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Abstract 

We aim to achieve an accurate simulation of human cortical bone fracture using 
the extended finite element method within a commercial finite element software 
Abaqus. A two-dimensional unit cell model of cortical bone is built based on a 
microscopy image of the mid-diaphysis of tibia of a 70 year-old human male donor. 
Each phase of this model, an interstitial bone, a cement line, and an osteon, are 
considered linear elastic and isotropic with material properties obtained by 
nanoindentation, taken from literature. 

The effect of using fracture analysis methods (cohesive segment approach 
versus linear elastic fracture mechanics approach), finite element type, and 
boundary conditions (traction, displacement, and mixed) on cortical bone crack 
initiation and propagation are studied. In this study cohesive segment damage 
evolution for a traction separation law based on energy and displacement is used. In 
addition, effects of the increment size and mesh density on analysis results are 
investigated. 

We find that both cohesive segment and linear elastic fracture mechanics 
approaches within the extended finite element method can effectively simulate 
cortical bone fracture. Mesh density and simulation increment size can influence 
analysis results when employing either approach, and using finer mesh and/or 
smaller increment size does not always provide more accurate results. Both 
approaches provide close but not identical results, and crack propagation speed is 
found to be slower when using the cohesive segment approach. Also, using reduced 
integration elements along with the cohesive segment approach decreases crack 
propagation speed compared to using full integration elements. 

Keywords: Cortical bone; Extended finite element method; Fracture; Microstructure; 

Crack growth; Numerical simulations. 
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1. Background

Bone fracture is an outstanding clinical problem. Risk of bone fracture depends 
on various factors: age, genetics, diet, exercise, and state of health. Fracture 
toughness is the measure of material’s resistance to cracking. Understanding of 
bone’s resistance to fracture is important for diagnosis of bone diseases and 
assessment of treatments. 

Bone has a highly complex hierarchical structure and thus it has multiple fracture 
mechanisms at different length scales [1, 2]. At nanoscale bone consists of collagen 
and hydroxyapatite crystals which form mineralized collagen fibrils. At sub-
microscale these fibrils align preferentially to form lamellae which at microscale 
arrange in different orientations into laminar structures. At macroscale (whole bone 
level) a cortical (dense) bone forms an outer shell of bone while a trabecular 
(spongy) bone fills an inner space. At mesoscale the cortical bone has several 
different structures (phases). They include osteons (concentric hollow cylinders 
formed by layers of lamellae), an interstitial bone (matrix made of old osteons), 
cement lines (interfaces between osteons and an interstitial bone) and pores 
(Haversian canals located at the center of each osteon and Volkmann canals 
running in perpendicular direction). Osteons are generally oriented along a long axis 
of bone. Cortical bone plays an integral role in resisting whole bone fractures. Thus, 
fundamental understanding of the cortical bone fracture is needed for assessment of 
the risk of bone fracture.   

