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Abstract

Deep learning is associated with the latest success stories in AI. In particular, deep neural networks are applied in increasingly dif-
ferent fields to model complex processes. Interestingly, the underlying algorithm of backpropagation was originally designed for political
science models. The theoretical foundations of this approach are very similar to the concept of Punctuated Equilibrium Theory (PET).
The article discusses the concept of deep learning and shows parallels to PET. A showcase model demonstrates how deep learning
can be used to provide a missing link in the study of the policy process: the connection between attention in the political system (as
inputs) and budget shifts (as outputs).
� 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Deep learning is associated with the latest success stories
in AI. From autonomous cars to AI beating a Go-master:
deep learning is the method of choice to construct machine
learning models that are useful in many complex situations.
Taking this success-story into account, it seems obvious
that political science could profit from this method as well.
A whole branch of political science approaches sees the pol-
icy process as a kind of cognitive system that transforms
political inputs from society into outputs. Punctuated

Equilibrium Theory (PET) is a very successful concept in
political science that is grounded in the theoretical works
of Herbert Simon on bounded rationality (Simon, 1955).
What separates this approach from rational choice theories
is - amongst others - the understanding of organizations
(Jones, 2003). While theories that rely solely on market
mechanisms can see organizations only as individuals
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(maximizing their utility function) or as markets, where
individuals meet. In bounded rationality organizations
are seen as cooperations of individuals identifying with
the organization. In many cases, this makes organizations
much more effective than markets, especially because paral-
lel processes can be organized with less information costs.
But this makes organizations quite complex, as well.

If complex systems must operate in a constantly changing
environment [. . .] they must modify their structures at a cor-
responding pace. The need for close coordination, even in
the presence of strong identification with the organization's
goals, places a very heavy burden on a system's capacity to
evolve toward greater effectiveness under changed condi-
tions. For although identification reduces the need to police
self-interest and to ensure its compatibility with organiza-
tional objectives, it also causes excessive influence of exist-
ing organizational practices and identifications upon
decisions that should be adapting to a changing world
(Simon, 2000, p. 753).
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Deep neural networks are very suitable for dealing with
this complexity. Taken into consideration the strong inter-
est of Herbert Simon in machine learning, it seems surpris-
ing that the connection between PET and deep learning has
not yet been tapped for the benefit of political science, at
least to the best of my knowledge. This is even more
astounding against the background that the underlying
algorithm of backpropagation was originally designed for
political science models. Unfortunately, the formerly
mutual connections between computer science and political
science seem today to have eroded. Cognitive system
research seems to be an ideal place, to bridge this gap
between the two disciplines by highlighting the parallels
of deep learning and PET. Hopefully, this attempt will
work as a humble contribution to re-establish the interdis-
ciplinary field of political data science.

The article proceeds as follows: First, the concept of
deep learning is introduced with a focus on neurons as
the building blocks of neural nets. Second, the idea to
understand the policy process as information processing
is recapitulated and linked to the problems of complexity
and noise. On this basis, third, a showcase of the imple-
mentation of deep learning in PET is presented. It is
demonstrated, that deep learning is capable of linking
attention signals in the political system to policy outcomes
in the form of budget changes. Fourth, the theoretical rel-
evance of this demonstration is discussed. Finally, the arti-
cle provides an outlook explaining how more advanced
deep learning models could push the development of PET
even further.

2. What is deep learning?

Deep learning as a machine learning approach that is
based on neural networks. A very good description of neu-
ral networks is given by Pat Langley and Herbert Simon:

One major paradigm, associated with the area of neural net-
works, represents knowledge as a multilayer network of
units that spreads activation from input nodes through inter-
nal units to output nodes. Weights on the links determine
how much activation is passed on. The activations of output
nodes can be translated into numeric predictions or discrete
decisions about the class of the input. [. . .] One common
learning algorithm, among the many that have been
explored, carries out gradient descent search through the
space of weights, modifying them in an attempt to minimize
the errors that the network makes on training data (Langley
& Simon, 1995).

There are different opinions which conditions make a
neural network actually ‘‘deep”. A very basic idea of deep
neural networks is the combination of multiple hidden lay-

ers of non-linear transformations. In the show-case model
used in this article for demonstration this basic definition
of deep learning is applied. ‘‘Real” deep learning goes far
beyond the simple addition of layers in neural networks
but alters the underlying algorithms to create feedback
loops and reinforcement learning. These aspects will be dis-
cussed in Section 6.

