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Abstract Multiple-valued quantum logic allows the designers to reduce the number
of cells while obtaining more functionality in the quantum circuits. Large r -valued
reversible or quantum gates (r stands for radix and is more than 2) cannot be directly
realized in the current quantum technology. Therefore, we are interested in designing
the large reversible and quantum controlled gates using the arrays of one-quantum
digit (qudit) or two-qudit gates. In our previous work, we proposed quantum arrays
to implement the r -valued quantum circuits. In this paper, we propose novel efficient
structures and arrays, for r -valued quantum logic gates. The quantum costs of the
developed quantum arrays are independent of the radix of calculations in the quantum
circuit.

Keywords Quantum computing · Reversible logic · Multiple-valued logic ·
Controlled gate · Quantum cost · Optimization

1 Introduction

Multiple-valued quantum and reversible logic (MVQRL) circuits are important in
the emerging quantum technologies. Using r -valued quantum circuits, designers can
reduce the number of quantum cells to obtain a desired functionality for the quan-
tum circuit [1]. A large amount of work has been done in the field of synthesis and
optimization of binary quantum circuits. Methods for automated synthesis of binary
and r -valued quantum circuits, based on genetic algorithms (GA) and evolutionary
algorithms (EA), have also been developed [2–8]. An important group of r -valued
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quantum gates used in the synthesis and design of quantum circuits is controlled gates
[1]. Khan et al. [3] proposed a 2 × 2 generalized ternary gate (GTG) and realized the
ternary Toffoli gate using GTG gates. Miller et al. [9] used quantum CNOT, cycle,
and shift gates in their synthesis algorithm. Designing of ternary multiplexers has also
been proposed in [10].

The controlled gates with many controls are not directly realizable in current quan-
tum technology; therefore, efficient implementing of these gates using smaller gates is
an important problem for r -valued quantum computing [11]. The quantum arraywhich
is proposed in [12] for binary quantum circuits is extended by Brennen et al. [12] for
r -valued quantum circuits. Rosenbaum et al. [13] proposed a structure for implement-
ing large quantum gates using two-qudit gates; however, the transposition gates which
are used in their arrays are not proved to be realizable in quantum technology.

In the previous work in [1], we proposed quantum arrays to implement the r -valued
quantumgates. In this paper,we propose newarrays of r -valued quantum logic circuits.
We consider various realizable controlled quantum logic gates (including CNOT, con-
trolled cycle, and controlled self-shift gates) to implement efficient multiple-valued
logic (MVL) arrays. We also develop efficient structures for implementing r -valued
controlled cycle gates. These structures are optimized circuits which we proposed
in [1]. The main advantage of the proposed circuits in [1] and this paper is that
they use pure states|0 〉, |1 〉, . . ., |r − 1 〉 to implement large gates. This advantage
allows us to directly use the theorems and circuits in reversible logic, too. Also, the
circuits are implementable in other technologies such as complementarymetal–oxide–
semiconductor (CMOS), quantum cellular automata (QCA), single-electron transistor
(SET),. In [16], the implementable gates in our current technology are introduced.
Many researchers also tried to use these implementable gates in their works such as
[1–3,8–10,12–16].

The basic material on multiple-valued quantum gates is presented in Sect. 2. In the
Sect. 3, we introduce new arrays for quantum r -valued three-qudit controlled U gates.
In Sects. 4 and 5, we extend the designs to the gates with different control inputs and
different threshold values. Comparison, conclusions and references are presented in
Sects. 5, 6, and 7, respectively.