Numerous studies have addressed simulations of the cortical bone fracture to 
better understand the crack initiation, propagation and toughening mechanisms in 
bone. Majority of these studies used a finite element method (FEM) along with 
cohesive crack opening principles. Mischinski and Ural [3] conducted two-
dimensional (2D) cohesive finite element (FE) simulations to investigate the crack 
penetration into osteons or its deflection into cement lines. Their geometric model 
contains a single osteon, surrounded by a cement line and embedded in an 
interstitial bone. This study showed that the crack propagation depends on fracture 
properties of osteon; on the other hand the elastic modulus of osteon had almost no 
effect on the crack trajectory. Ural et al. [4] evaluated the effect of strain rate and 
porosity on the fracture toughness of human cortical bone using a 2D cohesive finite 
element model. This study showed that an increase in strain rate decreases bone’s 
resistance to crack propagation. Jonvaux et al. [5] simulated the response of human 
cortical bone under compression to investigate local stress intensity factors. Linear 
elastic properties along with a cohesive crack opening law were implemented in this 
study. Simulation results combined with experiment showed damaged zones near 
major cracks where local stress intensity factors could be calculated. Mischinski and 
Ural [6] did a finite element study to determine the crack propagation behavior in a 
human cortical bone using the cohesive FEM by incorporating a process zone during 
crack growth. This study accounted for the cement line, osteon strength and fracture 
toughness of different bone microstructures. Ural and Mischinski [7] simulated the 
bone fracture at micro- and macroscales using the cohesive finite element analysis. 
This study showed importance of the cement line on bone fracture toughness and 
the effect of microscale properties on the whole bone fracture risk. Alternate 
numerical methods like meshless particle-based computational modelling, for 
example, were used by Fernandez et al. [8] to capture bone remodeling. 
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Other studies simulated cortical bone fracture using an eXtended Finite Element 
Method (XFEM). Budyn et al. [9] addressed the effect of aging on properties of 
human cortical bone using three-dimensional (3D) finite element method unit cells. 
This study also discussed failure mechanisms and propagation of cracks in cortical 
bone under tension. Budyn et al. [10] employed multi-scale modeling of a multiple 
crack growth in a human cortical bone under tension using the XFEM and a critical 
stress intensity factor criterion for the crack propagation. Abdel-Wahab et al. [11] 
simulated bovine cortical bone fracture using the XFEM. They considered a 2D 
model of cortical bone which was developed based on an optical microscopy image 
of a cortical bone while bone’s mechanical properties were obtained by 
nanoindentation. This study showed importance of including a cement line when 
performing cortical bone fracture analysis. Feerick and Liu [12] used the XFEM and 
an anisotropic model to predict the effect of osteon orientations on cortical bone 
fracture toughness and crack propagation patterns. Four initiation criteria were 
developed in this study to define crack trajectories relative to osteon orientations. 
Some of the above mentioned studies reported what fracture analysis approach was 
used along with the XFEM while others did not.  

Simulation of cortical bone fracture is still an open research topic. The 
microstructural properties of cortical bone, including a local fracture toughness, are 
challenging to measure. Bone has a highly complex and spatially varying 
microstructure which makes experimental validations difficult. Most of the previous 
cortical bone fracture simulation studies used a certain fracture mechanics criterion. 
There are limited studies investigating the effect of using different fracture mechanics 
approaches on the cortical bone fracture simulation accuracy. Also, there are limited 
reports addressing effects of increment size, mesh density, and boundary conditions 
on cortical bone cracks initiation and propagation simulation results when using the 
XFEM. 

In this paper we address the above mentioned factors by simulating a 2D cortical 
bone fracture due to tensile loading using the XFEM within the commercial software 
Abaqus while accounting for the finite element mesh density, analysis increment 
size, and boundary conditions. Also, the effects of different fracture mechanics 
approaches, the cohesive segment (CS) approach and the linear elastic fracture 
mechanics (LEFM) approach, on results accuracy are investigated.  For simplicity, 
we consider a simple unit cell containing one osteon only. Results obtained from this 
study can provide guidance on the accurate and efficient algorithms for fracture 
simulations including those utilizing realistic multi-osteon cortical bone 
microstructures. 

2. Methods

2.1. Cortical bone model 

A 2D cortical bone model is created based on a microscopy image [7] from the 
mid-diaphysis of tibia of a 70 year-old human male donor (Figure 1.a [7]). The unit 
cell model contains a one centered circular osteon (180 microns in diameter) and a 
cement line (5 microns thick), and has outer dimensions of 250 microns x 250 
microns. The Haversian canal, positioned at the center of the osteon, has 60 microns 
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in diameter (Figure 1.b). Each phase (osteon, interstitial bone, and cement line) is 
considered isotropic with material properties summarized in Table 1, based on 
nanoindentation measurements [13]. Young’s moduli for the osteon and the 
interstitial bone matrix are 13.5 GPa and 14.6 GPa, respectively. Poisson’s ratio 
values are based on microextensometry measurements. Young’s modulus of cement 
line is taken 25% lower than Young’s modulus of osteon based on experiments [14]. 
Poisson’s ratio of the cement line is considered 25% higher than Poisson’s ratio of 
the osteon [15]. The critical stress intensity factor of cement line is linearly correlated 
to its Young’s modulus by a factor 10−4 to fit in the range of 0.7–2 MPa [16, 17]. 

