
Binary Constrained Deep Hashing Network for Image Retrieval
without Manual Annotation

Thanh-Toan Do† Tuan Hoang‡ Dang-Khoa Le Tan‡ Trung Pham? Huu Le?

Ngai-Man Cheung‡ Ian Reid?

†University of Liverpool, ‡Singapore University of Technology and Design, ?University of Adelaide
thanh-toan.do@liverpool.ac.uk, nguyenanhtuan hoang@mymail.sutd.edu.sg,

{letandang khoa,ngaiman cheung}@sutd.edu.sg, {trung.pham,huu.le,ian.reid}@adelaide.edu.au

Abstract

Learning compact binary codes for image retrieval task
using deep neural networks has attracted increasing atten-
tion recently. However, training deep hashing networks for
the task is challenging due to the binary constraints on the
hash codes, the similarity preserving property, and the re-
quirement for a vast amount of labelled images. To the best
of our knowledge, none of the existing methods has tackled
all of these challenges completely in a unified framework.
In this work, we propose a novel end-to-end deep learn-
ing approach for the task, in which the network is trained to
produce binary codes directly from image pixels without the
need of manual annotation. In particular, to deal with the
non-smoothness of binary constraints, we propose a novel
pairwise constrained loss function, which simultaneously
encodes the distances between pairs of hash codes, and the
binary quantization error. In order to train the network with
the proposed loss function, we propose an efficient param-
eter learning algorithm. In addition, to provide similar /
dissimilar training images to train the network, we exploit
3D models reconstructed from unlabelled images for auto-
matic generation of enormous training image pairs. The ex-
tensive experiments on image retrieval benchmark datasets
demonstrate the improvements of the proposed method over
the state-of-the-art compact representation methods on the
image retrieval problem.

1. Introduction

We are interested in learning compact image representa-
tions for large scale content-based image retrieval problem.
Recent researches have applied deep learning to image re-
trieval problem and achieved improvements in comparison
to traditional local feature approaches. In [41, 3], the au-
thors show that using the real-valued features from off-the-

shelf pretrained networks to represent images achieve im-
pressive retrieval results. In [5, 1, 13] the authors further
show that fine-tuning pretrained deep networks for image
retrieval task helps to boost the retrieval performance. How-
ever, to fine-tune a deep network, it requires an enormous
amount of labelled images which is not easy to achieve. It
is because annotating images with labels or tags requires
skilled manpower, and the label of an image is not always
well defined. In addition, although representing images by
real-valued high dimensional features from deep networks
achieves high retrieval accuracy, it is not applicable for large
scale retrieval problem. It is because these representations
cause expensive storage and time-consuming searching.

Using binary hash codes to represent images is an at-
tractive approach for large scale vision problems including
image retrieval because the binary codes allow the fast com-
putation and efficient storage [6, 12, 58, 27, 32, 8, 15, 56,
34, 9, 30, 31, 57]. However, learning binary codes in deep
networks is challenging. This is because one has to deal
with the binary constraint on the hash codes. Furthermore,
another important requirement of hashing is the similar-
ity preservation, i.e., similar/dissimilar images should have
similar/dissimilar binary codes. To achieve this requirement
under deep models, previous deep hashing methods require
a vast of amount of manually well-defined labelled datasets
to supervise the training or fine-tuning. Unfortunately, such
large labelled datasets are not always available, especially
in some problems which are not directly based on classifi-
cation such as the image retrieval.

In this paper, we aim to address the above challenges by
learning an end-to-end deep neural network to produce bi-
nary hash codes directly from images without the need of
manually labelled datasets. In particular, we propose a pair-
wise binary constrained loss function to model the relative
similarities between pairs of hash codes and to encourage
the network outputs to be binary values. In order to train the

ar
X

iv
:1

80
2.

07
43

7v
7 

 [
cs

.C
V

] 
 1

8 
D

ec
 2

01
8



network with the proposed loss, we propose a novel learning
scheme that is inspired from the penalty method and alter-
nating optimization. Furthermore, since our loss function
is pairwise, it only requires relative relationship for pairs of
images, i.e., matching and non-matching images. Clearly
such relationship can be obtained without resorting seman-
tic labels. Inspired by the recent works [1, 10] we exploit
3D models built from unlabelled images using Structure-
from-Motion (SfM) to automatically create training data.
As a result, the training of our deep hashing network can
be done completely and automatically by using unlabelled
images as inputs.

In summary, we make the following contributions. 1)
We propose a novel end-to-end deep learning framework for
learning compact binary codes in which the input for train-
ing the framework is only unlabelled images. 2) We propose
a novel pairwise loss function that simultaneously encodes
the distances between hash codes and the binary quantiza-
tion error. To train the network with the proposed loss, we
develop an efficient alternating optimization to optimize the
network parameters. 3) We exploit reconstructed 3D mod-
els to automatically create the training data. To the best
of our knowledge, this work is the first one that relies on
3D geometry to create data for training an end-to-end deep
hashing framework. 4) We perform solid experiments on
three image retrieval datasets to demonstrate the improve-
ments of the proposed method over the state of the art.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses related works. Sections 3 and 4 present
the proposed method and experimental results, respectively.
Section 5 concludes the paper.

