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Abstract Migration from RDBMS to NoSQL has become an important topic in a big
data era. This paper provides comprehensive techniques and guidelines for effective
migration from RDBMS to NoSQL. We discuss the challenges faced in translating
SQL queries; the effects of denormalization, column families, secondary indexes,
join algorithms, and column name length; and decision support for the migration.
We focus on a column-oriented NoSQL, HBase because it is widely used by many
Internet enterprises such as Facebook, Twitter, and LinkedIn. Because HBase does not
support SQL, we use Apache Phoenix as an SQL layer on top of HBase. Experimen-
tal results using TPC-H show that column-level denormalization with atomicity and
grouping columns into column families significantly improve query performance; the
use of secondary indexes on foreign keys is not as effective as in RDBMSs; the query
optimizer of Phoenix is not very sophisticated; shortened column names significantly
reduce the database size and improve query performance; and the SVM classifier can
predict whether query performance is improved by migration or not. Important open
problems in NoSQL research are supporting complex SQL queries, automatic index
selection, and optimizing SQL queries for NoSQL.
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1 Introduction

NoSQL databases have become a popular alternative to traditional relational databases
due to the capability of handling big data, and the demand on the migration from
RDBMS to NoSQL is growing rapidly [1, 2]. Because NoSQL has different data
and query model comparing with RDBMS, the migration is a challenging research
problem. For example, NoSQL does not provide sufficient support for SQL queries,
join operations, and ACID transactions.

In this paper, we provide comprehensive techniques and guidelines for effective
migration from RDBMS to NoSQL. We make three main contributions. First, we
investigate the challenges faced in translating SQL queries for NoSQL. Second, we
evaluate the effects of denormalization, column families, secondary indexes, join algo-
rithms, and column name length on NoSQL databases. Third, we propose a decision
support system for the migration. We focus on HBase because it is widely used by
many Internet enterprises such as Facebook, Twitter, and LinkedIn. Because HBase
does not support SQL, we use Apache Phoenix as an SQL layer on top of HBase.

Experimental results using TPC-H show that column-level denormalization with
atomicity and grouping columns into column families significantly improve query
performance; the use of secondary indexes on foreign keys is not as effective as in
RDBMSs; the query optimizer of Phoenix is not very sophisticated; shortened column
names significantly reduce the database size and improve query performance; and
the SVM classifier can predict whether query performance is improved by migration
or not. Important open problems in NoSQL research are supporting complex SQL
queries, automatic index selection, and optimizing SQL queries for NoSQL.

The remainder of this paper is organized as follows. Sections 2 and 3 present back-
ground and related work, respectively. Section 4 discusses techniques and guidelines
for effective migration from RDBMS to column-oriented NoSQL. Section 5 presents
experimental results, and Sect. 6 provides conclusions.

2 Background

HBase is a column-orientedNoSQL and usesHadoopDistributed File System (HDFS)
as underlying storage for providing data replication and fault tolerance. InHBase, rows
are ordered by the row key, and the primary key of a relational table is considered as
the row key of a HBase table. Because each row can have a different set of columns,
column names are repeatedly stored for each row.

HBase has a master–slave architecture as shown in Fig. 1. Rows are grouped into
regions, and the columns of a region are grouped into column families. The master
distributes regions to the slaves (or region servers) using range partitioning.

Figure 2 shows an overview of HBase I/O in a region server. HBase stores the data
of a column family of a region together in a file called HFile. HFile consists of data
blocks, which is a single unit of I/O. BlockCache is an LRU cache for reads, and
MemStore is a write buffer. HBase reads a block from BlockCache or MemStore if
it is in them, and if not, HBase reads a block from disk and caches it in BlockCache.
HBase writes data to Write Ahead Log (WAL) and MemStore. The data in MemStore
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Fig. 1 HBase architecture

Fig. 2 HBase I/O in a region server

are sorted by the row key and flushed into HFile according to a threshold such as size
limit.

HBase supports automatic sharding and failover, but it does not support SQLqueries
and secondary indexes. Apache Phoenix works as an SQL layer for HBase by com-
piling SQL queries into HBase native calls and supports secondary indexes.

