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Plants are characterized by their ability to produce new organs

post-embryonically throughout their entire life cycle. In

particular development of all above-ground organs relies

almost entirely on the function of the shoot apical meristem

(SAM). The SAM performs a dual role by maintaining a pool of

undifferentiated cells and simultaneously driving cell

differentiation to initiate organogenesis. Both processes

require strict coordination between individual cells which leads

to formation of reproducible morphological and molecular

patterns within SAM. The patterns are formed and maintained

in large part due to spatio-temporal variation in signaling of

plant hormones auxin and cytokinin resulting in tissue-specific

transcriptional regulation. Integration of these mechanisms into

computational models further identifies the key regulatory

interactions involved in SAM function.
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Introduction
Multicellular organisms are characterized by the presence

of recognizable patterns shaping their body structures.

These patterns are produced from complex distributions

of cell fates in space and time. In higher plants the shoot

apical meristem (SAM) is a dynamic structure with undif-

ferentiated stem cells in its center and differentiated

organ primordia at its periphery (reviewed in [1,2]).

Two opposite processes occur in the SAM: the stem cell

pool is constantly maintained and renewed whereas some

cells accelerate their growth and division rate and even-

tually differentiate to become part of the newly forming
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organs (the leaves and flowers). The balance between

these two processes is strictly controlled over the life of

the plant and the location and timing of new organ

emergence appears to be tightly regulated. This regula-

tion can be first seen from the organization of the SAM

which is divided into functional zones with distinct cel-

lular behaviors (division and expansion) and distinct

cellular identities. In Arabidopsis thaliana the dome-

shaped structure of the SAM is divided into the central,

peripheral and rib zones. The central zone is found at the

summit and contains undifferentiated stem cells. The

laterally located peripheral zone is the site of organ

primordia initiation. The rib zone, situated below central

and peripheral zones, produces the internal tissues of the

stem. The SAM can be further divided into individual cell

layers. In the center of the SAM the top two layers (L1

and L2; collectively referred as tunica) are able to divide

only in one direction (anticlinally) whereas the deeper

layers (L3 and further; collectively referred as corpus) are

able to divide in any direction. This organization is largely

similar in other higher plants with some variations in the

number of tunica layers. The molecular patterns associ-

ated with the functional zones of the SAM are established

by tissue-specific expression of key regulatory genes as

well as mobile signals such as proteins and hormones,

which move between cells in the different SAM zones. In

this review, we summarize recent findings on the mecha-

nisms controlling and coordinating cell behavior and

pattern formation at the shoot apical meristem.

Setting the geometry of the SAM: coordinating
growth and cell division
Pattern formation at the SAM begins at the cellular level.

The cells in the central zone where the stem cells are

located divide slower than the cells in the peripheral zone

[3,4]. The cells in the central zone of the SAM have

overall similar cell size despite frequently observed asym-

metric cell divisions [5�,6�]. A few recent studies have

started to elucidate how the balance between cells divi-

sion and cell expansion is maintained [5�,6�,7]. In partic-

ular, the cell divisions appear to be triggered by a combi-

nation of factors including reaching a critical size and

adding a critical cell volume increment instead of a single

decisive event [5�]. Moreover, the cell cycle length [6�]
and the cell growth rate [5�,7] are adjusted to the variable

initial cell size acquired after geometrically asymmetric

cell division illustrating the presence of a compensatory

mechanism that allows the meristem to maintain the
Current Opinion in Plant Biology 2018, 41:83–88
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Minimal gene interaction network controlling SAM maintenance. CLV3

(red circle) and WUS (green circle) regulate each other expression

though the movement of WUS protein (green dots). The expression of

the cell differentiation-promoting genes such as KAN1 (brown circle) is

limited to the periphery of the SAM through direct repression by WUS

protein. WUS is activated by cytokinin signaling (light blue circle) and

in turn activates cytokinin signaling by itself. CLV3 is activated by a

hypothetical L1-derived signal (X).

Adapted from [19–21].
desired overall uniform structure. Indeed, the local vari-

ability of cell growth rates in the meristem plays a key

role in setting the geometry of the meristem [8],

highlighting the importance of cell behavior in generating

a specific shape.