2. Related Work
In this section, we review previous works related to the

context of our work. Those include traditional hashing ap-
proaches, deep hashing approaches, and end-to-end image
retrieval with weakly supervised / unsupervised fine-tuning.
Traditional hashing methods: Existing binary hashing
methods can be categorized as data-independent and data-
dependent schemes [52, 53, 14]. Data-independent hash-
ing methods [11, 24, 40, 25] rely on random projections for
constructing hash functions. Although representative data-
independent hashing methods such as Locality-Sensitive
Hashing (LSH) [11] and its kernelized versions [24, 40]
have theoretical guarantees that the more similar data
would have higher probability to be mapped into simi-
lar binary codes, they require long codes to achieve high
precision. Different from data-independent approaches,
data-dependent hashing methods use available training data
for learning hash functions in unsupervised or supervised
manner and they usually achieve better retrieval results
than data-independent methods. The unsupervised hash-
ing methods [54, 12, 15, 6, 16] try to preserve the neighbor

similarity of samples in Hamming space without semantic
label information. The representative unsupervised hashing
methods include Iterative Quantization (ITQ) [12], Spher-
ical Hashing (SPH) [16], K-means Hashing (KMH) [15],
etc. The supervised hashing methods [23, 33, 29, 44, 36]
try to preserve the label similarity of samples using labelled
training data. The representative supervised hashing meth-
ods include Kernel-Based Supervised Hashing (KSH) [33],
Semi-supervised Hashing (SSH) [51], Supervised Discrete
Hashing (SDH) [44], Binary Reconstructive Embedding
(BRE) [23] etc.
Deep hashing methods: All the previous hashing methods
are originally designed and experimented on hand-crafted
features which may limit their performance in practical ap-
plications. Recently, to leverage the power of deep con-
volutional neural networks (CNNs) [28, 22, 46], few deep
unsupervised hashing and many deep supervised hashing
methods have been proposed.

There are few deep models which are proposed for un-
supervised hashing [48, 30, 31, 45]. In [30, 31], the authors
proposed an end-to-end deep learning framework for unsu-
pervised hashing. The network is trained to produce hash
codes that minimize the quantization loss with the output
of the last VGG’s [46] fully connected layer. In [48], the
authors proposed a region-based deep hashing method in
which the network consists of three modules, i.e., object
proposal generation, feature extraction, and a hashing layer.
In [45] the authors proposed an unsupervised deep hash-
ing method that alternatingly proceeds over three training
modules: deep hash model training, similarity graph con-
struction, and binary code optimization.

Different from unsupervised setting, there are many
methods have been proposed for deep supervised hashing.
In [55] the authors proposed a two-step supervised hash-
ing method which learns a deep CNN based hash function
with the pre-computed binary codes. Recently, many works
proposed end-to-end deep supervised hashing methods in
which the image features and the hash codes are simulta-
neously learned [58, 27, 57, 56, 32, 59]. Most of those
models consist of a deep CNN for image feature extraction
and a hashing layer that tries to approximate the sign func-
tion. By joint optimization, the produced hash codes have
been shown more sufficient to preserve the semantic sim-
ilarity between images. Ideally, the hashing layer should
adopt a sign activation function to output exactly binary
codes. However, due to the vanishing gradient difficulty
of the sign function, an approximation procedure must be
employed. For example, sign can be approximated by a
tanh-like function y = tanh(βx), where β is a free pa-
rameter controlling the trade off between the smoothness
and the binary quantization loss [57]. However, it is non-
trivial to determine an optimal β. A small β causes large
binary quantization loss while a big β makes the output of



the function close to the binary values, but the gradient of
the function almost vanishes, making back-propagation in-
feasible. The problem still remains when the sigmoid-like
functions [58, 27, 56, 59] are used. Another drawback of
deep supervised hashing networks is the requirement for a
large amount of semantic annotated data which will be used
for encoding the semantic similarities in the loss function.
However, such large annotated data is usually unavailable
in the large scale image retrieval problem.
Weakly supervised / unsupervised fine-tuning: In the last
few years, image retrieval has witnessed an increasing of
performance due to better image representations. In partic-
ular, features obtained from pretrained CNN models, which
are trained on image classification task, are usually adopted.
For example, [49, 3] used convolutional features, while [41]
used fully connected features for the image retrieval. Fine-
tuning the pretrained networks has also shown further im-
provements [5]. However, the fine-tuning requires the avail-
ability of annotated data. Unfortunately, it would be diffi-
cult and expensive to manually label a large collection of
images. To overcome this challenge, the recent works pro-
posed to use weakly supervised or unsupervised fine-tuning.
In [1], to prepare the data to fine-tune the network for the
place recognition task, the authors used a weakly supervised
approach, in which they used Google Street View Time Ma-
chine for getting GPS-tagged panoramic images taken at
nearby spatial locations on the map. Two images taken far
from each other are considered as non-matching, while the
matching images are selected by the most similar nearby
images. In [39, 10], the authors made further improvements
over [1], i.e., discovering matching and non-matching pairs
in a totally unsupervised manner. Using a large amount of
images downloaded from Flickr with keywords of popular
landmarks and cities, they applied Structure from Motion
[38] for building multiple 3D models. Images belonging to
the same 3D model and sharing enough 3D points are con-
sidered as matching, while images belonging to different
3D models are considered as non-matching.

