
cessful has been the use of microwaves, being the microwave-
assisted Soxhlet extraction the most interesting improvement of
conventional Soxhlet extraction [41]. The main limitations over-
come by this approach are the long extraction time periods, the
possibility to automate the procedure and the ability to quantita-
tively extract strongly retained analytes.

On the other hand, the LLE procedure is suitable to be minia-
turized as, for example, based on the single-drop extraction strategies
[42–45], dispersive liquid–liquid microextraction (DLLME) [46] and
hollow-fiber liquid-phase microextraction (HF-LPME) [47]. These
methods differ in design, but they all have one common feature:

namely, they use only microvolumes of organic solvent and thus
comply with the requirements of GAC. Another reported LLME
technique, is continuous flow microextraction (CFME). In this
method, the extraction-solvent drop is injected into a glass chamber
by a conventional microsyringe and held at the outlet tip of a PTFE
connecting tube, the sample solution flows right through the tube
and the extraction glass unit to waste, the solvent drop interacts
continuously with the sample solution and extraction proceeds si-
multaneously [48]. In recent years, there has been developed the
directly-suspended droplet microextraction technique (DSDME) [49]
in which a small volume of an immiscible organic solvent is added
to the surface of the gently stirred aqueous solution. The vortex
results in the formation of a single droplet at or near the center of
rotation.

Additionally, the use of membrane-mediated [50] extraction tech-
niques can favor analyte-extraction processes and move it from the
original sample to an accepting solution ready to be employed for
analyte measurement. As indicated in Table 2, it involves a simul-
taneous two-step process and a medium preconcentration, when
used on a closed circuit of the accepting phase, which can be rel-
atively easy automatized based on flow-injection analysis (FIA) [51],
sequential injection analysis (SIA) [52] or the use of automated
syringe systems [53].

Interesting alternatives to the use of classical organic solvents
as extraction media have been provided based on ionic liquids
[54–57], agro-solvents, like alcohols or terpenes [58], or the use of
surfactant solutions [59,60]. The aforementioned procedures provide
specific solutions for greening classical extraction methods based
on the use of alkanes, aromatic hydrocarbons or chlorinated sol-
vents. However, the deleterious effects of those alternative solvents
are not well known or understood, especially in the case of ionic
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Fig. 3. Aspects to be considered on greening extraction procedures.

Table 2
Comparison of analyte-extraction strategies

Liquid-liquid Membrane mediated Solid

Low preconcentration level Medium preconcentration High preconcentration
Single step Simultaneously two steps Two separate steps
Easy automation Relatively easy automation Very easy automation
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liquids, and must be taken into account in order to identify clearly
the strengths, the weakness, the opportunities and the threats of
the alternative extraction process.

Recent advances in SPE extraction involve the evolution of
formats, sorbent types and modes of interaction [61]. Typically, a
commonly utilized format is a polypropylene cartridges consist-
ing of a 20 μm frit, made of polyethylene or polytetrafluoroethylene,
at the bottom of the syringe with the relevant sorbent with an
additional frit at the top. Alternatives to SPE cartridges include
disks, the SPE pipette tip, 96-well SPE microtiter plates and also
small columns, which can be on-line connected to a liquid chro-
matography (LC) system. From a green perspective, on-line SPE is
preferred. Usually, when it is coupled to a liquid chromatograph,
it consists of a small pre-column placed in a six-port high-
pressure switching valve. During injection, the sample is pre-
concentrated on a pre-column and later the analytes are eluted
onto the analytical column by valve switches. The main advan-
tages are higher throughput and limited manual processing, as
well as low cost.

An alternative to SPE is the quick, easy, cheap, effective, rugged
and safe (QuEChERS) extraction method [62], which involves
the extraction of analytes from a homogenized sample using
an acetonitrile and salt solution and the clean-up of the superna-
tant using a dispersive SPE (dSPE) technique. This QuEChERS
approach offers a user-friendly alternative to traditional LLE
and SPE.

The idea of scaling down SPE has led to the development of
analytical microextraction procedures. Those methods can be defined
as non-exhaustive sample-preparation steps using a very small
volume (microliter range or smaller) of extracting phase (solid, semi-
solid polymeric or liquid material), relative to the sample volume.

The field of microextraction gained in significance with the in-
vention of solid-phase microextraction (SPME) in 1990 [63], which
later, in 1993, became commercially available. In this technique, a
small amount of extracting phase dispersed on a solid support, nor-
mally, a fused-silica fiber or a metal core, is exposed to the sample,
or its headspace, for a well-defined period of time.