The occurrence of both geometrically symmetric and

asymmetric cell divisions in the SAM questions not only

the long-standing debate of how cells determine where to

build a new cell wall but also whether this might play a

role in the function of the SAM. A few recent publications

discuss the rules behind positioning of new cell walls

[9,10��]. The assumption that the cells divide along local

minima of plane area [11] was challenged by providing

evidence that the new division planes orient along the

maxima of mechanical tensions in cell walls induced by

local heterogeneous growth which can differ from the

plane area minimum [10��].

Several recent publications are further highlighting the

importance of mechanical signals in the SAM. The divi-

sion of the SAM into the central and peripheral zones

indeed correlates with differences in mechanical proper-

ties: the central zone of the SAM is characterized by

increased stiffness of the tissue compared to more periph-

eral regions [12–14] or organ primordia [15,16]. These

mechanical properties appear to be genetically controlled

[12] and caused by differences in auxin content [15].

However how the spatio-temporal distribution of the

mechanical properties affects cell behavior and SAM

function still remains to be clearly established.

Setting the organization of the SAM: the gene
network controlling cell identities
The functional zones of the SAM are characterized by

specific expression of master regulatory genes with

CLV3 in the central zone [17], WUS in the organizing

center [18] and KAN1 in the boundary domain [19�]
amongst many others. Several recent publications have

attempted to model SAM maintenance based on expres-

sion patterns and interactions of these regulatory genes

[19�,20��,21,22,23��]. Computer simulations attempted to

define the minimal regulatory networks required for

functioning of the SAM (Figure 1). The models always

include the well-described WUS-CLV3 feedback loop,

which dynamically maintains the size of stem cell niche

[24–27]. Repression of the differentiation-promoting

genes such as KAN1 by WUS contributes to the entry

into differentiation [19�,20��]. Furthermore, this model-

ing work emphasizes the importance of cytokinin signal-

ing in SAM maintenance by showing that regulation

of WUS expression by cytokinin [28,29] and activation

of cytokinin signaling by WUS [30] are fundamental for

correct positioning of WUS in the SAM [20��,21].
Recently an additional signaling network was identified

which includes putative movement of a CLE peptide

produced in organ primordia to the center of the SAM
Current Opinion in Plant Biology 2018, 41:83–88 
where it regulates stem cell activity [23��] thus providing an

extra feedback regulation from developing organs on the

stem cell niche and providing an interesting mechanisms

for integrating stem cell maintenance and organogenesis.

The maintenance of the stem cell niche though WUS

continues to be the subject of extensive research. WUS

was shown to be a mobile protein which moves from the

WUS expression domain into L1 and L2 layers of the

SAM [25]. Lately, plasmodesmata were confirmed to

mediate this movement [31]. Structural domains respon-

sible for the spatial distribution and subcellular localiza-

tion of WUS protein were identified with partially contra-

dicting results in two independent studies [31,32].

Homodimerization appears to play a crucial role in

restricting WUS protein movement [31,32], in control

of CLV3 expression [33�] and in regulation of SAM

growth [31,32]. Surprisingly, WUS was shown to activate

CLV3 at low concentrations and repress at high concen-

trations, which accounts for the restriction of CLV3

expression to the upper layers of the central zone [33�].
Interestingly, misexpression of WUS reduced its protein

stability leading to degradation [32] which sheds a new

light on the previously described influence of WUS mis-

expression on SAM size and cell division rates in the

peripheral zone [34,35]. These molecular details would

need to be considered in future models as they modify

significantly our understanding of the molecular regula-

tions at play. The WUS-mediated control of the stem cell

niche involves direct regulation of multiple genes [19�,36]
but only WUS-CLV3 interaction has been characterized

in details [24–27,33�]. A recent publication focuses on

HEC1, a direct target of WUS, which influences stem cell

activity and controls expression of a subset of WUS target

genes in a manner antagonistic to WUS [37]. This illus-

trates the need for broadening the analysis of the different

targets of WUS.
www.sciencedirect.com
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The initiation of organ primordia is regulated by auxin and cytokinin.