In an analogy to biological processes in the brain the
building blocks of neural networks are called ‘‘neurons”.
A neuron collects different inputs and transfers them into
a non-linear output. From a mathematical point of view,
a neuron combines two functions: a summation function
f ðsÞ and an activation function f ðaÞ. ‘‘Given a sample of
input attributes x1; . . . ; xn a weight wij is associated with
each connection into the neuron” (Lewis, 2016, p. 16).
All inputs are summed up according to:

f ðsÞ ¼
Xn

i¼1

wijxj þ bj ð1Þ

The parameter bj is the bias and can be interpreted like an
intercept in regression. It allows to the activation function
to be shifted upwards or downwards.

The activation function takes the result of the summa-
tion as an input and transfers it in a non-linear way, usually
to values between 0 to 1 or �1 to +1. There are many dif-
ferent functions that can be used as activation function but
the s-shaped sigmoid function is very common (Friedman,
Hastie, & Tibshirani, 2001, p. 393):

f ðaÞ ¼ sigðtÞ ¼ 1

1þ e�t
ð2Þ

The reason for the popularity of the sigmoid function is
that it can be differentiated very easily, which is important
for the optimization process in neural networks.

A neural network is a combination of single neurons. In
a deep neural network the output from a layer of neurons
functions as input for the next layer (see Fig. 1).

It is import to note that the strength of the connections
of the neurons is determined by the weights assigned in the
summation function of the following neuron. An output
from a neuron (or the input layer) may have weight 0 in
the summation function of one following neuron - i.e. it
does not count for activation at all. But for another neuron
the same output may have a higher weight that makes it
very important for activation. Two things should become
clear at this point:

1. A deep neural net is able to represent a very complex
non-linear prediction space.

2. The final result of the model is determined by the
assigned weights of the neurons.

This leads to the question: How are the weights
assigned?

The basic algorithm to calculate the weights is called
backpropagation. ‘‘The first practical application of back-
propagation was for estimating a dynamic model to predict
nationalism and social communication in 1974” (Werbos,
1994, p. 270) by Paul J. Werbos in his dissertation. The
connection between political science and deep learning



Fig. 1. Deep neural net example.
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therefore was very strong in the beginning. But unfortu-
nately, Werbos’ work had a much stronger effect on com-
puter science than on political science. The basic idea of
the algorithm is quite simple: To begin, there must be some
data with inputs and outputs to train the model. First, each
neural connection gets a random weight so that the model
produces outputs and a square error E can be calculated
from the difference of these outputs to the observed values.
The innovative idea now is that with these given values we
can calculate the derivatives of the activation functions of
the neurons (starting with the last and then going back-

wards). Therefore, we know, if the weights of a neuron
should be increased or lowered to minimize E (Werbos,
1994, pp. 272–277). This procedure is repeated until an
optimum is reached (or in practice, until a stopping rule
like ‘‘stop after 1500 attempts” is activated). Friedmann
et al. provide a mathematical notation and explanation
of the backpropagation algorithm (Friedman et al., 2001,
p. 396).

The described procedure is a non-parametric method
and to this extent similar to other machine learning algo-
rithms like random forest or support vector machine (see
Hegelich, 2016, p. 99). This means, the model is estimated
directly from the data instead of estimating parameters for
a probability density function (PDF). At first glance this
difference may seem trivial, but it is not: In parametric
methods it is assumed that there is a data-generating pro-
cess that is correctly modeled by the underlying function.
As long as we stick to this model, we believe that the pre-
dicted values are the true values while the observed values
are random deviations from this truth, caused by noise. The
plausibility of the model is tested against its accuracy in

prediction (normally measured as R2 or any other derivate
of squared or absolute errors). Second, it is tested if the
deviance of the observed values from the predicted values
is likely to be the product of random noise (significance
tests and confidence intervals).

In the following Section 1 will discuss why this epistemo-
logical point of view - the model (as long as it is accepted)
represents the true data-generating process and the
observed values are random deviations from this truth - is
very problematic when we are dealing with policy pro-
cesses. At this point it is important to stress that deep learn-
ing is different: The observed data-generating process is
taken as true. The deep neural network is a mathematical
representation of a process that produces results that are
as similar to the observed results as possible. It does not
matter, if the network with its neurons is a good represen-
tation of the real process’ structure as long as the results
are similar. In fact, it is common practice to build networks
that are over-complex (that is why the layers are called hid-

den) and then to trust in the ability of backpropagation to
shut down unnecessary neurons by assigning zero weights.
”Generally speaking it is better to have too many hidden
units than too few. With too few hidden units, the model
might not have enough flexibility to capture the nonlinear-
ities in the data; with too many hidden units, the extra
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weights can be shrunk toward zero if appropriate regular-
ization is used” (Friedman et al., 2001, p. 399).