3 Related work

Reference [2] proposed a denormalization method called CLDA that avoids join oper-
ations and supports atomicity using the notions of column-level denormalization and
atomic aggregates. The CLDA method improves query performance with less space
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compared with table-level denormalization methods [3–9], which duplicate whole
tables. For column-oriented NoSQL databases, [10] proposed a column partitioning
algorithm, and [11] developed a cost-based solution for schema design. Reference
[12] studied the implementation of secondary indexes for HBase. Reference [13]
proposed a theoretical model for implementing joins in HBase. The proposed paral-
lel hash-join algorithm and MapReduce methods reduced the join processing time.
Reference [14] proposed a three-dimensional data model in HBase for large time-
series dataset analysis. The three-dimensional data model exploits the HBase version
dimension in a variety of ways to provide a new perspective on data organization
and management. Reference [15] performed a comparative experiment of geospatial
databases and showed that Azure SQL Database is slower but more scalable than
Azure DocumentDB. Reference [16] proposed MapReduce-based algorithms that
parallelize data cube computation and reduce data scans. In this paper, we provide
comprehensive techniques and guidelines for effective migration from RDBMS to
NoSQL.

4 Migration from RDBMS to column-oriented NoSQL

In this section, we provide techniques and guidelines for effective migration from
RDBMS to HBase with Phoenix. The techniques and guidelines are exemplified and
discussed using a case study on TPC-H.

4.1 Translating SQL queries

Phoenix does not provide sufficient support for complex SQL queries with complex
predicates, subqueries, and views. To migrate such complex queries, we need to sim-
plify complex queries using query unnesting techniques [17–20] and temporary tables.
Furthermore, Phoenix simply joins tables in the order of their appearance in the FROM
clause without any join reordering. To optimize a join query, we should manually
rewrite the query with considering join orders.

For example, benchmark queries of TPC-H are very complex, and Phoenix does
not sufficiently support queries Q11, Q15, Q18, Q19, and Q21. For Q11, we unnest
the subquery in the HAVING clause because Phoenix does not support it. For Q15,
we store the result of a view into a temporary table because Phoenix supports only
a view defined over a single table using a SELECT * statement. For Q18, we unnest
the subquery with the GROUP BY and HAVING clauses because Phoenix produces
wrong results. For Q19, Phoenix does not efficiently evaluate a complex predicate of
the disjunctive normal form, which is a disjunction of multiple condition clauses. For
the query, Phoenix does not push down predicates. To efficiently process the query,
we compute results for each condition clause and union the results using temporary
tables. For Q21, we unnest the subqueries because Phoenix does not support non-
equi correlated-subquery conditions. All the translated TPC-H queries are posted in
[21].
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4.2 Denormalization

Because NoSQL systems do not efficiently support join operations, we need denor-
malization, which duplicates data so that one can retrieve data from a single table
without joining multiple tables. To denormalize relational schema, we use the method
called Column-Level Denormalization with Atomicity (CLDA) [2], which is the state-
of-the-art denormalization method. Although CLDA was originally proposed for a
document-oriented NoSQL, it is general enough to be applied to other types of NoSQL
such as HBase. CLDA avoids join operations without denormalizing entire tables by
duplicating only columns that are accessed in non-primary-foreign-key-join predi-
cates. CLDA also combines tables that are modified within the same transaction into
a unit of atomic updates to support atomicity. To do that, a transaction-query graph
[2] is built for a given workload. A transaction-query graph contains information on
primary-foreign-key relationships and transactions.

For example, Fig. 3 shows TPC-H Q8 where non-primary-foreign-key-join pred-
icates are shaded. If we add r_name to orders and p_type to lineitem, we
can avoid “orders �� customer �� nation �� region” and “lineitem ��
part”. Figure 4 shows a transaction-query graph forTPC-HQ8where an edgedenotes
a primary-foreign-key relationship between two tables. A dashed edge denotes that
two tables are modified within the same transaction. Table 1 shows the columns dupli-
cated by CLDA for the 22 TPC-H queries. The name of each column contains the
names of the foreign keys. The number of duplicated columns is small because there
are common columns appearing in multiple non-primary-foreign-key-join predicates.
According to the TPC-H specification, the lineitem and orders tables should
be modified within the same transaction. To support transaction-like behavior, CLDA
combines thelineitem and orders tables into a single tablelineorders. Thus,
we can avoid “orders �� lineitem” with atomicity.