The developing organ primordia are characterized by high auxin

signaling (blue) in primordia of all stages (P1–P5). Cytokinin signaling

(red) is the highest in the young primodia (P1 and P2) but decreases

rapidly in the older primordia (P3–P5). Auxin and cytokinin signaling is

first switched on at the site of the next primordia initiation (I1) but

absent from I2 site where primordia is predicted to initiate after I1.

Adapted from [52].
The well-studied WUS-CLV3 interaction module was

long believed to govern the shape and size of the meri-

stematic region in the SAM. New evidence suggest that

the apical-basal and lateral symmetries of the meriste-

matic SAM region appear to be controlled by fundamen-

tally different pathways with CLV3-WUS pathway being

more involved in the establishment of the apical-basal

axis whereas the HD-ZIPIII family transcription factors

and ERECTA predominantly influence the central-to-

peripheral axis [38–40]. CLV3, HD-ZIPIII transcription

factors and ERECTA appear to act in three different

pathways which regulate the shape and size of the meri-

stem [39,40]. Interestingly, the HD-ZIPIII transcription

factors act independently of WUS in the maintenance of

the stem cell pool [38].

The size and shape of the SAM can vary depending on the

ecotype [3,20��,41] or on environmental conditions

[20��,41]. The plants were shown to be able to adapt to

these individual variations by positively scaling both the

size and the shape of CLV3 and WUS expression domains

in correlation with increased meristem size and changes

in the geometry of the SAM [20��]. This study identifies a

plausible feedback from the geometry on the expression

of the WUS gene and thus on the size of the stem cell

niche, giving a hint on how cellular patterns may adapt to

the size and shape of plant tissues.

A few recent publications started to unravel gene regula-

tory networks involved in adaptation of the SAM to

environmental conditions. In particular, the SAM stem

cell niche was regulated in response to light and meta-

bolic signals with both pathways independently activat-

ing WUS expression though the TOR kinase [42��].

Setting the location and timing of organ
initiation: the role of hormone signals
At the periphery of the SAM, new leaf or flower primordia

are initiated at predictable positions and with regular time

intervals between initiation events (reviewed in [43–46]).

A long-standing theory postulates that the positioning and

timing of organs at the growing shoot apex is determined

by the presence of inhibitory signals around developing

organ primordia, these inhibitory fields preventing initia-

tion of new primordia. The current understanding of the

molecular mechanisms behind organ initiation suggests

that this inhibition results from auxin depletion in the

regions surrounding a local auxin accumulation that drives

organ primordia, a pattern created through self-organiza-

tion of polar auxin transport as a result of a feedback

regulation between auxin and its transport [47–50]. Inter-

estingly, the creation of local auxin maxima requires to

some degree the auxin response factor MONOPTEROS

that orients auxin transport towards the sites of the

developing organ primordia [51]. This suggests that

MONOPTEROS is required for the feedback between

auxin and its transport. Recent findings indicate that the
www.sciencedirect.com 
timing of primordia initiation is also regulated by an

interplay between auxin and cytokinin signaling [52��]
(Figure 2). This study focuses on the role of the AHP6

protein which production is induced by auxin and

enriched in organ primordia and developing flowers.

The AHP6 protein produced in the primordia is then

able to move to the neighboring cells where it acts as an

inhibitor of cytokinin signaling. The movement of AHP6

creates a differential in cytokinin signaling activity

between sites of successive organ initiation that facilitates

sequential initiation of organs and thus provides robust-

ness to the timing of organ initiation.

In addition to auxin and cytokinin, the establishment of

accurate organogenesis patterns at the shoot apex may

also requires reduced brassinosteroid (BR) hormone accu-

mulation at the boundary region between the meristem

and organ primordia [53,54]. The depletion of BR at the

boundary domain is achieved by the domain-specific

regulatory transcription factor LOB which induces
Current Opinion in Plant Biology 2018, 41:83–88
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expression of BR-inactivating enzyme BAS1 [53] and at

the same time though reduced expression of brassinos-

teroid-activated transcription factor BZR1 specifically at

the boundary region [54].