The several implementations of SPME include mainly open-bed
extraction concepts, such as agitation mechanism [i.e., stir-bar sorp-
tive extraction (SBSE), stir-rod sorptive extraction (SRSE), stir-cake
sorptive extraction (SCSE), rotating-disk sorptive extraction (RDSE)],
dispersed particles into the solution, also called dispersive SPME
(DSPME), and needles. In the last case, in-needle SPME, solid-
phase dynamic extraction (SPDE), microextraction by packed sorbent
(MEPS), microextraction in a packed syringe, and fiber-packed-
needle microextraction (FNME) have been proposed [64].

Novel designs for the SPME include membrane SPME (M-
SPME) [65], which involved physical separation between the polar
extraction medium and the analyzed sample by means of a mem-
brane. Another membrane-based procedure is polymer-coated
hollow-fiber membrane (PC-HFM), a simple and inexpensive ex-
traction technique that involves coupling HFM with SPME and SBSE
technology [66]. Another extraction method, membrane extrac-
tion with sorbent interface (MESI) [67], consists of a permeable
silicone membrane coupled with an adsorbent trap for sampling
and concentration of organic compounds.

The use of electrochemically-aided SPME in analytical practice
has also been reported [68]. However, this particular technique has
very low extraction efficiency and cannot be coupled to a chro-
matographic system, so a new variant, electrosorption-enhanced
SPME (EE-SPME) [69], was proposed in 2007. Advances in
electrochemically-assisted solid-based extraction techniques were
recently reviewed [70].

Special attention must be paid to developments in solvent-free
extraction methods for sample preparation and analyte separa-
tion [71,72]. The use of thermal desorption systems is a good option

for the elution of analytes retained on solid phases and, because of
that, headspace-based methodologies have been developed for SPME
analysis of volatile and semi-volatile compounds by gas chroma-
tography (GC) [73–75]. Those procedures can be considered a serious
alternative to the use of solvents in extraction processes and they
should be seriously evaluated in order to quantify the amount of
energy consumed and, thus, their environment-friendly character.

In any case, it is clear that the replacement of classical extrac-
tion procedures with microextraction techniques does not imply only
a change of scale. It is a new concept in which the amount of sample
and reagents used substantially decreases and the speed and
sustainability of methods are improved. The main trouble is that
reduction in the sample size can affect the representativeness of an-
alytical data, especially in the case of the analysis of highly
heterogeneous samples.

5. Future trends in green extraction

Pioneering efforts in the automation of extraction procedures
through FIA have been demonstrated to be one of the best ways to
reduce operator risks and to avoid environmental side-effects by re-
ducing consumption of reagents and generation of waste. However,
the microscale of FIA procedures was not enough to assure their
sustainability. Additional efforts in recent years on miniaturiza-
tion of extraction also offered an interesting way to improve the
greenness of analytical procedures. Recent developments on
microfluidic systems [76] and on-chip μSPE include the use of dis-
posable sorbents using mesofluidic platforms [77], which open new
possibilities to green analytical methodologies. So, it is clear that
in the years ahead much more effort will be made to link these ap-
proaches, which can also be improved by clever selection of the
phases, solvents and solid, employed in the preconcentration steps
to guarantee the inert character of residues and to consume as little
energy as possible.

One of the key factors in evaluating the sustainability of the dif-
ferent methodologies proposed concerns the correct evaluation of
environmental risks regarding reagents, wastes and the energy
employed. Those factors must be balanced in order to provide si-
multaneously the best analytical features and the smallest
environmental side-effects. As indicated previously [78], the
greenest methodology is that suitable to solve an analytical problem
with the minimum environmental impact, but stress must be placed
on the first part of this sentence – finding the solution to the
problem.

Concerning the reagents used in the extraction steps, efforts
should also be made in evaluating new solvents (e.g., agro-solvents,
ionic liquids or surfactant solutions), other organized media {e.g.,
crown [79] and crypta ethers, and calixarenes) and lipidic struc-
tures (e.g., liposomes and vesicles). The development of new solid
phases suitable for use in the selective extraction of target analytes
{e.g., imprinting solid phases [80] and nano-materials [81–83]} will
contribute to improving the analytical features of the methods and
to reducing dramatically the amounts of reagents and energy used.
So, we must be optimistic about the future, and, once again, it will
be demonstrated that GAC can be a driving force to expand basic
research in analytical chemistry, to make an ethical commitment
to the environment and to reduce the cost of the analytical methods,
thereby contributing to the sustainability of laboratories and
enterprises.
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