3. Binary Constrained Deep Hashing Network
without Manual Annotation

Figure 1 illustrates the proposed pipeline which trains a
deep network for learning binary codes without the need of
manually annotated data. In the following, we describe the
proposed framework including: the network architecture,
the automation of training data generation, the pairwise loss
function, and the learning of the network parameters.

3.1. Network architecture

The proposed network (Figure 1) comprises of four com-
ponents: (i) a feature extraction component for extracting
image representations; (ii) a fully connected layer for re-
ducing dimension of the image features (Dimensionality

Reduction – DR layer). The number of units of this layer
equals to the code length required to represent each input
image; (iii) a fully connected layer which maps the reduced
real-valued features to binary values (Hash Code – HC
layer); (iv) a pairwise loss function which acts on the out-
puts of the HC layer. It is worth noting that the choice of the
feature extraction component is flexible in our framework.
It can be the standard convolutional neural network archi-
tectures, e.g. AlexNet [22] or VGG [46], in which the out-
puts of their last fully connected layer are used as inputs for
the DR layer. Alternatively, the recent architecture which
replaces the fully connected layers of VGG or AlexNet by
a Maximum Activations of Convolutions (MAC) layer [49]
can also be used. In this case, the MAC features will be
used as inputs for the DR layer. For the image retrieval task
focused in this paper, we adopt the VGG network with a
MAC layer as we empirically find that using MAC layer
gives better performance than fully connected layer.

Specifically, the MAC layer can be described as follows:
Given an input image, the output of the last convolutional
layer of VGG is a 3D tensor W ×H ×K, where K is the
number of output feature maps which equals to 512, and
W × H is spatial size of the last convolutional layer. Let
Xk be kth feature map. The MAC image representation is
constructed by

u = [u1, . . . , uk, . . . , uK ]
T
,where uk = max

x∈Xk

x (1)

It is worth noting that the previous work [39] also used
a pairwise loss for fine-tuning deep network. However, our
work significantly differs from [39] at many aspects: while
the target in [39] is to learn real-valued representations (i.e.,
512-D real-valued features), our work aims to learn com-
pact binary codes. To this end, we have two additional lay-
ers, i.e., dimensionality reduction and hash code, which are
trained end-to-end together with other components. More
important, our pairwise loss (Section 3.3) has binary con-
straints, unlike constraint-free loss as [39]. The new layers
and binary constrained loss function are crucial for hashing,
i.e., it ensures the model to produce compact binary codes.
Furthermore, we propose a learning scheme to cope with the
binary constrained loss function (Section 3.4). This differs
from [39] which simply uses standard back-propagation to
train the network with the constraint-free loss.

3.2. Training data

The training input for our network is pairs of match-
ing and non-matching images. One way to achieve train-
ing pairs is to access to semantic (class) labelled images so
that we could train a hash function which returns similar
hash codes for images with the same label, or vice versa.
Unfortunately, such labelled dataset is not always available,
especially for some problems which are not directly based



Deep CNN Based Feature Extraction Network

...

...

Shared weights
Pairwise loss with
 binary constraints

3D Reconstructed Model

HCDR

fully connected

...

...

...

...

...

...

Figure 1: The overview of the proposed deep hashing. Training data is created automatically by exploiting 3D reconstructed models and
their associated images. The network architecture comprises of four components: (i) convolutional layers which is followed by a MAC
layer (black layer) for extracting image representations; (ii) a fully connected layer for Dimensional Reduction (blue layer); (iii) a Hash
Code mapping layer (red layer); (iv) a novel pairwise loss function with binary constraints.

on classification such as image retrieval. To overcome this
challenge, we automatically create a training set of match-
ing and non-matching image pairs by exploiting 3D recon-
structed models and their associated images. In particular,
we make use of the 3D models given by [39], in which
there are 713 3D models reconstructed from images down-
loaded from Flickr. Most of reconstructed models are pop-
ular landmarks and cities. The authors released 3D models
and 30K images which were used to build models. 5, 974
and 1, 691 images are selected as training queries and vali-
dation queries, respectively.

In order to mining matching pairs, we follow the pro-
cedure used in [39]. Given a training query image and
its 3D model membership, we select images that belong
to the same 3D model and co-observe enough 3D points.
Among these, one image is randomly sampled and used as
the matching image for the query. The set of matching pairs
is kept during the training. In order to mining non-matching
pairs, different from [39], we perform two stages of gen-
eration. The offline stage generates pairs for training the
network at first iterations. After a certain iterations, we use
the current network to perform the online generation (i.e.,
regenerating non-matching pairs) and use new pairs to con-
tinue the training. In particular, the offline generation is
performed as follows: Given a training query image, we se-
lect top k “nearest” images from 3D models different than
the model containing the query. The distances between im-
ages are computed by using features extracted from the pre-
trained network [39]. Among these k non-matching images,
we randomly samplem images (with at most one image per
model) as the non-matching ones for the query. After a cer-
tain of iterations, we perform the online non-matching pair
generation. The online generation is similar to the offline
ones, except that the distance between images is computed
by using the binary codes generated by the hash code layer
of the current network. The values of k and m are empir-

ically set to 70 and 6 in our experiments. Note that our
non-matching mining strategy is different from [39] at two
main aspects. Firstly, in [39], the authors selected top m
nearest ones (i.e., hardest negative) from k non-matching
images. We empirically found that randomly selecting hard
negative images gives better retrieval results than selecting
the hardest ones. This is consistent with the observation in
[43, 26], i.e., using the hardest negative samples can in prac-
tice lead to bad local minima in training. Secondly, because
our target is to learn binary codes, hence in the online stage,
we mine negative images using binary codes produced by
the HC layer, rather than the features produced by the MAC
layer as in [39].