In this study we used different material properties for each phase (osteon, 
interstitial bone, and cement line) but assumed that the properties are isotropic. It is 
known that cortical bone has anisotropic local properties due to the lamellar structure 
of osteons and interstitial bone. This assumption could affect the cortical bone cracks 
behavior. On the other hand this assumption still considered acceptable because 
micro cracks will initiate perpendicular to principal stress directions without causing 
any major lateral stresses. 

2.2. Finite element analysis - preprocessing 

Five different finite element (FE) models were created. Four of the five models 
were built using four different mesh densities (Figures 2.a, 2.b, 2.c, and 2.d) to 
investigate the effect of mesh density on simulation results accuracy, and each of 
these FE models contained four-node bilinear plane strain enriched elements 
(CPE4). The fifth model, on the other hand, was built using the same FE model as 
described in Figure 2.b but using four-node bilinear reduced integration plane strain 
enriched elements (CPE4R).  

Three different boundary conditions (BC) were used (traction, displacement, and 
mixed) to investigate if changes in boundary conditions have same effect on cortical 
bone fracture analysis results accuracy due to a variable increment size. The finite 
element model with displacement boundary conditions was created by applying 
vertical translational constraints on the FE model bottom edge nodes and horizontal 
translational constraints on side-edge nodes as shown in Figure 2.e. The FE model 
with traction boundary conditions was constructed by applying vertical translational 
constraints on the FE model mid-side outer points, besides applying horizontal 
displacement constraints on the FE model Haversian canal extreme upper and lower 
nodes (Figure 2.f). The FE model with mixed boundary conditions was created by 
applying vertical translational constraints on the FE model bottom edge nodes, and 
applying vertical and horizontal translational constraints on the bottom left corner 
node (Figure 2.g). 

The analysis involved applying a vertical tensile force (traction-controlled 
analysis) or vertical displacement boundary conditions (displacement-controlled and 
mixed boundary conditions analysis). Abaqus software version 6.13 implicit solver 
utilizing XFEM was used to perform cortical bone fracture analysis. Each analysis 
iteration was performed in increments with geometric nonlinearity included to 
accurately predict cortical bone cracks initiations, propagations, and speed. Abaqus 
explicit solver was not used in this study because it does not support XFEM. 
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2.3. Theoretical background 

In this section we briefly provide an overview of the XFEM, cohesive segment, 
and linear elastic fracture mechanics approaches that are used to model fracture.  

The XFEM analysis was used to perform human cortical bone fracture analysis 
mainly because it does not require defining the crack path in advance. To accurately 
predict the cortical bone crack initiation, XFEM enrichments are utilized for all 
elements in the finite element analysis models as defined in Equation 1. 
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    : Heaviside function =                         
                                     

  . 

 : Integration point. 

  : The closest point to   on a crack face. 

    Nodal enriched degrees of freedom (DOF). 

 : Nodal DOF for conventional shape functions   . 

     : Crack tip asymptotic equations. 

  
 : Crack tip enriched nodal degrees of freedom (DOF). 

      :    nodes related to elements cut by a crack. 

        
  

   :    crack tip nodes. 

In this paper both the cohesive segment approach and the linear elastic fracture 
mechanics approach are used to simulate cortical bone fracture. The maximum 
principal strain of 0.4% is used as a failure criterion [18, 19] as described in Equation 
2. Each crack initiated during simulations is considered traction-free. In this study,
the fracture propagation direction is mainly controlled by mode I. Mode II and mode 
III effects on crack propagation are expected to evolve to the mode I due to the 
nature of the problem and fracture mechanics principles. Therefore, the critical 
energy release rate is assumed to be the same for all three fracture modes. 