It is important to note that this over-complex structure
means that neural networks are not meant to be a simula-
tion of a real world process: AlphaGo, the AI of Google
DeepMind that has beaten a Go-master, uses deep neural
nets. But nobody would argue that it plays the game like

a human. Instead it uses a very complex structure to pro-
duce similar results. To take the observed data as the truth
also means that there is no ‘‘excuse” for deviations of pre-
dicted values and observed values. The whole goal of the
backpropagation algorithm is to minimize the prediction
error and if at one point the prediction is poor, deep neural
nets will try to find a better representation of the data-
generating process, even if this changes the whole structure
of the network.

3. Policy process as information processing

Jones and Baumgartner (2005) have described the policy
process as information processing (see Fig. 2).

Different sources of information are received via indica-
tors by political institutions and agents. Therefore, the pol-
icy process is shaped by the capacity of these actors to
process this information. But due to bounds of rationality
the information processing capacities of individuals and
organizations differ fundamentally: while organizations
are capable of parallel processing, individuals have to rely
on serial processing. This means, two different kinds of
processes are going on: while political institutions produce
steady outputs based on routines, the decision-makers in a
hierarchical structure can focus their attention only on sin-
gle issues. The results are the repeatedly observed charac-
teristics of PET: incrementalism and drastic policy shifts,
overreaction and underreaction, policy bubbles and ‘‘nega-
tive” policy bubbles, etc. The outputs of the policy process
follow a ‘‘heavy tailed” distribution, i.e. while the majority
Fig. 2. Information processing. Source: J
of outputs is moderate at any given time, we will find in
longer time-series punctuations of this equilibrium; or in
a more mathematical formulation: The probability of
extreme values is much higher than we would expect from
a normal distribution (see Jones, Sulkin, & Larsen, 2003, p.
164).

The resulting distribution of policy outputs can be
demonstrated in annual percentage budget changes in the
USA (see Fig. 3) and probably any other country. It has
been declared as ‘‘general empirical law” by Jones et al.
(2009) and has been tested in many cases (Breunig &
Koski, 2012; Flink, 2015; Jones & Baumgartner, 2012;
Jones, Zalányi, & Érdi, 2014). Simulations have shown that
this heavy tailed distribution necessarily results from the
described information processing structure (Thomas III,
2016). In principle, it should therefore be possible to pre-
dict policy outputs by using a heavy tailed PDF in a gener-
alized regression model. Hegelich, Fraune, and Knollmann
(2015) go this way and they provide proof of concept in the
case of nuclear energy budgets in the USA. Besides using a
generalized regression model (general linear model (GLM))
with an extreme value function, they use a very complex set
of input variables that is heavily filtered with data-mining
techniques. This approach works, but only to a certain
extent: The model outperforms models with the same
inputs and without heavy tailed PDF as well as models
with simpler inputs. But the prediction error E of the model
is still very high and its strengths seem to lie in identifying
different corridors of uncertainty rather than in delivering
sound predictions (Hegelich et al., 2015, p. 250). Neverthe-
less, the model shows that there is a connection between
indicators of attention and actual policy outcomes and that
the probability of system shifts can be modeled over time
and this goes beyond the stochastic process models of
PET (Breunig & Jones, 2011; Breunig & Koski, 2012).
But at the same time, the skepticism of Jones towards pre-
dictions of budget shifts seems to remain valid:
ones and Baumgartner (2005, p. 165)



Fig. 3. Histogram of percentage budget shifts. Source: Hegelich (2016, p.
102)

1 To be precise: the noise model illustrated in Fig. 2 introduces
‘‘measurement noise” within the policy process: political agents do not
receive unbiased information of the world but only indicators. Scientists
have to try to estimate these indicators and will thereby add another layer
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Institutional costs in politics may approximate the manner in
which friction operates in physical models. When friction is
introduced into idealized physical models, nonlinear sys-
tems result [. . .]. Such open systems result in an output pat-
tern that is episodic and punctuated, with extraordinary
difficulty in making point predictions (Jones et al., 2003,
p. 154).

From the discussion of deep learning and non-
parametric approaches and from the theoretical founda-
tions of PET, we can derive a strong argument that
explains success and failure of the GLM approach. The
problem is the noise. As can be seen in Fig. 2, the outputs
of the system are not only shaped by the described duality
of serial and parallel processing, but also by the introduc-
tion of noise at different levels. The GLM approach might
consider the heavy tailed PDF of the signal, but the devia-
tion of the observed values from the seemingly true model
is taken to be random, i.e. following a normal distribution.
The theory behind this noise-model is the central limit the-
orem (CLT). The CLT states that the mean of a large num-
ber of iterates of independent random variables will be
approximately normally distributed, regardless of the
underlying distribution, in case they have a well-defined
expected value and well-defined variance. As long as we
think of noise in the policy process as the sum of different
emitters of disturbance that are independent from each
other and are producing random but stable (well defined
variance) outputs, normal distribution is the safest guess.
But Werbos (1994) provides two strong arguments, why
these assumptions do not fit to the policy process and to
social science in general.