3.3. Pairwise binary constrained loss

Given the training image pairs, we aim to train the net-
work which not only produces binary codes but also en-
sures the discrimination of the codes, i.e., matching images
should likely have similar binary codes, or vice versa. As
the Hamming distance between two strings of binary codes
is one-to-one corresponding to their Euclidean distance, we
propose to minimize the following binary constrained loss
function which acts on the pairs

min
W
L(i, j) = yij ‖fi − fj‖2+(1− yij)max

(
0, c− ‖fi − fj‖2

)
(2)

s.t. fi, fj ∈ {−1, 1}L (3)

where W is the network parameters; fi and fj are outputs of
the Hash Code layer for input images i and j, respectively;
the label yij ∈ {0, 1} indicates that the image pair i, j is
matching (yij = 1) or non-matching (yij = 0); L is the
code length; c is a constant.

Technically, the loss function will encourage matching
pairs to have similar hash codes, and non-matching pairs
to have different hash codes. When a non-matching pair
has a large enough distance, i.e. ≥ c, it is not to be



taken into account in the loss. The constraint (3) is to en-
sure the network outputs are binary. Optimizing the loss
function (2) with the binary constraint (3) using stochas-
tic gradient method is difficult since the constraints are
not differentiable. To overcome this challenge, we utilize
the idea of the penalty method [35]. This leads to a for-
mulation which avoids solving the exact binary constraint
but instead minimizes the binary quantization loss. This
makes sense because when the binary quantization loss ap-
proaches zero, the binary constraints are approximately sat-
isfied. Specifically, we introduce new auxiliary binary vari-
ables B = {bi}Ni=1 ∈ {−1, 1}L×N where N is number
of current training images, and minimize the following loss
function

min
W,B

L(i, j) =yij ‖fi − fj‖2 + (1− yij) (max (0, c− ‖fi − fj‖))2

+ α
(
‖fi − bi‖2 + ‖fj − bj‖2

)
(4)

s.t. bi,bj ∈ {−1, 1}L (5)

where α is a weighting parameter. The third term of (4)
forces the output of the Hash Code layer (i.e., fi, fj) as
close to binary values as possible, i.e., it minimizes the bi-
nary quantization loss. Although the new loss function still
contains constraints, the variables B and W are decoupled.
This allows us to apply alternating optimization over these
variables. We will show shortly that W now can be opti-
mized using the stochastic gradient decent method and B
has a closed-form solution.

3.4. Parameter learning

In order to minimize the loss function (4) under the
constraint (5), we propose an alternating optimization ap-
proach, i.e., we learn each variable (network parameter W
or B) at a time while holding the other fixed.

• Fix W, solve B: Let F = {fi}Ni=1, if W is fixed, the
optimal solution for B is sgn(F).

• Fix B, solve W: When B is fixed, the binary con-
straint (5) can be ignored, thus, the network parameters
W can be optimized by minimizing the loss (4) using
the standard back-propagation. A number of epochs is
run until W converges to local minima before switch-
ing to B.

The whole learning process is summarized in the Algorithm
1. In the Algorithm, W(t), F(t), B(t) are values of W,F,B

at tth iteration. We implement the proposed approach us-
ing the MatConvNet toolbox [50]. At the begining (line 2
in the Algorithm), we initialize the feature extraction com-
ponent with the pretrained MAC network [39] in which its
loss layer is removed. The DR layer is initialized by using

Algorithm 1 Parameter learning
Input:

Reconstructed 3D models and their images; L: code length;
K: number of online non-matching pairs generation; T : num-
ber of iterations for training network, given a fixed set of
matching / non-matching pairs.

Output:
Set of network parameters {W}.

1: Offline generation of matching and non-matching pairs using
the pretrained MAC network [39].

2: Initialize the network W(0)

3: for k = 1→ K do
4: for t = 1→ T do
5: Fix W(t−1), compute B(t) = sgn(F(t−1))
6: Fix B(t), optimize W(t) (using W(t−1) as initializa-

tion) using back-propagation. Save W(t).
7: end for
8: Regenerate non-matching pairs using W(T )

9: Reinitialize W(0) = W(T )

10: end for

PCA weights on the training dataset with pretrained MAC
features.

Inside the second for loop, we fix the training pairs and
alternative solving B and W. When fixing B(t) and learn-
ing W(t) (line 6 in the Algorithm), we train the network
with a fix number of epochs np. The values of K, T and np
are set to 4, 5 and 10, respectively. The values of c and α in
(4) are set to L

2 and 1, respectively. The batch size for learn-
ing W(t) is 28 pairs, i.e., 4 query images; each provides 1
matching pair and 6 non-matching pairs). Inside an itera-
tion k, for each query, we generate m = 6 non-matching
pairs (line 8 in the Algorithm). The best network is selected
based on mean Average Precision (mAP) on the validation
set.

4. Experiments
To evaluate the proposed method, which is dubbed as

P2B (Pixels to Binary codes), we conduct extensive im-
age retrieval experiments on standard image retrieval bench-
marks.