4.3 Secondary indexes

Phoenix offers a secondary index on top of HBase using an index table, which consists
of indexed columns and the primary key of the indexed data table. The query optimizer
of Phoenix internally rewrites the query to use the index table if it is estimated to be
beneficial. If the index table does not contain all the columns referenced in the query,
Phoenix accesses the data table to retrieve the columns not in the index table. Phoenix
also offers a covered index, which is an index that contains all the columns referenced
in the query. Using a covered index, we can avoid the costly access to the data table,
but the overhead of data synchronization and space consumption increase.

4.4 Join algorithms

Phoenix supports a sort-merge join and a broadcast hash join. The broadcast hash join
first computes the result for the expression at the right-hand side of a join condition
and then broadcasts the result onto all the region servers; each region server has a
partition of the table at the left-hand side and computes the join locally. When both
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Fig. 3 TPC-H Q8 [2]

sides of the join are bigger than the available memory size, the sort-merge join should
be used. Currently, the query optimizer of Phoenix does not make this determination
by itself. Because query performance is significantly affected by join algorithms, it
is important to select the optimal one, taking into consideration the size of memory
available on the server and the sizes of both tables to join. We can force the optimizer
to use a sort-merge join by using the USE_SORT_MERGE_JOIN hint.

4.5 Decision support for the migration

Because it is hard to know in advance whether query performance is improved by
migration or not, we propose a decision support system for themigration. The decision
support system solves a two-class classification problem: one class of queries to be
improved by the migration and the other class of those not to be improved. We first
build a classifier by collecting a set of training data through migration experiments.
We then use the classifier to predict the class for a test query. If many queries are
predicted to be improved, we can decide to migrate.
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Fig. 4 Transaction-query graph for TPC-H Q8 [2]

Table 1 Columns duplicated by the CLDA method for the 22 TPC-H queries

Table Duplicated columns

supplier s_nationkey_n_name

partsupp ps_partkey_p_brand
ps_partkey_p_type
ps_partkey_p_size
ps_suppkey_s_nationkey_n_name
ps_suppkey_s_nationkey_n_regionkey_r_name

orders o_custkey_c_nationkey
o_custkey_c_mktsegment
o_custkey_c_nationkey_n_name
o_custkey_c_nationkey_n_regionkey_r_name

lineitem l_partkey_p_name
l_partkey_p_brand
l_partkey_p_type
l_partkey_p_size
l_partkey_p_container
l_suppkey_s_nationkey
l_suppkey_s_nationkey_n_name

5 Experimental evaluation

5.1 Experimental setup

For the migration from RDBMS to HBase with Phoenix, we evaluate the effects of
denormalization, column families, secondary indexes, join algorithms, and column
name length on NoSQL database. Using the TPC-H benchmark with scale factor (SF)
10, we measure the query execution time for the TPC-H queries. We do not manually

123



H.-J. Kim et al.

optimize join queries. We exclude queries that are failed due to out-of-memory errors
or running more than 1000 s. For each query, we first run the query once to warm up
the cache and then measure the average execution time for two subsequent runs.

We use HBase 0.9.22, Phoenix 4.8.1, and MySQL 5.7.18. All experiments were
conducted on a cluster of four PCs with an Intel Core i5-6600 CPU, 8 GB of mem-
ory, Samsung 850 PRO 256 GB SSDs, and Ubuntu 16.04. For HBase, one PC is
a master, and the other three PCs are region servers; we set the Java heap size,
HBASE_HEAPSIZE, to 6.5GB, theBlockCache size to 70%ofHBASE_HEAPSIZE,
and the MemStore size to 10% of HBASE_HEAPSIZE. We enable short-circuit reads
to read data directly from disk when the data are local. For MySQL, we use only one
PC; the cache size is the sameas theBlockCache size, andinnodb_flush_method
is set to O_DIRECT.

We conduct the following experiments. Before starting each experiment, we reboot
all the PCs and run major compaction. We use shortened column names except Exper-
iment 5 as they are repeatedly stored.

5.1.1 Experiment 1: the effect of denormalization

To see the effect of denormalization, we compare query performance for the denor-
malized schema generated by the CLDA method and that for the normalized schema,
which has a one-to-one correspondence with the relational schema. We calculate the
improvement ratio for each query that is the ratio of the execution time of the query for
the normalized schema divided by that for the denormalized schema.We also compare
the database size and loading time. We use the USE_SORT_MERGE_JOIN hint for
all the queries and do not use secondary indexes and column families.