The first argument is questioning the ‘‘well-defined vari-
ance” statement. If we imagine that there is one emitter of
disturbance that leads to very strong deviations but is only
very seldom active or even not on a regular basis but only
once and then disappears for ever, the noise will not follow
the expected normal distribution.

There may be many processes that normally plod along in a
predictable sort of way, governed by a noise process bðtÞ
that fits a normal distribution and that never gets to be very
large; every once in a while, however, the process may be
hit by a fluke, which leads to changes much larger than
one would have expected in the normal course of events.
Suppose that p1 is the probability, at any time, of getting a
fluke. [. . .] most of the time - ð1� p1Þ to be precise - b will
fit the same bell-shaped curve as before; however, when a
``fluke” occurs, b will fit a much broader bell-shaped curve,
leading to much larger values for b (Werbos, 1994, pp. 54–
55).

From a PET perspective this should sound very familiar.
In fact, if we accept political signals to be heavy tailed dis-
tributed, it is very unlikely that political noise follows a
normal distribution.

The second argument is ‘‘measurement noise” (Werbos,
1994, p. 55). It is very unlikely that data in political science
is an unbiased representation of the real world. PET
accounts for this explicitly by introducing noise between
the information sources and the received indicators (see
Fig. 2).1 The problem with measurement noise is that it
is excavating the core assumptions of classical statistics:
first, it transfers the model - that is taken to represent the
true data-generating process while the observed values
are thought to be random deviates - from an explicit model
to an implicit one.

In an explicit model the current state of a system UðtÞ
allows to calculate the state at a later time Uðt þ DtÞ with
an error cðtÞ, which - for the sake of the argument - might
be normally distributed:

Uðt þ DtÞ ¼ F ðUÞ þ cðtÞ ð3Þ
If we consider process noise and measurement noise, we

cannot calculate Uðt þ DtÞ from UðtÞ, any more. Let’s
assume we do not measure the real state of the system U

but only U 0 where d is the measurement noise.

U 0ðt þ DtÞ ¼ Uðt þ DtÞ þ dðt þ DtÞ ð4Þ

Given that we do not know the true value of UðtÞ at any
time t, this model is not an ``explicit” model; it does not tell
us directly how to estimate U 0ðt þ 1Þ [U 0ðt þ DtÞ in the here
used notation, N.N.] from earlier available data (Werbos,
1994, p. 55).

The results of the model cannot be taken as true, if the
inputs do not represent true values either. Even if the cau-
sal relation the model presents was actually true, the statis-
tical model would come up with wrong results. This does
not mean that the model will not ‘‘work” to predict the
observed values. But it means that the model cannot be
of measurement noise.
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taken as a representation of the true data-generating pro-
cess. Therefore, it has no higher plausibility then any other
model and the only justification available is the comparison
of predicted and observed data.2

Taking these two arguments about the nature of noise in
social science seriously, we have three options on how to
proceed: we can try to build advanced models with explicit
noise models included and with mechanisms to detect mea-
surement noise over time (Box, 1979; Harvey & Todd,
1983). Or, we stop pretending that our models are valid
representations of the true data-generating process. Then,
we either stop making predictions and concentrate on the
stochastic process that reveals its characteristics over time
but stays unpredictable (Breunig & Jones, 2011). Or, we
stop worrying about the process and concentrate on predic-
tions, assuming that the model with the lowest error E is
the best representation of what is going on in our data.
Apparently, all these approaches would converge with
growing success: very good complex models would steadily
reduce the bias from noise. Stochastic process models
would reveal more and more hidden characteristics of the
real-world process. And deep learning models will generate
an artificial process similar in its outputs but not necessarily

in its structure to the real-world process, because otherwise,
predictions would not be stable.