4.1. Dataset and baselines

Dataset We conduct experiments on Holidays [17], Ox-
ford5k [37] and Oxford105k [37] datasets which are widely
used in evaluating image retrieval systems [19, 2, 18].

Holidays The Holidays dataset consists of 1,491 images
of different locations and objects, 500 of them being used
as queries. Most of images in dataset are natural scenes.
Follow the standard protocol [19, 2], when evaluating, we
remove the query from the ranked list.

Oxford5k The Oxford5k dataset consists of 5,063 im-



8 16 32
0

10

20

30

40

50

number of bits (L)

m
A

P

 

 

P2B
ITQ
BA
SPH
KMH

(a) Oxford5k

8 16 32
0

5

10

15

20

25

30

35

number of bits (L)

m
A

P

 

 

P2B
ITQ
BA
SPH
KMH

(b) Oxford105k

8 16 32
0

5

10

15

20

25

30

35

number of bits (L)

m
A

P

 

 

P2B
ITQ
BA
SPH
KMH

(c) Holidays

Figure 2: mAP comparison between the proposed P2B and the traditional unsupervised hashing methods on Oxford5k,
Oxford105k, and Holidays datasets.

ages of buildings and 55 query images corresponding to 11
distinct buildings in Oxford. Follow the standard protocol
[19, 2], we crop the bounding boxes of the region of interest
and use them as the queries.

Oxford105k In order to evaluate the proposed method
at larger scale, we merge Oxford5k dataset with 100k dis-
tracted images downloaded from Flickr [37], forming the
Oxford105k dataset.

The ground truth of queries have been provided with the
datasets. Following previous works [6, 31, 48, 56], we eval-
uate the performance of methods at different code lengths,
i.e. 8, 16, 32, 256, 512 bits. The retrieval accuracy is mea-
sured by mean Average Precision (mAP).

Baselines We compare the proposed P2B against state-of-
the-art unsupervised hashing methods, including both tradi-
tional methods: Iterative Quantization (ITQ) [12], Binary
Autoencoder (BA) [6], Spherical Hashing (SPH) [16], K-
means Hashing (KMH) [15], and recent deep-based meth-
ods: DeepBit [31], Deep Region Hashing (DRH) [48].

We also compare P2B against supervised hashing meth-
ods, including traditional methods: Kernel-based Super-
vised Hashing (KSH) [33], Binary Reconstructive Embed-
ding (BRE) [23], ITQ-CCA [12], and recent deep-based
methods: Supervised Semantics-preserving Deep Hashing
(SSDH) [56], Hierachical Deep Hashing (HDH) [47]. Note
that, to the best of our knowledge, very few supervised
hashing methods [56, 47] have evaluated on standard im-
age retrieval datasets such as Holidays, Oxford5K, and Ox-
ford105K. It may be because there are no available large
scale labelled training data for those datasets.

Furthermore, we also compare P2B with the re-
cent state-of-the-art real-valued image representations for
the image retrieval problem. They are regional maxi-
mum activation of convolution (R-MAC) [49], triangu-
lation embedding (T-emb) [19], function approximation-
based embedding (F-FAemb) [7], off-the-shelf CNN (OS-
CNN) [41], faster-RCNN [42], neural codes [5], sum pool-
ing of convolutional feature (SPoC) [4], cross-dimensional

weighting (CDW) [20], unsupervised fine-tuning CNN
(UF-CNN) [39], regional attention based deep feature
(RADF) [21], CNN-based VLAD (NetVLAD) [1], the end-
to-end CNN (E2E-CNN) [13].

4.2. Comparison with unsupervised hashing meth-
ods

4.2.1 Comparison with traditional unsupervised hash-
ing methods

All compared traditional unsupervised methods require im-
age features as inputs, instead of raw images. In order to
make a fair comparison, we use the pretrained network [39]
to extract the MAC features of 30K images which are used
to reconstruct 3D models and use them as training inputs
for traditional unsupervised hashing methods.

Figure 2 shows the comparative retrieval results between
methods in term of mAP. On the Oxford5k and Oxford105k
datasets, the results show that the proposed P2B signifi-
cantly outperforms other methods, i.e., P2B outperforms the
most competitive ITQ [12]≥ 4.5% mAP at all code lengths.
The improvements are clearer at the lower code lengths, i.e.,
at L = 8, P2B outperforms ITQ 5.6% and 6.7% mAP on
Oxford5k and Oxford105k, respectively.

On the Holidays dataset, the proposed P2B also outper-
forms ITQ [12] and other methods, i.e., P2B outperforms
ITQ around 1.5% to 2% mAP at different code lengths. The
results from Figure 2 also show that the improvements of
P2B over other methods are clearer on the Oxford5k and
Oxford105k datasets than on the Holidays dataset. The pos-
sible reason is that the Oxford5k building dataset may share
similar visual characteristics (e.g., man-made architecture)
with the training images which mostly contain landmarks
and buildings. These datasets have different characteristics
with the Holidays dataset which mostly contains images of
natural scenes.



L 256 512
DeepBit [31] 60.30 62.70

DRH [48] 58.30 66.80
P2B 69.20 74.84

Table 1: mAP results of P2B, DeepBit [31], DRH [48] on
Oxford5k. The results of the compared methods are cited
from the corresponding papers.