2 Multiple-valued quantum gates

Aquantum digit or qudit is a cell of an r -valued quantum logic circuit which can accept
r distinct quantum states. In r -valued logic, r quantum states |0 〉, |1 〉, . . ., |r − 1 〉
are assigned to r levels of energy in the system as the base vectors, as shown in
Eq. 1. For ternary logic, base vectors are named quantum ternary digits or qutrits.
As the binary qubits, a qudit has also the superposition property which allows it
to accept a linear combination of the base states. That is, it is possible to have the
state of an r -valued quantum system as ψ = a0 |0 〉 + a1 |1 〉 + · · · + ar−1 |r − 1 〉
where a0, a1, . . . , ar−1 are complex numbers. Measuring of ψ results in getting
the base states |0 〉, |1 〉, . . ., |r − 1 〉, with probabilities of P0 = |a0|2 , P1 =
|a1|2 , . . ., Pr−1 = |ar−1|2, respectively. The a0, a1, . . . , ar−1 coefficients must be
constant values such that the vector ψ has a norm of one, i.e., ‖ψ‖ = 1 . An r -valued
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quantum gate manipulates the qudits and produces a new state, named the output state
of the quantum gate. A one-qudit quantum gate U which manipulates an input qudit is
expressed by an r by r unitary matrix as shown in Eq. 2. For example, unitary matrix
of a ternary NOT gate is shown in Eq. 3. To calculate the output state of a quantum
gate, we have to multiply the gate’s unitary matrix by its input state vector. In an r -
valued quantum logic system, an n by n gate which operates on n qudit is specified as
a unitary matrix of rn by rn . A resultant unitary matrix of arbitrary quantum circuit is
created by matrix multiplications of composing subcircuits. Operation of a quantum
gate is described by matrix multiplication.

|0 〉 = [
1 0 0 . . . 0

]T
, |1 〉 = [

0 1 0 . . . 0
]T

, . . . , |r − 1 〉 = [
0 0 0 . . . 1

]T (1)

U =
⎡

⎢
⎣

u11 · · · u1r
...

. . .
...

ur1 · · · urr

⎤

⎥
⎦ (2)

NOT =
⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ ,NOT(|0 〉) =
⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ ·
⎡

⎣
1
0
0

⎤

⎦ =
⎡

⎣
0
0
1

⎤

⎦ = |2 〉 (3)

For a two-partite qudit quantum system, there are r2 pure quantum states
|00 〉 |01 〉, |02 〉, and |r − 1, r − 1 〉, and all combinations of these pure states. If the
state of each qudit is not separable, the state of the quantum system is said to be entan-
gled. Superposition and entanglement properties allow qudit states to growmuch faster
in dimension than classical r -valued digits and qubits [7]. The state of an n-digit quan-
tum register (n-partite quantum system) with r -valued qudits can be at superposition
state of all rn basic states. This allows us to apply an operator (or a gate) to all possible
states, simultaneously. This is a type of parallel processing which exists inherently
in quantum computers. Any quantum circuit is a composition of parallel and serial
connections of gates. Serial connection of gates corresponds to multiplication of their
unitary matrices. A parallel connection of gates corresponds to Kronecker multiplica-
tion of unitary matrices [1]. These all contribute to make difficulties in understanding
the concepts of quantum computing and creating efficient analysis and synthesis algo-
rithms for quantum computing. However, all of these become much easier when we
consider only permutative gates,which are equivalent ton-inputs/n-outputs truth tables
of quantum functions.Weworkwith such special class of r -valued quantum logic gates
in this paper.

The binary controlled gates are extended to the MVL ones [12]. For example, the
Feynman gate is extended to MV-CNOT such that it has one control input and one
target input/output. In this way, a controlled U gate can be defined as a gate which
has two control and target inputs and two control and target outputs. If control input is
more than a threshold, the U function is applied to the input to make the target output.
In [14,15] a radix-r number system as a Galois Field (GFr) is defined, and primary
operations of theGalois field are defined as the primary gates.Modulo-r sum is defined
as an operator in GFr. In the definition of r -valued Feynman gate in [14], the control
input does not have the controlling role as its binary counterpart. Some basic r -valued
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quantum gates, such as ternary Feynman gate are realizable in quantum technology
[16,17]. In this paper, we consider the controlled gateswhose control inputs control the
operation of the gate. These types of gates are named Toffoli-like gates or controlled
gates in some papers [1,3,9].

In the category of controlled quantum logic gates, two set of gates are used in
synthesis of r -valued quantum circuits. The first category, generalized ternary gates
(GTG), are ternary controlled 2 × 2 gates. They are used to synthesize the ternary
quantum circuits in [3]. The second category, controlled NOT, cycle, and self-shift
gates, used in [8,9], have a simpler structure than GTG gates and are extended to
higher radixes with more control inputs. Table 1 shows the symbols and operations of
the controlled gates. In this table, r is radix and n(0 ≤ n < r) is type of the gate (for
example, C1, C2, . . ., Cn−1). A cycle gate adds a value (n) to its input. Add operation
is a summation in GFr field or “mod r” addition. Self-shift gate multiplies the input
by r − 1 and adds the result to a number n (again in mod r ).