  
    

    
 (2) 

where 

  : Principal strain value. 

    
 : Maximum principal strain. 

 If     then crack will initiate. 

Damage response is described in Figure 3.a where d is a scalar damage variable 
that monotonically increases. When d equals to zero, there is no damage. On the 
other hand when d equals to 1, there is full damage. 
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The cohesive segment approach damage evolution for the traction separation 
law, based on energy versus displacement, are investigated (Figure 3.b). 
Benzeggagh-Kenane (BK) damage evolution is adapted when an energy based 
damage evolution is used (Equation 3). 
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where n is the exponent value in the power law. The n value (cohesive property 
parameter) has no effect on the analysis results. This is because the critical energy 
release rate is the same for all three fracture modes.    ,          are the critical 
energy release rates for modes I and II respectively.   ,    ,          are the energy 
release rates for modes I, II, and III, respectively.  

When the LEFM approach is used to simulate bone fracture, the critical strain 
energy release rate criterion based on the Virtual Crack Closure Technique (VCCT) 
is used. The VCCT is based on the assumption that the strain energy release, when 
a crack is propagated, is equal to the energy required to close that crack. The LEFM 
approach with multiple enrichments is used for each phase in the cortical bone 
model, because each material model has a different fracture criterion.  

The LEFM approach crack plane normal direction is based on the Maximum 
Tangential Stress (MTS), where a near crack tip stress field is represented by 
Equations 4 and 5. 
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where            are stress intensity factors for mode I and mode II, respectively, r 
and ϴ  are polar coordinates centered at the crack tip (polar coordinate plane is 
orthogonal to the crack front). The crack propagation direction is based on Equation 
6, which can be derived by setting     
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Using the XFEM within Abaqus software has a limitation as it does not allow for 
cracks intersection. No cracks intersections are expected in this study because 
cracks are expected to propagate perpendicular to the remote tensile stresses 
(Figure 14). Therefore, the XFEM can be used in this study to predict cortical bone 
behavior under tensile loading despite of this limitation. 
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3. Results and Discussion

Six cortical bone fracture analysis iterations were performed using each FE
model with different mesh density (Figure 2 and as described in section 2.2) and 
mixed boundary conditions (Figure 2.g), where three iterations were performed using 
the cohesive segment (CS) approach and three different analysis increment sizes 
(0.05, 0.01, and 0.001), and the other three iterations were performed using the 
LEFM approach and three different analysis increment sizes (0.05, 0.01, and 0.001). 
All twenty four iterations results are summarized in Figure 4. The FE model that 
generated similar results regardless of the increment size and fracture analysis 
approach is considered the optimal FE model, and the largest increment size (using 
the optimal FE model) that generates similar results for both the CS approach and 
the LEFM approach is considered the optimal increment size. Therefore, the FE 
model that contains 8,304 four-node bilinear plane strain enriched elements (Figure 
2.b) is considered to be the optimal FE model, and the 0.01 (1% of total analysis 
time) increment size is considered the optimal increment size. 

Cortical bone fracture analysis results using XFEM, mixed boundary conditions, 
and fine mesh (Figure 2.d), which contains 271,660 plane strain 4-node bilinear 
enriched elements (CPE4), are not acceptable as shown in Figure 5, whether using 
the linear elastic fracture mechanics approach or the cohesive segment approach. 
This is because multiple cracks were generated simultaneously at the location where 
the first crack initiation is expected. This behavior is not expected especially when a 
cortical bone sample is under tensile stresses as shown in Figure 14 [20], previous 
experimental studies [12, 20, 21, and 22], and previous simulation studies [9, 10, and 
11]. Using a very fine mesh will generate multiple cracks in a small region. These 
cracks are close to each other and can intersect, which will cause the analysis to 
diverge. Therefore, using a very fine mesh is not recommended for such analysis 
due to results inaccuracy and simulation convergence challenges. This study also 
showed that the finer the mesh the smaller the increment size should be used to 
generate relatively acceptable results. This will lead to longer simulation times and 
does not guarantee more accurate results compared to using an average size mesh. 