5.1.2 Experiment 2: the effect of column families

To see the effect of column families, we compare query performance for the denormal-
ized schema with and without column families. The improvement ratio is calculated
as the ratio of the execution time without column families divided by that with col-
umn families. We use the USE_SORT_MERGE_JOIN hint and do not use secondary
indexes.

5.1.3 Experiment 3: the effect of secondary indexes on foreign keys

To see the effect of secondary indexes on foreign keys, we compare query performance
for databases with and without secondary indexes on foreign keys. The improvement
ratio is calculated as the ratio of the execution time without secondary indexes divided
by that with secondary indexes.We use the denormalized schemawith column families
and the USE_SORT_MERGE_JOIN hint. We also run the same test for MySQL to
see the effect of secondary indexes on RDBMS.
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5.1.4 Experiment 4: the effect of join algorithms

To see the effect of join algorithms, we compare query performance with and with-
out the USE_SORT_MERGE_JOIN hint. The improvement ratio is calculated as the
ratio of the execution time with the USE_SORT_MERGE_JOIN hint divided by that
without the USE_SORT_MERGE_JOIN hint. For comparison, we exclude queries
that do not perform the broadcast hash join. We use the normalized schema without
secondary indexes.

5.1.5 Experiment 5: the effect of column name length

To see the effect of column name length, we compare query performance with short-
ened column names (4–7 characters) and that with original column names (5–15
characters) of the TPC-H specification. The improvement ratio is calculated as the
ratio of the execution time for the original column names divided by that for the short-
ened column names. We also compare the database size and loading time. We use
the denormalized schema with column families and the USE_SORT_MERGE_JOIN
hint. We do not use secondary indexes.

5.1.6 Experiment 6: decision support for migration

To collect a set of training data, we compare query performance ofMySQL and HBase
with Phoenix. The improvement ratio is calculated as the ratio of the execution time for
MySQL divided by that for HBase with Phoenix. We classify queries according to the
improvement ratio using the linear support vector machine (SVM). We generate 1100
queries (50 queries per query template) using the qgen query generation programof the
TPC-H benchmark. Among the queries, 80% (20%) are used for training (testing). We
run each query and calculate the difference between MySQL status values before and
after the query is run. The calculated values are used as features.We exclude irrelevant
status variables such as Uptime. For MySQL, we use the normalized schema with
secondary indexes. For HBase with Phoenix, we use the denormalized schema with
column families and the USE_SORT_MERGE_JOIN hint and do not use secondary
indexes.

5.2 Experimental results

5.2.1 Experiment 1: the effect of denormalization

Figure 5 shows that the CLDA method significantly improves query performance at
the expense of more space and more loading time compared with the normalization
method that uses the relational schema as it is. This is because the CLDA method
reduces the number of joins by duplicating columns. The maximum and average
improvement ratios are 5.9 and 1.9, respectively, but the CLDA method requires 2.4
times more space and 1.8 times more loading time. The performance of queries Q1,
Q6, Q14, Q15, and Q19 is degraded because the queries for the normalized schema
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Fig. 5 Effect of column-level denormalization with atomicity. a Query performance with/without CLDA.
b Database size with/without CLDA. c Database loading time with/without CLDA

have zero or few joins and those for the denormalized schema access one big pre-joined
table lineorders. Because the lineitem and orders tables are combined into
the lineorders table, the queries for the denormalized schema cannot access the
lineitem table separately, but the queries for the normalized schema can. Thus, the
CLDA method incurs more I/Os. Queries Q2, Q7, Q8, Q9, Q17, Q20, Q21, and Q22
failed for the normalization method; and queries Q13, Q17, Q18, Q20, Q21, and Q22
failed for the CLDAmethod. The common cause of the failures is that the intermediate
results of joins consume a lot of memory and incur out-of-memory errors. We exclude
the failed queries when calculating the improvement ratio.

5.2.2 Experiment 2: the effect of column families

Figure 6 shows that denormalization with column families significantly improves
query performance compared with that without column families. Because columns
with similar access patterns are grouped into a column family and stored together on
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Fig. 6 Query performance with/without column families

disk, the number of disk accesses is reduced. The maximum and average improvement
ratios are 3.9 and 1.5, respectively. The database size with column families is almost
the same with that without column families, and the database loading time is 1.24
times longer for with column families. The performance of queries Q3, Q5, Q7, Q8,
Q9, and Q10 is degraded because the queries access more than one column family
and incur more I/Os compared with the counterparts without column families. Queries
Q13, Q17, Q18, Q20, Q21, and Q22 failed.