Table 1 also shows the symbol of the two-partite r -valued controlled gates. The A0
input is control input and Q1 is the target output. The Pvalue in the circle of control
input (black-filled circle) represents the threshold value of the input. If the control input
(A0) is less than the threshold (P), then the gate is inactive and target Q1 is equal to
its input (A1); otherwise, the gate’s function is applied to the input (A1) to generate a
value for the target output (Q1). The Q0 is always equal to A0. As the binary quantum
Toffoli gates [11], the r -valued quantum gates are also generalized to the controlled
n × n gates [12]. A generalized controlled gate has k control inputs/outputs and one
main or target input/output. A threshold is also assigned to each of control inputs.
Each gate applies its function to the main input if all controls are equal to or greater
than their corresponding threshold values; otherwise, the target output is equal to the
main input. Control outputs are always equal to their corresponding inputs.

As mentioned, the GTG gate which is used in [3] for synthesis of ternary quantum
circuits is a controlled 2×2 gate whose functionality is more complex than the above-
mentioned gates. Each GTG gate is composed of a ternary multiplexer and three
one-qutrit gates (Table 1, row 8). Three x, y, and z gates are elementary one-qutrit
gates. Each of these gates can be a buffer, C1, C2, S0, S1 or NOT gate. If we consider
0, 1, …, five constants for the buffer, C1, C2, S0, S1, and NOT gates, respectively;
each of x, y, or z parameters can be a constant value of 0–5. According to value of
the control input (A0), one of x, y, or z gates is applied to A1 input. If A0 is 0, the x
gate is applied to A1 input and results the Q1 value. If A0 is 1 or 2, the y or z gates
are applied to A1 input (Table 1, row 8).

Some of the one-qudit and controlled two-qudit quantum gates are realizable in
current quantum technology [16]. Implementation of larger quantum controlled gates
using the one-qudit or two-qubit gates is important because bigger gates are not directly
realizable in the quantum technology. Therefore, we try to propose implementations
for these bigger gates in terms of one- and two-qudit gates. The quantum cost of an
r -valued quantum logic gate is the number of one- and two-qudit gates (1 × 1 and
2 × 2 gates) which are needed to implement the gate [1]. Table 1 also shows the QC
of the r -valued quantum gates calculated based on the lemmas defined in the original
paper [1].
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Table 1 The r -valued reversible and quantum gates and their specifications

Gate Name Function Symbol QC

Cn Cycle Cn(A) = (A + n)mod r 1

Sn Self-shift Sn(A) = ((r − 1)A + n)mod r 1

NOT NOT NOT (A) = r − 1 − A 1

(m, n) Transposition Q =
⎧
⎨

⎩

m if A = n
n if A = m
A otherwise

1

CCn Controlled cycle Q1 =
{
A1 if A0 < P
Cn(A1) if A0 ≥ P

1

CSn Controlled self-shift Q1 =
{
A1 if A0 < P
Sn(A1) if A0 ≥ P

1

CNOT Controlled NOT Q1 =
{
A1 if A0 < P
NOT A1 if A0 ≥ P

1

GTG Generalized ternary gate Q1 =
⎧
⎨

⎩

x (A1) if A0 = 0
y (A1) if A0 = 1
z (A1) if A0 = 2

1

CCCn Controlled controlled cycle If A0 ≥ a& A1 ≥ b:
Q2 = Cn . A2
Else: Q2 = A2

4

CCSn Controlled controlled
self-shift

If A0 ≥ a& A1 ≥ b:
Q2 = Sn(A2)
Else: Q2 = A2

5

CCNOT Controlled controlled NOT If A0 ≥ a& A1 ≥ b:
Q2 = NOT(A2)
Else: Q2 = A2

5

The QC parameter is calculated based on definitions and calculations in [1]

3 New arrays for quantum r-valued three-qudit controlled U gates

Definition 1 The MVL gate is said to be Hermitian or self-inverse if its inverse is
itself. For example, ternary S0, S1, and NOT gates are Hermitian. In r -valued circuits,
we can show that all Sn and NOT gates are Hermitian [1].

Lemma 1 Anyr-valued three-quditHermitian controlledUgatewith input thresholds
of r −1 can be implemented using five two-qudit controlled gates as shown in Fig. 1a,
in which r = radix (odd value), P = r − 1, n = r − 2, and m = r/2.