4. A showcase model: deep learning and the policy process

To demonstrate the potentials of deep learning, I will
build a model that tries to predict punctuations in budget
shifts from the attention of political actors. Data is taken
from the Comparative Agendas Project (CAP) for the case
of the US.3 Budget and attention data is coded in different
systems in CAP, but some of the major functions are quite
comparable (e.g. budget function ‘‘Natural Resources and
Environment” and CAP function ‘‘Environment”).
Table A.3 shows the corresponding and non-
corresponding codes. Fig. 3 shows the histogram of the ele-
ven budget functions (as annual percentage change) for
which there are corresponding CAP functions. There are
several definitions in the literature on which observations
in a distribution qualify as a punctuation and which do
not. Baumgartner and Epp (2013) recently suggested
counting the top and bottom 5 percent of the observed
changes as punctuations. In an earlier study Jones,
Baumgartner, and True (1998) qualified annual increases
greater than 20 percent and decreases greater than 15 per-
cent as punctuations. Epp and Baumgartner recently pro-
2 In addition, measurement noise cannot be modeled as independent

emitters because it might effect every measurement.
3 The data used here were originally collected by Frank R. Baumgartner

and Bryan D. Jones, with the support of National Science Foundation
Grant Nos. SBR 9320922 and 0111611, and are distributed through the
Department of Government at the University of Texas at Austin. Neither
NSF nor the original collectors of the data bear any responsibility for the
analysis reported here.
posed a new definition for puncutations (Epp &
Baumgartner, 2016, p. 4). Although their squared folded

percentile ranking index is an improvement compared with
simple cutoffs like +20 and �15 per cent, it has some prob-
lematic characteristics: first, it finds punctuations per defi-
nition. If this index was used for distributions without
heavy tails, it would identify punctuations, as well. Second,
Epp and Baumgartner construct this index over the com-
bined distributions of all budgets. But we know that differ-
ent functions follow different distributions - although
maybe all of them are heavy tailed (Jones et al., 2009).
To evaluate if a budget change can count as punctuation,
therefore the inter quantile range (IQR) is calculated for
each budget function as proposed by Hegelich et al.
(2015, p. 240) by the following formular:

IQRðxÞ ¼ quantileðx; 3=4Þ � quantileðx; 1=4Þ ð5Þ
Any budget change is counted as punctuation if it satis-

fies the following condition:

quantileðx; 3=4Þ þ IQRðxÞ � 1:5 < x _ x

< quantileðx; 1=4Þ � IQRðxÞ � 1:5 ð6Þ
This formular transfers the dependent variable (Punc)

into the boolean values TRUE or FALSE. This use of
the IQR is exactly what is commonly used in parametric
statistics to describe ‘‘outliers”. The idea behind this is that
the deep learning model shall predict exactly these points
classical methods would classify as ‘‘obscure”.

The independent variables are constructed from the
datasets ‘‘Public Laws” (lawsS), ‘‘Congressional Hearings”
(congS), ‘‘Executive Orders” (eoS), ‘‘State of the Union
Speeches” (souS), and ‘‘Gallups Most Important Problem”

(gallupS). For each CAP topic that corresponds to a bud-
get function an annual count is created (e.g. if Congress
had 10 hearings in 1970 on ‘‘defense” the value would be
10). For ‘‘Gallups Most Important Problem” the percent-
age of mentions of the topic in the actual year is taken as
value. Data is scaled before combining the different topics.
The final dataset covers a timespan from 1950 to 2013 and
consists of 580 entries in six columns.

To evaluate the predictive power of different models, the
dataset is divided in a trainingset of 386 randomly choosen
observations and a remaining set of 194 observations for
testing.

A deep neural net with an input layer of five neurons
(the independent variables) and three hidden layers of nine,
nine and three neurons is fitted on the trainingset with the
classical backpropagation algorithm (see Fig. 1). In accor-
dance with the ‘‘measurement noise” discussion above, dif-
ferent numbers of hidden layers and neurons have been
tested to find a combination that leads to the best predic-
tions. It should be noted therefore, that there is nothing
special about the specific structure of the network and
any variation that would come up with better results was
to be preferred. There is no connection between this special
structure and the structure of the policy process in the real



Table 1
Confusion matrix trainingset.

FALSE TRUE Total

Predicted

FALSE 347 0 347
Observed TRUE 1 38 39

Total 348 38 386
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world. To find an adequate stopping criterion, the squared
errors for every epoch of backpropagation are plotted
(Fig. 4). After 5000 iterations, the model seems to produce
stable results. To be on the safe side, the maximum itera-
tion parameter is set to 6000.