5.2.3 Experiment 3: the effect of secondary indexes on foreign keys

For MySQL, secondary indexes on foreign keys are very effective. Without secondary
indexes, 73% of queries (16 queries) takes more than 1 h, and the average query
execution time of the other 27% (six queries) is 5.4 s even for SF 1. With secondary
indexes, the average query execution time of all queries is 0.2 s for SF 1. Figure 7 shows
that for HBase with Phoenix, the query execution times with and without secondary
indexes are almost the same. The maximum and average improvement ratios are 1.12
and 0.96, respectively. The reason is that secondary indexes are not used formost of the
queries because they are not estimated to be beneficial. For some queries, secondary
indexes degrade performance even if the queries do not use the indexes because the
indexes consume space in the cache. Queries Q13, Q17, Q18, Q20, Q21, and Q22
failed.

5.2.4 Experiment 4: the effect of join algorithms

For the normalized schema without secondary indexes, the sort-merge join incurs
out-of-memory errors for 36% of queries (eight queries), but the broadcast hash join
64% of queries (14 queries). Figure 8 shows that for the six queries that successfully
perform the broadcast hash join, the maximum and average improvement ratios are
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Fig. 7 Query performance with/without secondary indexes on foreign keys

Fig. 8 Query performance with/without the USE_SORT_MERGE_JOIN hint

3.4 and 1.9, respectively. The broadcast hash join is faster than the sort-merge join
because the broadcast hash join is an in-memory operation.

5.2.5 Experiment 5: the effect of column name length

Figure 9 shows that compared with original column names, shortened column names
significantly reduce the database size and improve query performance. The maximum
and average improvement ratios are 2.3 and 1.2, respectively. The loading time is
almost the same because of parallel writes in a region server, but original column
names show higher I/O utilization compared with shortened column names. Queries
Q13, Q17, Q18, Q20, Q21, and Q22 failed.

5.2.6 Experiment 6: decision support for the migration

Figure 10 shows that compared with the MySQL, HBase with Phoenix improves the
performance of Q1, Q3, Q6, Q9, and Q15, but degrades the performance of Q2, Q4,
Q5, Q7, Q8, Q10, Q11, Q12, Q14, Q16, and Q19 and fails to execute Q13, Q17,
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Fig. 9 Effect of column name length. a Query performance with original/shortened column names. b
Database size. c Database loading time

Q18, Q20, Q21, and Q22. The maximum and average improvement ratios are 3.4 and
0.9, respectively. The accuracy of the proposed linear SVM classifier is 100%. We
can precisely predict the improvement in query performance after migration by the
virtue of three features—Innodb_rows_read, Innodb_pages_read, and Open_tables.
Innodb_rows_read is the number of rows read, Innodb_pages_read the number of
pages read from the buffer pool, and Open_tables the number of tables opened.

5.3 Guidelines

The CLDA method proposed for a document-oriented NoSQL is also effective for
a column-oriented NoSQL. Using column families significantly improves query per-
formance. Because the secondary index is implemented outside HBase, it is not as
efficient as in RDBMSs. We should use covered indexes for performance. The query
optimizer of Phoenix does not consider join reordering. It simply joins tables in the
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Fig. 10 Query performance of MySQL and HBase with Phoenix

order of their appearance in the FROM clause and often incurs Cartesian product
(e.g., Q2, Q8, and Q9 on the normalized schema). Furthermore, because the query
optimizer of Phoenix does not consider the case where the broadcast hash join incurs
out-of-memory errors, we often need to manually specify to use the sort-merge join.
Shortened column names significantly reduce the database size and improve query
performance. The SVM classifier precisely predicts whether query performance is
improved by migration or not. HBase with Phoenix outperforms MySQL when the
number of I/O requests and the number of table joins are large.

6 Conclusions

For effective migration fromRDBMS toHBase with Phoenix, we provided techniques
and guidelines for query translation, denormalization, column families, secondary
indexes, join algorithms, column name length, and decision support for the migration.
Experimental results show that denormalization, column families, and shortened col-
umn names improve query performance; shortened column names reduce the database
size; and the SVM classifier can support the decision of migration. Important open
problems for future work are supporting complex SQL queries, automatic index selec-
tion, and optimizing SQL queries for NoSQL.
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