Proof To verify the operation of the circuit, we consider the values of Q2, Q1 and
Q0 for all possible values of inputs. The Q1 is A1 for all values of A1. Since Sn is
Hermitian, Q2 is also equal to A2 for all values of A1 and A2. If the value of A1 is
less than r − 1, two Sn gates and G3 are inactive. Depending on the A2 value, both
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Sn

P P

mm

A0

A1

A2

Q0

Q1

Q2

P

P

U U U U

Sn

P

B1 B2

G1 G2 G3

A0

A1

A2

Q0

Q1

Q2

Q0

Q1

Q2

V V+ V U

(a) (b)

Fig. 1 a Combination of gates in Lemma 1, b binary counterpart [11], The r is radix (odd value) and
P = r − 1, n = r − 2, and m = r/2

G1 and G2 gates are either active or inactive. In both cases, the Q0 is equal to A0. For
A1 = r − 1 and A2 = 0, 1, 2, . . ., r − 2, two controlled U gates are active (G3 and
one of G1 or G2) which results in Q0 = A0. Finally, for A1 = r − 1 and A2 = r − 1,
all three controlled U gates are active which results in Q0 = U(A0) ��

The circuit in Fig. 1a is similar to the quantum decomposition of binary controlled
U gates proposed in [11]. For simpler comparison, we show this circuit in Fig. 1b.
In binary implementation, V is square root of U gate and V+ is complex conjugate
transpose of V. The circuit in Fig. 1a is not a generalization of Fig. 1b because in
Fig. 1a, there exist a situation that all gates are active. In this case, the equivalent
circuit in Fig. 1b is a V gate which is not correct. This new structure uses only five
gates for implementation of any Hermitian controlled U gate with two control inputs
and radix r . Comparing to previous design proposed in [1], this design needs only five
gates for any radixes, whereas the previous one needs r − 1 repetition of cycle and U
gates. The U gate must be Hermitian because when two U gates are active the output
Q0 must be equal to the input A0. In the final situation three U gates are active and the
output Q0 must be equal to the U(A0).

Lemma 2 Any r-valued three-qudit Hermitian controlled U gate can be implemented
using five two-qudit controlled gates as shown in Fig. 2 in which r =radix (odd value),
P = r − 1, m = r/2, n = m + 1.

Proof We can prove this lemma by verifying outputs for all values of inputs as is done
in Lemma 1. The Q1 is A1 for all values of A1. Since the cascade of Cn and C−n is a
buffer gate, Q2 is also equal to A2 for all values of A1 and A2. If the value of A1 is
less than r − 1, Cn, C−n, and G3 are inactive. Depending on the A2 value, both G1
and G2 gates are either active or inactive. In both cases, the Q0 is equal to A0. For
A1 = r − 1 and A2 = 0, 1, 2, . . ., r − 2, two controlled U gates are active (G3 and
one of G1 or G2) which results in Q0 = A0. Finally, for A1 = r − 1 and A2 = r − 1,
we have:

r−1=P → G3 is Active
r−1 > m → G1 is Active
(r − 1 + r/2 + 1)mod r = (r + r/2)mod r = r/2 = m → G2 is Active

Therefore, all three controlled U gates are active which results in Q0 = U(A0) ��
To be more specific and clear, consider a radix 5 NOT gate, for example (Fig. 3).

If A1 is 4, the G3 and two cycle gates are active. In this situation, we have the values
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Fig. 2 Combination of gates in
Lemma 2,The r is radix (odd
value) and
P = r − 1, m = r/2 and
n = m + 1 Cn

P P

mm

A0

A1

A2

Q0

Q1

Q2

P

P

U U U U

C-n

P

B1 B2

G1 G2 G3

Fig. 3 A 5-valued quantum
controlled NOT gate

C3

4 4

22

A0

A1

A2

Q0

Q1

Q2

4

4C-3

4

B1 B2

G1 G2 G3

Table 2 The values of A2, B1, and B2 signals when A1 = 4 (in Fig. 3)

24
3
2

4
3

G1 is inactive
G2 is active

G1 is active
G2 is inactive

Both G1 and G2 are
active

A2 B1 B2
0
1
2
3
4

0
1

0
1

of A2, B1, and B2 signals as shown in Table 2. The m parameter which is the input
threshold of G1 and G2 gates is 2. Therefore, as is shown in Table 2, just one of G1
and G2 gates are active for four first values of A0, result in two active U gates in the
A0 to Q0 path. As a result Q0 = A0 for all values of A2 = 0, 1, 2, and 3. For the last
value, A0 = 4, both G1 and G2 are active which results in three active U gates in the
A0 to Q0 path and Q0 = U(A0). The U gate must be Hermitian because when two
U gates are active, the output Q0 must be equal to the input A0. In the last situation,
three U gates are active and the output Q0 has to be equal to the U(A0). This gate is
extension of the binary Toffoli gate to the 5-valued case.