We can now check the performance of the model by
evaluating the confusion matrix (Table 1). The results are
very promising: the model has rightly labeled all but one
data-point of the trainingset. Unfortunately, there is a typ-
ical phenomenon in deep learning, called over-fitting. The
algorithms are sometimes very accurate on the dataset
the model is fitted to but perform poorly on new data.
The state of the art procedure to deal with this situation
is cross-validation. The idea is to build the model on one
dataset and test it on a different one. ‘‘Ideally, there would
be two random samples from the same population. One
would be a training data set, and one would be a testing
data set. [. . .] Often, there is only a single data set. An alter-
native strategy is to split the data up into several randomly
chosen, nonoverlapping parts” (Berk, 2006, p. 277). For
cross-validation the dataset is split randomly in a training
set containing e.g. two thirds of the data and a test set with
the remaining one third. The final model is fitted on the
training data only and the predictions for the test data
are evaluated. This validation set approach in principle
should prevent over-fitting. An advantage of this method
is that it is easy to apply, but there are two potential draw-
backs that should be kept in mind:

1. The validation-set approach can lead to quite different
results, depending on the actual division of training
and test set. In practice, splitting the data should always
be made with a ‘‘frozen” random number generator so
that others are able to reproduce the results.

2. ‘‘Since statistical methods tend to perform worse when
trained on fewer observations, this suggests that the val-
idation set error rate may tend to overestimate the test
error rate for the model fit on the entire data set” (James
et al. 2013, 178). The splitting of the data in a training
set and a test set therefore leads to a lower level of accu-
racy. The two thirds approach is often seen as best-
practice, because it takes many observations for training
Fig. 4. Backpropa
- which leads to high accuracy - but leaves sufficient
observations for testing. But in practice, any other pro-
portion of test and training data is possible (e.g. two sets
of equal size).

As described above, data for testing was reserved for
testing, so we should take a look at the confusion matrix,
where the model is predicting new data.

As can be seen from Table 2 the model is misclassifying
some datapoints on new data. But the accuracy is still quite
high with 85 per cent. Three of the 14 punctuations in the
dataset were predicted correctly, but 18 times the model
predicted a punctuation falsely. To work as a reliable clas-
sificator for punctuations, the model would have to be
improved. But nevertheless, this test-case shows that there
is a signal in the data, that can be estimated. An alternative
model from parametric statistics would be a generalized
linear model based on a binomial distribution. This model
was fitted on exactly the same data. But neither in the test-
set nor in the trainingset was the GLM able to identify any
punctuations in the budget data, because it is averaging
predictions to the mean.

Both models not only deliver the pure predicted values,
they also include an estimation of how sure the model is
about each prediction. These probabilities can be used to
visualize the performance of different classification models
by plotting them in an ROC curve. ‘‘The name ‘‘ROC” is
historic, and comes from communications theory. It is an
acronym for receiver operating characteristics” (James,
Witten, Hastie, & Tibshirani, 2013, p. 147). For an ROC
curve the predictions are ordered by their probabilities.
In some cases the model is very sure that there was no
punctuation (e.g. probability 0.1), in other cases TRUE is
gation error.



Table 2
Confusion matrix testset.

FALSE TRUE Total

Predicted

FALSE 162 18 180
Observed TRUE 11 3 14

Total 173 21 194
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a more likely prediction (e.g. probability 0.8). For every
probability value the true positives (i.e. the cases which
have been rightly labeled, also called sensitivity) and the
false positives (i.e. the cases which have been wrongly
labeled also called specificity) are counted. Plotting these
values against each other results in an ROC curve (see
Fig. 5). A perfect model that predicts every observation
correctly would be represented by a ROC curve that
hugged the top left corner of the plot. The bigger the area
under the ROC curve (AUC), the better the model is. A
purely random classifier has an AUC of 0.5 and is repre-
sented by a straight diagonal in the plot. Because true pos-
itive rate and false positive rate are independent from the
Fig. 5. ROC
type of classification model, we can use ROC curves to
compare the performance of any classifier.

Fig. 5 shows that the deep learning approach clearly
outperforms the GLM. The latter is not able to identify
any signal and performs like a pure random classifyer (or
even worse).

5. Linking theories of budgetary politics to the politics of

attention

In a nutshell, PET sees the policy process as information
processing. Bounded rationality leads to disruptive pat-
terns of attention. The institutional layout of the system
adds friction to the information process. The outputs of
the system - especially budgets - can be described as dis-

rupted exponential incrementalism (Jones et al., 2014, p.
4). There is a sound theory behind this process model:
bounded rationality (Jones, 2003; March & Simon, 1958).
But empirical research remains somewhat fragmented.
There is a lot of work on attention, the different institu-
tional settings in different political systems and the stochas-
tic process of budget functions. Some empirical studies try
to connect two of these links in the information processing
curve.
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chain: attention and institutions, institutions and budgets.
But studies that link the attention inputs to the budget out-
puts are very rare.4 But as long as only fragments of the
framework are tested individually, the broader concept
remains questionable. Without providing empirical evi-
dence for the whole chain of information processing, the
underlying causal explanations of PET are unstable. For
example, John and Bevan (2012) argue for ‘‘minor punctu-
ations” that are not connected to attention. Howlett (2009)
criticizes the lack of causality because he is focusing only
on the work on the stochastic process. There are at least
two reasons why it is very difficult to provide empirical evi-
dence for the hypothesis that the policy process is a system
of information processing: one is noise, the other is
complexity.