The analysis of the role of AHP6 discussed above also led

to discover the existence of noise on the timing of organ

initiation leading to specific phyllotactic defects. This

stimulated a new modeling attempt which integrated

random fluctuations in local perception of inhibitory

signals [55��]. The model is able to account for the

deviations from the expected organ initiation pattern

which is occasionally observed in various plant species.

Differential auxin patterns continue to regulate develop-

ment following the initiation of the shoot organs. In

particular, the developing leaf primordia require transient

low auxin zone at the adaxial (upper) side for successful

establishment of leaf polarity [56]. The auxin depletion at

the adaxial site is achieved by PIN1 auxin efflux trans-

porter which moves auxin away from the adaxial site of

the developing leaf primordia towards the meristem. The

same mechanisms that pattern the meristem are thus also

key in establishing the symmetry of the organs.

Axillary meristem initiation and formation is
regulated by pulses of auxin and cytokinin
In many seed plant species, new leaves are formed at the

shoot apical meristem during vegetative growth phase. At

the upper (adaxial) side of the newly formed leaf an

axillary meristem (AM) can be initiated. The AM serves

as a small stem cell niche and gives rise to axillary buds

which are able to remain dormant or eventually produce

an axillary shoot [57,58].

The formation of the axillary meristem appears to be

tightly controlled by patterns of hormone signaling levels

which presents a remarkable similarity to the mechanisms

behind the pattern formation in the SAM proper. The

process requires initial auxin depletion at the future AM

initiation site in the leaf axil [59�,60] closely followed by a

pulse of cytokinin signaling [59�]. This auxin depletion in

the leaf axil is achieved well before AM initiation at the

early stages of leaf primordia formation due to directed

polar auxin transport mediated by PIN1 localization

[59�,60].

Lately, the axillary meristem was shown to be regulated

by the same key genes as the main SAM. Specifically, the

regulators of the shoot stem-cell niche WUS and CLV3

were dynamically induced one after another during initi-

ation of the AM creating a two-step pattern of expression

[61]. Interestingly, CLV3 was initially induced in the

WUS-specific central domain before the expression

shifted to the expected L1 and L2 layers at the later

stages of AM formation [61]. Two recent studies also
Current Opinion in Plant Biology 2018, 41:83–88 
reveal the importance of the mobile stem-cell specific

gene STM for AM initiation [62�,63�].

The organ development at the SAM in maize is charac-

terized by complicated transitions from indeterminate

inflorescence meristem to determinate axillary meristems

[64]. A recent study elucidates molecular mechanisms

and gene modules which regulate switches between

different meristem types using a systematic approach

[65��]. The spatio-temporal transcriptional profiling lead

to identification of distinctive gene clusters which func-

tion in modules during meristem maintenance and

development.

Conclusions
The remarkable ability of plants to continually produce

new aerial organs results mainly from the activity of the

shoot apical meristem. The symmetries of the future

organs are laid out early during development in the

SAM and this process is controlled by specific molecular

patterns. A key mechanism appears to be contrasting

hormone signaling between different regions in the

SAM which results in tissue-specific gene expression

patterns. In turn, the differentially expressed regulatory

genes trigger cell-specific programs promoting cell fate

determination. A strong emerging trend in recent

research is that a similar set of signals and genes define

a patterning module that is used in the SAM, the devel-

oping organs and to establish new meristems such as the

AM. How this module is reused and how this allows to

link organ and tissue development to the SAM activity is

yet to be fully characterized but some of the key mecha-

nisms have clearly been identified.
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Argoul F, Hamant O: In vivo analysis of local wall stiffness at the
shoot apical meristem in Arabidopsis using atomic force
microscopy. Plant J 2011, 67:1116-1123.

14. Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L, Weber A,
Bayer E, Schorderet M, Reinhardt D, Kuhlemeier C, Smith RS:
Elastic domains regulate growth and organogenesis in the
plant shoot apical meristem. Science 2012, 335:1096-1099.

15. Braybrook SA, Peaucelle A: Mechano-chemical aspects of
organ formation in Arabidopsis thaliana: the relationship
between auxin and pectin. PLoS ONE 2013, 8:e57813.

16. Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C,
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