Using the finite element model with optimal mesh density as shown in Figure 2.b, 
which contains 8,304 plane strain 4-node bilinear enriched elements, can generate 
reasonable results because mesh density will not allow multiple cracks to be 
generated at once in a very small region as shown in Figure 6. This is found to be 
true when using the linear elastic fracture mechanics approach and the cohesive 
segment approach. Crack propagation speed is found to be slower when using the 
cohesive segment approach compared to the one obtained using the linear elastic 
fracture mechanics approach. Also, we observe that the cortical bone analysis 
increment size can affect crack propagation speed, where the crack propagation 
speed variation between the two approaches is found to be proportional to the 
simulation increment size, where the larger the increment size is, the bigger crack 
speed variation is between the two approaches. Also, the effect of an increment size 
on crack propagation is observed to be small when using the linear elastic fracture 
mechanics approach. Optimizing mesh density and analysis increment size for 
cortical bone fracture analysis using the XFEM is important to insure consistent 
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results whether using the linear elastic fracture mechanics approach or the cohesive 
segment approach.  

Using the 4-node bilinear reduced integration enriched elements (CPE4R) has a 
slight effect on the cortical bone fracture analysis results when using the cohesive 
segment approach, where employing reduced integration elements decreases crack 
propagation speed compared to using full integration elements. On the other hand, 
when using the linear elastic fracture mechanics approach, the cortical bone fracture 
analysis results are similar regardless if the reduced integration enriched elements or 
full integration enriched elements are used (Figure 7). 

Cortical bone fracture simulations using the XFEM and mixed boundary 
conditions are challenging to converge when performing a force controlled analysis 
(applying uniform tractions to upper model horizontal edge nodes). On the other 
hand, performing a displacement controlled analysis (applying prescribed 
displacement to upper model horizontal edge nodes) is easier to converge. Also, it is 
important to note that the results variations between using the LEFM approach 
versus the CS approach are small but more pronounced when a force controlled 
analysis is performed; this is expected to be due to Poisson's ratio effect (Figure 8).  

Performing cortical bone fracture analysis using the cohesive segment approach 
damage evolution for the traction separation law, based on energy, generated similar 
results compared to using the damage evolution for traction separation law, based 
on displacement (Figure 9). This is consistent with our expectations because the 
damage evolution based on energy is directly related to the damage evolution based 
on the displacement. 

Cortical bone fracture analysis results using the XFEM, mixed boundary 
conditions, optimal finite element model (8,304 plane strain 4-node bilinear enriched 
elements), a 0.01 increment size, and the cohesive segment approach (energy 
based damage evolution for traction separation) versus the linear elastic fracture 
mechanics approach are shown in Figures 10 and 11. The results are consistent 
between the two approaches, but the crack propagation simulated using the LEFM 
approach is faster compared to the one obtained using the cohesive segment 
approach, and also the cement line effect on the crack propagation direction is more 
sensitive when using the cohesive segment approach compared to the linear elastic 
fracture mechanics approach. 

Mesh density and increment size effects on the cortical bone fracture analysis 
results accuracy are investigated using the model with mixed boundary conditions 
(Figure 2.g). Two other models with displacement and traction boundary conditions 
(Figure 2.e and Figure 2.f, respectively) are also analyzed using the LEFM approach 
with two different mesh densities and multiple increment sizes to see if same 
conclusions can be drawn. Based on the results (Figures 12 and 13), using a very 
fine mesh will effect crack initiations and propagations negatively, and also the 
results are more sensitive to an increment size when using a finer mesh. These 
observations are consistent regardless if the displacement, traction, or mixed 
boundary conditions are used. 