Recent studies in PET provide new insights as to the
importance of the above described forms of ‘‘process
noise” and ‘‘measurement noise”. Jones et al. (2014) find
that even when we consider exponential shifts in budgets,
long time series reveal ‘‘critical junctures”. There are dis-
ruptive breaks in policy process like wars and major crises.
As Werbos (1994) explains, this affects the distribution of
noise so that it is nearly impossible to build an explicit
model. Measurement noise is addressed by John and
Bevan (2012) in their concept of ‘‘procedural punctua-
tions”. If a government is dealing with different issues of
the same topic that are connected, this might lead to seem-
ingly high attention (measured in numbers of hearings,
etc.). More prominently, the problem of measurement
errors was raised by Dowding, Hindmoor, and Martin
(2015). They somehow miss the point by arguing attention
would be a ‘‘proxy measure” for importance. But they are
right to stress that data from PAP is not necessarily mea-
suring what we believe it to be. In his answer to this cri-
tique, Jones stresses that PAP.

tabulates incidences of policy activity by content categories.
This activity can certainly involve talking about something -
as is the case for speeches by the executive. In other cases, it
is incorrect, as is the case for counts of laws [. . .] or regula-
tions [. . .]. In the case of parliamentary questions or Con-
gressional hearings, the measure is certainly what
government is doing, although it is also a measure of what
topics the government is paying attention to (Jones, 2015, p.
39).

‘‘Policy activity by content categories” involves clearly
less ambiguity than ‘‘attention”. So, the aim is, of course,
to reduce measurement noise. Nevertheless, in doing so,
the modeled process is probably biased and deviations of
predictions from observations will not necessarily be purely
random.

The second problem, why it is so hard to follow a speci-
fic signal through the policy process, is complexity:
Interactions of a system with its environment are seldom lin-
ear and direct. One must appreciate internal system dynam-
ics as well as external inputs to understand system outputs.
The adjustment incorporates potentially complex interac-
tions between the internal parts of the system and its envi-
ronment. These interactions are often governed by simple
processes, but they can combine in ways that generate a
great deal of complexity (Jones & Baumgartner, 2012).

Compared with this characterization, political science
models of the policy process seem to lack complexity in
too many ways. Based on formal analysis and comparison
with US budget data (Jensen, Mortensen, & Serritzlew,
2015) that models should account for different amounts
of friction. This research is focused on the data generating

process. Deep learning might provide a different solution to
the problems of noise and complexity. The presented exam-
ple gives empirical evidence that the outputs of the policy
process as an information-processing system where atten-
tion leads to stability and fundamental policy shifts can
be modeled in a neural network. But the potential of real
deep learning goes far beyond this basic show-case model.
In the following section, I will shortly describe some more
advanced features of deep learning that might allow for
even better models.

6. Advanced deep learning

A very useful aspect of neural nets has not yet been men-
tioned: neurons may be very simple, but they can be com-
bined in the most flexible way. For example, there is the
possibility to create so called ‘‘context layers”. Neurons
in these layers are storing the values of a hidden layer.
The whole system gets a kind of memory this way. Elman

networks (Elman, 1993) fall into this category. The advan-
tage is that the former status of the system is treated as its
own input. With this ‘‘trick”, developments over time like
autocorrelation can be modeled.

For PET this might be very important. First, all stochas-
tic process approaches have tried to get rid of autocorrela-
tion, because the estimation of a PDF is only valid under
the assumption that data is not autocorrelated. Therefore,
data is transfered to percentage changes. But due to this
transformation, parts of the signal might get lost and
new sources for noise are introduced. As an example,
Jones et al. (2009) refer to budget punctuations in Ger-
many. One of the biggest punctuations that is presented
(because the focus is on annual percentage changes) is de
facto an increase in the federal budget to support sport
events in the early years of the Federal Republic of Ger-
many that is nearly invisible in absolute terms. In addition,
input and output of the policy process may lie on different
time scales. Hegelich et al. (2015) find that there is a con-
nection between attention and budgets with a time lag of
two years, which is very plausible because in the US the
first budget plans are presented two years in advance. Inte-



68 S. Hegelich / Cognitive Systems Research 45 (2017) 59–69
grating context layers in deep learning models might there-
fore improve the accuracy of the predictions.