4.2.2 Comparison with unsupervised deep hashing
methods

Here we compare the proposed P2B with the DeepBit [31]
and Deep Region Hashing (DRH) [48], which are the state-
of-the-art deep learning-based unsupervised hashing meth-
ods. To make a fair comparison to DRH, we compare to
its results at comparable code lengths (e.g., L = 256, 512)
without query expansion1. Note that, in DRH the au-
thors used a part of Oxford5k dataset to train their hashing
layer which is a non-standard training setting when eval-
uating on Oxford5k [19, 2]. In DeepBit [31], the authors
trained their model using the semi-manually labelled land-
mark dataset [5] which is expected to have less noise level
than our automatically created training dataset. The results
from the Table 1 show that, at the comparable code lengths,
the proposed P2B significantly outperforms the compared
methods. P2B outperforms DeepBit 12.1% and outper-
forms DRH 8% mAP at L = 512, even when DRH is
trained on images from the Oxford5k dataset and DeepBit
is trained on the semi-manually labelled landmark dataset.

4.3. Comparison with supervised hashing methods

4.3.1 Comparison with traditional supervised hashing
methods

The supervised hashing methods, such as KSH, BRE, CCA-
ITQ, require the class label to perform the training. To make
a fair comparison, we use the images which are used to re-
construct the 3D models and carefully investigate different
strategies to define the sample similarity when training tra-
ditional supervised hashing methods.

As the number of images of each 3D model varies, i.e.,
the largest model contains 80 images, while the smallest
model contains only 23 images, we first select top 100
biggest 3D models and then randomly select 60 images per
model for training. Note that as KSH and BRE require the
full similarity between every pair of samples when train-
ing, it is difficult for these methods to handle larger training
data. Let the similarity matrix be S, we try two approaches
to define the similarity for each image pair in the matrix S.

In the first approach, we check every image pair in the

1In DRH [48] the authors achieved best mAP at 85.1% with multi-stage
searching and query expansion at code length L = 4096.

L 256 512
SSDH [56] - 63.80
HDH [47] 69.70 70.50

P2B 69.20 74.84

Table 2: Comparative mAP between the proposed P2B and
recent supervised deep hashing methods on the Oxford5k
dataset. The results of the compared methods are cited from
the corresponding papers.

matrix S and use the same matching pair generation strat-
egy in Section 3.2 for determining matching pairs. A pair
(i, j) is matched, i.e. S(i, j) = 1, if both images belong to
the same 3D model and co-observe enough 3D points, oth-
erwise S(i, j) = 0. By using this first approach, we found
that the matrix S is very sparse. In the second approach, im-
ages which are belonged to the same model are considered
as matching, otherwise, non matching. In the other words,
each 3D model is considered as a class. We empirically
found that for KSH and BRE, the similarity matrix con-
structed by the second approach gives better retrieval results
than the first approach, e.g., for KSH on Oxford5k dataset,
the mAP at L = 32 is 19.11% and 32.28% for the first and
the second approach, respectively. We found that although
the first approach uses better strategy for creating matching
pairs, the matrix S is very sparse. Hence the non-matching
pairs strongly dominate the matching pairs during training,
leading to poor results. In the following, we consistently
use the second approach, which considers each 3D model
as a class, for training the compared methods.

Figure 3 presents the comparative retrieval results of
P2B, KSH, BRE, CCA-ITQ. The results show that on the
Oxford5k and Oxford105 datasets, P2B outperforms com-
pared methods with fair margin at all code lengths. On the
Holidays dataset, P2B and CCA-ITQ achieve comparable
results and these methods outperform KSH and BRE.

4.3.2 Comparison with supervised deep hashing meth-
ods

There are very few deep supervised hashing methods that
report results on image retrieval benchmarks such as Hol-
idays and Oxford5k. In this section we compare the pro-
posed P2B to the recent deep supervised hashing methods
SSDH [56], hierarchical deep hashing (HDH) [47] which
have reported their results on Oxford5k dataset. Table 2
presents the comparative mAP between methods. It is worth
mentioning that in SSDH [56], the authors fine-tuned their
model on a semi-manually labelled landmark dataset [5],
while in HDH [47], the authors fine-tuned their model us-
ing a part of the Oxford5k dataset, which is a non-standard
training setting [19, 2]. Diffrent from those works, our



8 16 32

number of bits (L)

0

10

20

30

40

50

m
A

P

P2B
ITQ-CCA
KSH
BRE

(a) Oxford5k

8 16 32

number of bits (L)

5

10

15

20

25

30

35

m
A

P

P2B
ITQ-CCA
KSH
BRE

(b) Oxford105k

8 16 32

number of bits (L)

5

10

15

20

25

30

35

m
A

P

P2B
ITQ-CCA
KSH
BRE

(c) Holidays

Figure 3: mAP comparison between the proposed P2B and the traditional supervised hashing methods on Oxford5k, Ox-
ford105k, and Holidays datasets.

method uses automatically created training data from un-
labeled images. The results in Table 2 show that P2B out-
performs SSDH a large margin, i.e., 11% mAP at L = 512.
Compare to HDH, P2B and HDH achieve comparable mAP
at L = 256, while at higher code length, i.e. L = 512, P2B
improves 4.3% mAP over HDH. It is also worth mentioning
that our automatically created training data has higher noise
level than the semi-manually labelled dataset used in SSDH.
Specifically, we fine-tuned SSDH with the images used to
reconstruct 3D models, i.e., we select top 100 biggest 3D
models and consider each 3D model as a class. The mAP
of the fine-tuned SSDH using these images at L = 512 is
59.17% which is lower than the reported 63.80% in [56].
Inspite of the higher noise level in the training data, P2B
achieves a mAP 74.84% which is higher than the reported
63.80% of SSDH. This confirms the effectiveness of the
proposed framework.