In this study we assigned different material properties for each phase (osteon, 
interstitial bone, and cement line) as given in Table 1. These material properties are 
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based on nanoindentation measurements reported in [13]. Furthermore, we 
assumed that each phase is homogeneous and isotropic, for simplicity. Such model 
may not accurately represent actual bone which has inhomogeneous properties and 
properties variations could be higher than the assumed differences in material 
properties between cement line and osteon and between cement line and interstitial 
matrix. This could affect bone fracture simulation results accuracy and, thus, this as 
a limitation of this study.  

4. Conclusions

This study provides guidance on two-dimensional cortical bone elastic fracture
simulations using the Abaqus software and the extended finite element method by 
considering the cohesive segment approach and the linear elastic fracture 
mechanics approach. Also, the mesh density, element type, increment size, and 
traction versus displacement loadings (using displacement, traction, and mixed 
boundary conditions) effects on cortical bone fracture analysis results accuracy were 
investigated. 

In this paper we simulated cortical bone fracture using the XFEM and found that 
both cohesive segment and linear elastic fracture mechanics approaches can be 
used to provide accurate results. However, results obtained from both approaches 
are sensitive to the finite element model mesh density and to the analysis increment 
size, where using finer mesh and/or smaller analysis increment size does not always 
provide more accurate results. When using a relatively fine mesh, small simulation 
increment size, or large simulation increment size, they showed unexpected cracks 
initiations and propagations behavior which in turn affected results negatively 
regardless of problem boundary conditions. Therefore, the analysis increment size 
and mesh density should be evaluated and optimized to preserve results accuracy.  

This study also showed that using the cohesive segment damage evolution for a 
traction separation law based on energy versus displacement has limited effect on 
simulation results. On the other hand, using the reduced integration elements along 
with the cohesive segment approach decreased crack propagation speed compared 
to using full integration elements. In addition, a traction controlled analysis along with 
XFEM is challenging to converge. Results variations when using the linear elastic 
fracture mechanics approach versus cohesive segment approach are very limited 
but more pronounced if the traction controlled analysis is performed compared to the 
displacement controlled analysis. The linear elastic fracture mechanics approach 
showed faster cracks propagation with more realistic behavior compared to the 
cohesive segment approach. 

Cortical bone two-dimensional unit cell model is used in this study to set a 
framework for simulating fractures of more complex multi-osteon geometries. 
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Table 1. Cortical bone FE model mechanical properties. 

Critical stress intensity 
factor (Kcr ) 

       

Poisson’s ratio (v) 
Young modulus (E) 

GPa 

Osteon 1.35 0.33 13.50 

Matrix 1.46 0.3 14.60 

Cement Line 1.01 0.41 10.12 
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Figure 1. Tibiae cortical bone. (a) Microscopy image [7] from mid-diaphysis of tibiae of a 70 years old 

human male donor. (b) Two dimensional cortical bone model. 
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Figure 2. Two dimensional cortical bone FE models with displacement, force, and mixed boundary 

conditions (a) Cortical bone FE model which contains 2,381 four-node bilinear plain strain enriched 

elements. (b) Cortical bone FE model which contains 8,304 four-node bilinear plain strain enriched 

elements. (c) Cortical bone FE model which contains 15,154 four-node bilinear plain strain enriched 

elements. (d) Cortical bone FE model which contains 271,660 four-node bilinear plain strain enriched 

elements. (e) Cortical bone model with displacement boundary conditions. (f) Cortical bone model 

with force boundary conditions. (g) Cortical bone model with mixed boundary conditions.  
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Figure 3. (a) Damage model. (b) Damage evolution for traction separation law based on energy and 

displacement. 
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Figure 4. Cortical bone fracture analysis results, due to 0.5 microns upper edge vertical 

displacement and mixed boundary conditions, using four different FE models (model1: 2,381 CPE4 

elements, model2: 8,304 CPE4 elements, model3: 15,154 CPE4 elements, and model4: 271,660 