The second feature of neural networks worth mention-
ing is that they are not necessarily limited to one output
variable. Fig. 1 demonstrates this idea already. If one of
the hidden layers would be defined as output layer, the
model is delivering multiple outputs for every input.

For PET this opens the possibility to predict values for
all budget functions at once. Due to the fact, that a dollar
can only be spent once, this makes a lot of sense. The same
is true for attention: if any topic is in the focus of political
agents, this will reduce the attention they can give to other
issues (see Hegelich et al., 2015, p. 233).

Finally, neural networks can perform unsupervised learn-
ing tasks as well. This means, the model can find patterns in
the data and reduce its dimensions without referring to pre-
vious reassured observations. Interestingly, this links deep
learning to parametric approaches. The idea is that we have
two (or more) layers, where all neurons in one layer are
connected to the other layer and vice versa. But no neuron
is connected to a neuron in the same layer. When opti-
mized, the second layer will learn the probability function
of the first layer (Lewis, 2016, pp. 179–181). But the advan-
tage is, this function is not defined by the scientist but gen-
erated from data. Neural networks of this kind are called
Restricted Boltzman Machines (RBM). A deep belief net-

work finally is a combination of stacked RBM. With this
trick, deep belief networks can handle extremely complex
data structures: the model learns which patterns in the data
form useful features and how this features in the end can be
used for sound predictions. It would be very interesting to
see what such a machine learning system could generate
from the rich data of the Comparative Agenda Project
(CAP).

7. Outlook

While data available for political scientists is steadily
growing in an exponential way, the methods to analyze
complex systems are not within the common tool box of
political scientists. Re-establishing the a previously strong
Table A.3
Budget codes and refering PAP codes.

BudgetCode BudgetTopic

1 50 National Defense
2 150 International Affairs
3 250 General Science, Space, and Technology
4 270 Energy
5 300 Natural Resources and Environment
6 350 Agriculture
7 370 Commerce and Housing Credit
8 400 Transportation
9 450 Community and Regional Development
10 500 Education, Training, Employment, and Social Serv
11 550 Health
12 570 Medicare
connection of political science and computer science in
the tradition of outstanding researchers like Herbert Simon
and Paul Werbos and thereby defining political data science

might be crucial for understanding developments with dis-
ruptive changes.

But the increase in complexity in deep learning has
three negative effects that should be kept in mind: First,
the increase of layers makes models more computational
intensive. ”With N observations, p predictors, M hidden
units and L training epochs, a neural network fit typically
requires OðNpMLÞ operations” (Friedman et al., 2001, p.
414). But computational power does not seem to set a real
limit to applications in political science. There are clever
algorithms to reduce the number of operations, e.g. by
defining ”forget gates” in Long Short-Term Memory net-

works (Gers, Schmidhuber, & Cummins, 2000, p. 2451).
In addition, specialized hardware is continuously devel-
oped that allows for faster execution of deep learning
on parallelized GPUs. Second, neural networks can pro-
duce quite different results based on different starting val-
ues and random weights. In practice, neural networks are
fitted many times and finding the right parameters is more
an art than science. A state of the art cross-validation
approach is therefore necessary to avoid misleading
results. The third problem is more severe: Deep learning
is not simulating the policy process but is fitting a func-
tion that produces similar outputs. Therefore, it is very
difficult to gain deeper theoretical insides about the policy
process from these models. The advantage of deep learn-
ing for political science will ly in sound predictions but
not necessarily in better theories. Although, better predic-
tions might not only help politicians but also guide polit-
ical scientist to new theoretical models in which the
variables and effects found in deep learning models are
integrated.

Appendix A. Additional tables and data

See Table A.3.
PAPCode PAPTopic

16 Defense
19 International Affairs and Foreign Aid

8 Energy
7 Environment
4 Agriculture

10 Transportation

ices 6 Education
3 Health

(continued on next page)



Table A3 (continued)

BudgetCode BudgetTopic PAPCode PAPTopic

13 600 Income Security
14 650 Social Security 13 Social Welfare
15 700 Veterans Benefits and Services
16 750 Administration of Justice 12 Law, Crime, and Family Issues
17 800 General Government 20 Government Operations
18 900 Net Interest
19 920 Allowances
20 950 Undistributed Offsetting Receipts
21 1 Macroeconomics
22 2 Civil Rights, Minority Issues, and Civil Liberties
23 5 Labor and Employment
24 9 Immigration
25 14 Community Development and Housing Issues
26 15 Banking, Finance, and Domestic Commerce
27 17 Space, Science, Technology and Communications
28 18 Foreign Trade
29 21 Public Lands and Water Management
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