The proposed circuits in Lemmas 1 and 2 cannot be applied to r -valued quantum
gates with even values of radix r . For even radixes, we cannot find the combination
of B1 and B2 values such that just one of G1 or G2 is active, for r − 2 first values
of A2. For example, we consider r = 10 and A1 = 9. Table 3 shows the values of
A2, B1 and B2 for this case. The m (threshold) parameter is 5 and n is 6. As is shown
in Table 3, for A2 = 4, both G1 and G2 gates are inactive which results in activation
of one U gate in the A0 to Q0 path. However, this is not our desired operation. We
leave this problem to be open for future works (finding proper values for m, P , and n
parameters when r is even).

The proposed circuits can be used for a variety of controlled quantum gates which
are Hermitian. However, one of the most important gates, the cycle gate, is not Her-
mitian. For this gate, we propose a new circuit which is introduced in Lemma 3.
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Table 3 The values of A2, B1, and B2 signals for r = 10 when A1 is 9

59
8
7
6
5

6
7
8
9

G1 is inactive
G2 is active

G1 is active
G2 is inactive

Both G1 and G2 are
active

Both G1 and G2 are
inactive

A0 B1 B2
0
1
2
3
4
5
6
7
8
9

0
1
2
3
4 0

1
2
3
4

Fig. 4 Implementation of a
three-qudit, r -valued controlled
cycle gate: n + m is equal to r
and P is r − 1

Cn

P

Cm

P

PP

A0

A1

A2

Q0

Q1

Q2

P

P

Cn-m

Lemma 3 A three-qudit, r -valued controlled cycle gate can be implemented using
four two-qudit quantum gates, as shown in Fig. 4 in which n +m is equal to r and P
is r − 1.

Proof We verify the operation of the circuit for all possible values of inputs. For all
values of A1 and A2, we have: Q1 = A1 and Q2 = A2. When the inputs A1, and A2
are less than P , all controlled gates are inactive and we have: Q0 = A0. For A1 = P
and A2 < P two NOT gates are active and Q0 = A0. For A1 < P and A2 = P two
Cn and Cm gates are active. Since n + m is r , the Cn+m gate is equal to a Cr = C0
gate which results in Q0 = A0. Finally, when A1 and A2 are equal to or greater than
P and A0 is A, the Q0 is (Eq. 4):

Q0 = (r − 1 − (r − 1 − (A + n) + m))mod r = (A + n − m)mod r (4)

This value of Q0 is equivalent to a Cn − m gate ��
Therefore, we can use this structure to implement the cycle gates. If our desired

cycle gate is Cd, then we have these constraints: m – n = d and m + n = r . By adding
two equalities we have: 2m = d + r . This equation implies that d + r must be an even
number. If radix is even, only even cycle gates can be implemented. For example for
r = 6, we can implement C2 and C4 gates. For r = 7, we can construct C1, C3, and
C5 gates.

Note that for odd values of r , we can implement the even cycle gates using this
fact that the gate C−d is equivalent to Cr−d. For example C−3 for r = 7 is equal to C4.
Therefore, using this trick, cycle gates with even values of n can be implemented. The
only restriction of circuit is when d is odd and r is even.
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C3
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P
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P
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P
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P
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A2

Q0

Q1

Q2

P

P

C4

(a) (b)

(c) (d)

Fig. 5 Four instances of Lemma 3 for 5-valued quantum cycle gates and different values of d:, a 5-valued
C1gate, b 5-valued C3 gate, c 5-valued C2 gate, d 5-valued C4 gate
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Q1

Q2

P

P

Cn-m
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Qk-1P

QkP

P P

P P

(a) (b) (c)

Fig. 6 Three possible extensions of cycle gate (Lemma 3) to k control input arrays

Figure 5 shows four instances of Lemma 3 for 5-valued quantum cycle gates for
different values of d . The values of n and m for different values of d are calculated as
follows:

For r = 5 and d = 1 we have: n + m = 5, n − m = 1 → n = 3,m = 2.
For r = 5 and d = 3 we have: n + m = 5, n − m = 3 → n = 4,m = 1.
For r = 5 and d = 2 we have: C2 = C−3 → n + m = 5, n − m = −3 → n =
1,m = 4.
For r = 5 and d = 4 we have: C4 = C−1 → n + m = 5, n − m = −1 → n =
2,m = 3.