4.4. Comparison with real-valued image represen-
tations

In this section we compare the proposed P2B to the
state-of-the-art real-valued image representations. Table 3
presents the comparative mAP between methods on Ox-
ford5k dataset. The results show that, even using binary
representation, P2B outperforms most compared methods
that use the real-valued representations. The state-of-the-art
mAP is achieved by the real-valued high dimensional repre-
sentation E2E-CNN [13]. In particular, E2E-CNN outper-
forms P2B 11.3% mAP. Although the proposed P2B does
not provide the state-of-the-art retrieval accuracy, it is worth
mentioning that in term of memory, P2B uses only 64 bytes
to represent an image, which is 128 times less than the
one of E2E-CNN. Furthermore, the binary representation of
P2B also allows the fast distance calculation, i.e., Hamming
distance. This makes P2B more suitable than E2E-CNN for
the large scale retrieval problem.

Methods D mAP
R-MAC [49] 512 (float) 66.9
T-emb [19] 1024 (float) 56.2

F-FAemb [7] 1024 (float) 58.2
OS-CNN [41] 4096 (float) 68.0

Faster-RCNN [42] 4096 (float) 67.8
Neural codes [5] 256 (float) 55.7

SPoC [4] 256 (float) 58.9
CDW [20] 256 (float) 65.4

NetVLAD [1] 256 (float) 63.5
UF-CNN [39] 512 (float) 79.7

RADF [21] 2048 (float) 76.8
E2E-CNN [13] 2048 (float) 86.1

P2B 512 (bit) 74.8

Table 3: Comparative mAP between P2B and the state-
of-the-art real-valued representations on Oxford5k dataset.
The second column is dimensionality of the presentations.
Note that the compared methods uses real-valued (float)
representations, while P2B uses binary (bit) presentations.

5. Conclusion

In this paper, we propose a novel end-to-end deep hash-
ing framework for directly learning compact binary codes
from images without the need of manual annotation. We ex-
ploit the reconstructed 3D models and their associated im-
ages to automatically create the training data. We propose
a novel pairwise binary constrained loss function which not
only allows to leverage the discriminative information from
training data but also encourages the output codes to be bi-
nary. We also propose an efficient alternating optimization
to train the network under the constrained loss. The solid
experimental results on image retrieval benchmark datasets
show that the proposed method compares favorably with the
state of the art.



References
[1] R. Arandjelovic, P. Gronát, A. Torii, T. Pajdla, and J. Sivic.

Netvlad: CNN architecture for weakly supervised place
recognition. TPAMI, pages 1437–1451, 2018.

[2] R. Arandjelovic and A. Zisserman. All about VLAD. In
CVPR, 2013.

[3] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and
S. Carlsson. From generic to specific deep representations
for visual recognition. In CVPRW, 2015.

[4] A. Babenko and V. S. Lempitsky. Aggregating local deep
features for image retrieval. In ICCV, 2015.

[5] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky.
Neural codes for image retrieval. In ECCV, 2014.

[6] M. A. Carreira-Perpinan and R. Raziperchikolaei. Hashing
with binary autoencoders. In CVPR, 2015.

[7] T.-T. Do and N.-M. Cheung. Embedding based on function
approximation for large scale image search. TPAMI, pages
626–638, 2018.

[8] T.-T. Do, A.-D. Doan, and N.-M. Cheung. Learning to hash
with binary deep neural network. In ECCV, 2016.

[9] S. Ercoli, M. Bertini, and A. D. Bimbo. Compact hash
codes for efficient visual descriptors retrieval in large scale
databases. TMM, pages 2521–2532, 2017.

[10] O. C. Filip Radenovic, Giorgos Tolias. Fine-tuning cnn im-
age retrieval with no human annotation. TPAMI, 2018.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In VLDB, 1999.

[12] Y. Gong and S. Lazebnik. Iterative quantization: A pro-
crustean approach to learning binary codes. In CVPR, 2011.

[13] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. End-to-end
learning of deep visual representations for image retrieval.
IJCV, pages 237–254, 2017.

[14] K. Grauman and R. Fergus. Learning binary hash codes for
large-scale image search. Machine Learning for Computer
Vision, 2013.

[15] K. He, F. Wen, and J. Sun. K-means hashing: An affinity-
preserving quantization method for learning binary compact
codes. In CVPR, 2013.

[16] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-e. Yoon. Spher-
ical hashing. In CVPR, 2012.

[17] H. Jégou, M. Douze, and C. Schmid. Improving bag-of-
features for large scale image search. IJCV, pages 316–336,
2010.

[18] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating
local descriptors into a compact image representation. In
CVPR, 2010.

[19] H. Jégou and A. Zisserman. Triangulation embedding and
democratic aggregation for image search. In CVPR, 2014.

[20] Y. Kalantidis, C. Mellina, and S. Osindero. Cross-
dimensional weighting for aggregated deep convolutional
features. In ECCV Workshops, 2016.