CPE4 elements). Deformations in the image have been scaled by 20X. (a1) Results using model1, CS 

approach, and 0.05 increment size. (a2) Results using model1, CS approach, and 0.01 increment 

size. (a3) Results using model1, CS approach, and 0.001 increment size. (a4) Results using model1, 

LEFM approach, and 0.05 increment size. (a5) Results using model1, LEFM approach, and 0.01 

increment size. (a6) Results using model1, LEFM approach, and 0.001 increment size. (b1) Results 

using model2, CS approach, and 0.05 increment size. (b2) Results using model2, CS approach, and 

0.01 increment size. (b3) Results using model2, CS approach, and 0.001 increment size. (b4) Results 

using model2, LEFM approach, and 0.05 increment size. (b5) Results using model2, LEFM approach, 

and 0.01 increment size. (b6) Results using model2, LEFM approach, and 0.001 increment size. (c1) 

Results using model3, CS approach, and 0.05 increment size. (c2) Results using model3, CS 

approach, and 0.01 increment size. (c3) Results using model3, CS approach, and 0.001 increment 

size. (c4) Results using model3, LEFM approach, and 0.05 increment size. (c5) Results using model3, 

LEFM approach, and 0.01 increment size. (c6) Results using model3, LEFM approach, and 0.001 

increment size. (d1) Results using model4, CS approach, and 0.05 increment size. (d2) Results using 

model4, CS approach, and 0.01 increment size. (d3) Results using model4, CS approach, and 0.001 

increment size. (d4) Results using model4, LEFM approach, and 0.05 increment size. (d5) Results 

using model4, LEFM approach, and 0.01 increment size. (d6) Results using model4, LEFM approach, 

and 0.001 increment size. 
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Figure 5. Cortical bone fracture analysis results, due to 0.5 microns upper edge vertical 

displacement and mixed boundary conditions, using FE model with relatively fine mesh that contains 

271,660 CPE4 elements. Deformations in the image have been scaled by 20X. (a) Results using 

cohesive segment approach and 0.05 increment size. (b) Results using cohesive segment approach 

and 0.01 increment size. (c) Results using cohesive segment approach and 0.001 increment size. (d) 

Results using LEFM approach and 0.05 increment size. (e) Results using LEFM approach and 0.01 

increment size. (f) Results using LEFM approach and 0.001 increment size. 
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Figure 6. Cortical bone fracture analysis results, due to 0.5 microns upper edge vertical 

displacement and mixed boundary conditions, using FE model with average size mesh that contains 

8,304 CPE4 elements. Deformations in the image have been scaled by 20X. (a) Results using 

cohesive segment approach and 0.05 increment size. (b) Results using cohesive segment approach 

and 0.01 increment size. (c) Results using cohesive segment approach and 0.001 increment size. (d) 

Results using LEFM approach and 0.05 increment size. (e) Results using LEFM approach and 0.01 

increment size. (f) Results using LEFM approach and 0.001 increment size. 
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Figure 7. Cortical bone fracture analysis results using FE model that contains 8,304 enriched 

elements, 0.01 increment size, and mixed boundary conditions due to 0.5 microns upper edge vertical 

displacement. Deformations in the image have been scaled by 20X. (a) Results using LEFM approach 

and CPE4 enriched elements. (b) Results using LEFM approach and CPE4R enriched elements. (c) 

Results using cohesive segment approach and CPE4 enriched elements. (d) Results using cohesive 

segment approach and CPE4R enriched elements. 
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Figure 8. Cortical bone fracture analysis results using FE model that contains 8,304 CPE4 enriched 

elements, 0.01 increment size, and mixed boundary conditions. Results reported at 0.5 microns upper 

edge vertical displacement due to force / displacement control analysis. Deformations in the image 

have been scaled by 20X. (a) Results using LEFM approach and displacement control. (b) Results 

using LEFM approach and force control. (c) Results using cohesive segment approach and 

displacement control. (d) Results using cohesive segment approach and force control. 
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Figure 9. Cortical bone fracture analysis results using FE model that contains 8,304 CPE4 enriched 

elements, 0.01 increment size, mixed boundary conditions, displacement control, and cohesive 

segment approach. Deformations in the image have been scaled by 10X. (a) Results at 0.4 microns 

vertical displacement using damage revolution for traction separation law, based on energy. (b) 