4 Extending the arrays to the gates with k control inputs

The arrays which are proposed in previous section can be extended to the quantum
gates with k control inputs. The extension for cycle gates (Lemma 3) is easy. In Fig. 6
three combinations are considered.

In the first circuit, Fig. 6a, the k − 1 controls cycle gates are used and size of the
NOT gates are fixed to 2. In the second circuit, Fig. 6b, both cycle and NOT gates
are extended to about k/2 controls (or k/2 if k is even). In the third circuit, Fig. 6c,
the size of the cycle gates are fixed to 2, and the size of NOT gates are extended to
k − 1 controls. We can write three recursive difference equations which describe the
quantum cost of each circuit. If we show the quantum cost of a cycle and a NOT gate
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Table 4 Quantum costs for three different implementations in Fig. 6 and effects on design of Fig. 7

Design Cycle Controlled U gate (Fig. 7)

Figure 6a Figure 6b Figure 6c Using Fig. 6a Using Fig. 6b Using Fig. 6c

k = 2 4 4 4 5 5 5

k = 3 10 10 12 15 15 15

k = 4 22 18 32 37 37 41

k = 5 46 30 84 83 75 107

k = 6 94 50 216 177 137 277

Fig. 7 Extension of a Hermitian
controlled U gate to k control
inputs

Cn

P P

mm

A0

A1

Ak

Q0

Q1

U U U U

C-n

P

G1 G2 G3

PAk-1 P P

Qk

P

P

P Qk-1

with k controls as Qc[k] and QNOT[k], respectively; for the first design we have the
Eq. 5.

Qc[k] = 2Qc[k − 1] + 2 (5)

For the second and third circuits, we can write Eqs. 6 and 7, respectively.

{
Qc[k] = 2Qc	k/2
 + 2QNOT	k/2

QNOT[k] = 2Qc[k − 1] + QNOT[k − 1] + 2

(6)

{
Qc[k] = 2QNOT[k − 1] + 2
QNOT[k] = 2Qc[k − 1 + QNOT[k − 1] + 2

(7)

Initial conditions for the difference equations are: Qc [1] = 1, QNOT [1] = 1.
The Eq. 5 with mentioned initial conditions is solved using the Z-transform and the

answer is Eq. 8.
Qc[k] = 3 × 2k−1 − 2, k = 1, 2, 3, . . . (8)

The Eqs. 6 and 7 can be solved numerically. Table 4 shows the quantum cost of
three above designs for different values of k = 2, 3, 4, 5, and 6.

The Hermitian controlled U gates can also be extended to the k-controlled gates
using a similar method; however, there is one choice for extending the gates. Figure 7
shows the equivalent circuit of a k-controlled U gate.

Table 4 also shows the quantum cost of controlled U gate for different values of k.
For large values of k, the second design (Fig. 6b) is much better than two other designs
because of exponential reduction of size in Eq. 6. For small values of the k, we can
also use the other designs.
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Fig. 8 Implementation of the Hermitian gates with odd radixes and thresholds of 1

Table 5 The values of B1 and
B2 signals for all values of input
A2, when r = 9, P = 5, and
n = 4

A2 input B1 B2 Active gates

0 0 4 None

1 1 5 G2

2 2 6 G2

3 3 7 G2

4 4 8 G2

5 5 0 G1

6 6 1 G1

7 7 2 G1

8 8 3 G1

5 Other thresholds of control inputs

In the previous sections, we have considered the same values (r −1) for all thresholds
of control inputs (P). It is possible to design the circuitswith other values of thresholds.
The circuit in Lemma 3 can be directly used for other thresholds without any changes.
Actually, in Fig. 4, the P parameter can be a desired integer value; though, the threshold
of inputs can also be different for different inputs. For Lemmas 1 and 2, the circuits
have to be modified. An interesting case is when all thresholds are one. In this case, we
can obtain a more efficient circuit than Fig. 2. This circuit which is shown in Fig. 8a,
has only four two-qudit gates (for implementing theHermitian gates with odd radixes).