[21] J. Kim and S.-E. Yoon. Regional attention based deep feature
for image retrieval. In British Machine Vision Conference
(BMVC), 2018.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[23] B. Kulis and T. Darrell. Learning to hash with binary recon-
structive embeddings. In NIPS, 2009.

[24] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In ICCV, 2009.

[25] B. Kulis, P. Jain, and K. Grauman. Fast similarity search for
learned metrics. TPAMI, pages 2143–2157, 2009.

[26] B. G. V. Kumar, B. Harwood, G. Carneiro, I. D. Reid, and
T. Drummond. Smart mining for deep metric learning. In
ICCV, 2017.

[27] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature
learning and hash coding with deep neural networks. In
CVPR, 2015.

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, pages 2278–2324, 1998.

[29] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter.
Fast supervised hashing with decision trees for high-
dimensional data. In CVPR, 2014.

[30] K. Lin, J. Lu, C.-S. Chen, and J. Zhou. Learning compact
binary descriptors with unsupervised deep neural networks.
In CVPR, 2016.

[31] K. Lin, J. Lu, C.-S. Chen, J. Zhou, and M.-T. Sun. Unsuper-
vised deep learning of compact binary descriptors. TPAMI,
2018.

[32] H. Liu, R. Wang, S. Shan, and X. Chen. Deep supervised
hashing for fast image retrieval. In CVPR, 2016.

[33] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Super-
vised hashing with kernels. In CVPR, 2012.

[34] J. Lu, V. E. Liong, and J. Zhou. Deep hashing for scalable
image search. TIP, 2017.

[35] J. Nocedal and S. J. Wright. Numerical Optimization. World
Scientific, 2nd edition, 2006.

[36] M. Norouzi and D. J. Fleet. Minimal loss hashing for com-
pact binary codes. In ICML, 2011.

[37] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. In CVPR, 2007.

[38] F. Radenovic, J. L. Schönberger, D. Ji, J. Frahm, O. Chum,
and J. Matas. From dusk till dawn: Modeling in the dark. In
CVPR, 2016.

[39] F. Radenovic, G. Tolias, and O. Chum. CNN image retrieval
learns from bow: Unsupervised fine-tuning with hard exam-
ples. In ECCV, 2016.

[40] M. Raginsky and S. Lazebnik. Locality-sensitive binary
codes from shift-invariant kernels. In NIPS, 2009.

[41] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. CNN features off-the-shelf: An astounding baseline for
recognition. In CVPRW, 2014.

[42] A. Salvador, X. Giró-i-Nieto, F. Marqués, and S. Satoh.
Faster R-CNN features for instance search. In CVPR Work-
shops, 2016.

[43] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. In CVPR,
2015.

[44] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised dis-
crete hashing. In CVPR, 2015.



[45] F. Shen, Y. Xu, L. Liu, Y. Yang, Z. Huang, and H. T. Shen.
Unsupervised deep hashing with similarity-adaptive and dis-
crete optimization. TPAMI, 2018.

[46] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, 2014.

[47] G. Song and X. Tan. Hierarchical deep hashing for image
retrieval. Frontiers of Computer Science, Springer, pages
253–265, 2017.

[48] J. Song, T. He, L. Gao, X. Xu, and H. T. Shen. Deep region
hashing for generic instance search from images. In AAAI,
2018.

[49] G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval
with integral max-pooling of CNN activations. In ICLR,
2016.

[50] A. Vedaldi and K. Lenc. Matconvnet - convolutional neural
networks for MATLAB. CoRR, 2014.

[51] J. Wang, S. Kumar, and S. Chang. Semi-supervised hashing
for large-scale search. TPAMI, pages 2393–2406, 2012.

[52] J. Wang, W. Liu, S. Kumar, and S. Chang. Learning to hash
for indexing big data - A survey. Proceedings of the IEEE,
2015.

[53] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen. A
survey on learning to hash. TPAMI, 2017.

[54] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, 2008.

[55] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hash-
ing for image retrieval via image representation learning. In
AAAI, 2014.

[56] H.-F. Yang, K. Lin, and C.-S. Chen. Supervised learning
of semantics-preserving hash via deep convolutional neural
networks. TPAMI, pages 437–451, 2018.

[57] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-
scalable deep hashing with regularized similarity learning for
image retrieval and person re-identification. IEEE TIP, pages
4766–4779, 2015.

[58] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic rank-
ing based hashing for multi-label image retrieval. In CVPR,
2015.

[59] B. Zhuang, G. Lin, C. Shen, and I. D. Reid. Fast training
of triplet-based deep binary embedding networks. In CVPR,
2016.


	1 . Introduction
	2 . Related Work
	3 . Binary Constrained Deep Hashing Network without Manual Annotation
	3.1 . Network architecture
	3.2 . Training data
	3.3 . Pairwise binary constrained loss
	3.4 . Parameter learning

	4 . Experiments
	4.1 . Dataset and baselines
	4.2 . Comparison with unsupervised hashing methods
	4.2.1 Comparison with traditional unsupervised hashing methods
	4.2.2 Comparison with unsupervised deep hashing methods

	4.3 . Comparison with supervised hashing methods
	4.3.1 Comparison with traditional supervised hashing methods
	4.3.2 Comparison with supervised deep hashing methods

	4.4 . Comparison with real-valued image representations

	5 . Conclusion