Results at 0.4 microns vertical displacement using damage revolution for traction separation law, 

based on displacement. (c) Results at 0.5 microns vertical displacement using damage revolution for 

traction separation law, based on energy. (d) Results at 0.5 microns vertical displacement using 

damage revolution for traction separation law, based on displacement.  
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Figure 10. Cortical bone fracture analysis results using FE model that contains 8,304 CPE4 enriched 

elements, 0.01 increment size, mixed boundary conditions, and displacement control. (a) Results at 

0.4 microns vertical displacement using LEFM approach. (b) Results at 0.4 microns vertical 

displacement using cohesive segment approach. (c) Results at 0.425 microns vertical displacement 

using LEFM approach. (d) Results at 0.425 microns vertical displacement using cohesive segment 

approach. (e) Results at 0.5 microns vertical displacement using LEFM approach. (f) Results at 0.5 

microns vertical displacement using cohesive segment approach. 
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Figure 11. Cortical bone fracture analysis results using FE model that contains 8,304 CPE4 enriched 

elements, 0.01 increment size, mixed boundary conditions, and displacement control. 
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Figure 12. Cortical bone fracture analysis results, due to 0.5 microns upper edge vertical 

displacement, using LEFM approach, and using FE model with relatively fine mesh that contains 

271,660 CPE4 elements. Deformations in the image have been scaled by 20X. (a) Results using 

displacement boundary conditions and 0.05 increment size. (b) Results using displacement boundary 

conditions and 0.01 increment size. (c) Results using displacement boundary conditions and 0.001 

increment size. (d) Results using traction boundary conditions and 0.05 increment size. (e) Results 

using traction boundary conditions and 0.01 increment size. (f) Results using traction boundary 

conditions and 0.001 increment size. (g) Results using mixed boundary conditions and 0.05 increment 

size. (h) Results using mixed boundary conditions and 0.01 increment size. (i) Results using mixed 

boundary conditions and 0.001 increment size. 
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Figure 13. Cortical bone fracture analysis results, due to 0.5 microns upper edge vertical 

displacement, using LEFM approach, and using FE model with average size mesh that contains 

8,304 CPE4 elements. Deformations in the image have been scaled by 20X. (a) Results using 

displacement boundary conditions and 0.05 increment size. (b) Results using displacement boundary 

conditions and 0.01 increment size. (c) Results using displacement boundary conditions and 0.001 

increment size. (d) Results using traction boundary conditions and 0.05 increment size. (e) Results 

using traction boundary conditions and 0.01 increment size. (f) Results using traction boundary 

conditions and 0.001 increment size. (g) Results using mixed boundary conditions and 0.05 increment 

size. (h) Results using mixed boundary conditions and 0.01 increment size. (i) Results using mixed 

boundary conditions and 0.001 increment size. 
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Figure 14. Human cortical bone (34-year old female) from the mid-diaphyses three-point-bending 

test results [20]. 
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Cortical Bone Fracture Analysis Using XFEM – Case Study 

Ashraf Idkaidek and Iwona Jasiuk* 

We find that cohesive segment and linear elastic fracture mechanics approaches 
within the extended finite element method can both effectively simulate cortical bone 
fracture. However, results obtained from both approaches are sensitive to finite 
element model mesh density and to analysis increment size, where using finer mesh 
and/or smaller analysis increment size does not always provide more accurate 
results. Also the linear elastic fracture mechanics approach showed faster cracks 
propagation with more realistic behavior compared to the cohesive segment 
approach. 
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