In this circuit, P is 	r/2
 and n is P − 1. Table 5 shows the values of B1 and B2
signals for all values of input A2, when r = 9, P = 5, and n = 4. For A2 = 0, the G1
and G2 are both inactive (for all values of A1) results in Q0 = A0. For A2 = 1, 2, 3,
and 4, the G1 is inactive and G2 is active (for A1 ≥ 1) results in Q0 = U(A0). Finally,
For A2 = 5, 6, 7, and 8, the G1 is active and G2 is inactive (for A1 ≥ 1) results in
Q0 = U(A0).

Figure 8b shows the extended version of the circuit to k control inputs. For this
circuit, we can write the difference equation as Eq. 8.

QU[k] = 2Qc[k − 1] + 2 (9)

Using Fig. 8b as equivalent circuit for cycle gate, we can obtain more efficient
designs for controlled U gate. The quantum cost of this design for values of k =
2, 3, 4, 5, and 6 is shown in Table 6.
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Table 6 Quantum cost of
circuits with threshold of 1

Cycle Controlled U
(threshold=1)

Controlled U
(threshold=r−1)

k = 2 4 4 5

k = 3 10 10 15

k = 4 16 22 37

k = 5 28 34 75

k = 6 40 58 137

Table 7 Instances for quantum cost of proposed circuits in this paper and comparison with [1]

No. Controlled gate Control lines, size QC [1] QC (this paper)

1. Ternary C1,C2 2, 3×3 4 4

2. Quaternary Cycle 2, 3×3 5 4

3. Ternary NOT, S 2, 3×3 5 5

4. r -valued C1 (odd) 2, 3×3 2r − 2 4

5. r -valued C2 (r even) 2, 3×3 2r − 3 4

6. r -valued C1 (r odd) 2, 3×3 2r − 2 4

7. r -valued C1 (r even) 2, 3×3 2r − 3 4

8. r -valued NOT, S(r odd) 2, 3×3 2r − 1 5

The second column of Table 6 shows the quantum costs for cycle gates fromTable 4.
Third column shows the values of quantum cost which is obtained from combination of
Eqs. 5 and 8. For easier comparison of the quantum costs for two designs, we repeated
the 6th column of Table 4 in Table 6. Table 6 shows that controlled gates with input
thresholds of 1 can be implemented more efficient than ones with input thresholds of
r − 1.

6 Comparison

In the previous work [1], we proposed some quantum arrays to implement n-qudit r -
valued circuits using two-qudit quantumgates. In this research, we developed quantum
arrays whose quantum costs was independent of the radix of the circuit. For example,
a three-qudit r -valued Hermitian quantum gate was implemented with quantum cost
of 2r − 1 in [1], whereas it is designed with quantum cost of 5 in this paper (Fig. 2).
Table 7 shows the quantum costs of the designs proposed in [1] and is compared with
designs of this paper. As the Table 7 shows, for designs of this paper, the quantum costs
of all designs are independent of r . We extended the proposed arrays to the quantum
gates with k control inputs. This extension for cycle gates and Hermitian gates was
introduced. We also considered circuits with different threshold values for inputs and
designed efficient arrays for such circuits. In the case that all thresholds are 1, the
designs are more efficient than when they have the largest possible values.
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7 Conclusions

Designing of the large quantum controlled gates using the arrays of one-qudit or two-
qudit gates was the issue of this research. In our prior work in [1], we proposed some
quantum arrays to implement n-qudit r -valued circuits using two-qudit quantum gates.
In this paper, we developed quantum arrays whose quantum costs was independent
of the radix of the circuit. For example, a three-qudit r−valued Hermitian quantum
gate was implemented with quantum cost of 2r − 1 in [1], whereas it was designed
with quantum cost of 5 in this paper. Table 7 summarizes the quantum costs of the
designs proposed in [1] and designs of this paper for three-qudit quantum gates. We
extended the proposed arrays to the larger quantum gates with more control inputs.
This extension for cycle gates andHermitian gates was introduced.We also considered
the gates with different threshold values of inputs. When all input thresholds are 1,
the proposed designs were more efficient than other cases.
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