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A B S T R A C T

Natural disasters may act as harmful causes of food insecurity in the Middle East. Frequent drought events, water
scarcity, and unsustainable intensive agricultural practices may impact food security in the region. This paper
investigates a causal relationship between drought and food security across the Middle East. Meteorological,
agricultural, and hydrological droughts are analyzed at multiple timescales over the region for seven decades
during the period of 1948–2017. We simulate food security in the Middle East as a function of drought (re-
presenting a water stress factor) as well as several other socio-economic drivers. A Bayesian approach is im-
plemented to integrate these drivers in order to accurately predict food security in the region. Results reveal that
hydrological drought is the most intensified drought type over the region, especially in Egypt, during the study
period. Moreover, the results demonstrate the significant impacts of livestock, population growth, agricultural
products, and drought on food security in the Middle East. Our findings further indicate that the agricultural
products decreased in the Middle East following the recent drought event that happened in 2010.

1. Introduction

Frequent drought events with increasing severity can substantially
impact agricultural productivity and food security in the regions with
semi-arid hot climate. Drought as a recurring natural hazard may im-
pact water resources such as: water supply, water quality, surface and
subsurface water availability, and management of water resources
(Amin et al., 2016; FAO, 2017; Scanlon et al., 2017; van Loon et al.,
2014). In general, four types of drought are identified: (1) Meteor-
ological drought which accounts for precipitation shortage
(Ahmadalipour et al., 2016; Beguería et al., 2014; Das et al., 2015;
Hameed et al., 2018); (2) Agricultural drought which considers soil
moisture deficiency (Gao et al., 2015; Mishra et al., 2015; Nichol and
Abbas, 2015; Vicente-Serrano et al., 2015; Yan et al., 2017); (3) Hy-
drological drought which is a lack of surface and subsurface water
(Barker et al., 2016; Lorenzo-Lacruz et al., 2013; Madadgar and
Moradkhani, 2013; Mo and Lettenmaier, 2014; Van Loon and
Laaha, 2015; Zhang et al., 2015); (4) Socioeconomic drought that ac-
counts for water resources system deficit resulting from other types of
drought (Huang et al., 2016; Maia et al., 2015; Rajsekhar et al., 2015;
van Loon et al., 2014).

It has been identified that food security is vulnerable to extreme
weather events. Extreme weather events may negatively influence food
supply and security of vulnerable regions (Silva et al., 2018). Moreover,

climate change can negatively impact crop, livestock, and fisheries
production; therefore, more attention should be paid to action-oriented
research (Wollenberg et al., 2016). Rosegrant and Cline (2003) men-
tioned that food security will continue to be a global concern in the
twenty first century given the crop yield failure in many regions due to
lack of research and infrastructure as well as increasing water scarcity.
Kang et al. (2009) suggested that climate change may markedly affect
the growing period, harvest date, and crop rotation period. The United
Nations reported that rain-fed agricultural lands are extremely influ-
enced by drought in the Arab region. It consequently results in de-
creasing yields and depleting vegetation in pasture lands, which in turn
affects livestock in the region. Furthermore, land degradation can be
another consequence of drought that may decrease the land area cov-
ered by native plants (UN, 2015).

Given that adaptation for agriculture is complicated, crop-climate
studies should be applied to improve the understanding of food security
other than availability (Beveridge et al., 2018). Climate change may
pose major challenges to food security and thus agricultural systems
need to incorporate adaptive measures considering the negative im-
pacts of climate change on food security along with growing population
and demand worldwide (Kumar, 2016). Changes in population, income,
and climate, among other drivers play essential role in achieving and
maintaining global food security. Hence, predictive models that ac-
count for such factors can be helpful for planning and management of
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food security.
Antonelli and Tamea (2015) found that the food and water security

in the Middle East and North Africa (MENA) region substantially de-
pend on water from outside the region, and thus increase the food
imports and trade in the region. By 2050, food imports are likely to
provide about half of the MENA region's food demand to achieve food
security (Qadir et al., 2007). A study by Zaitchik et al. (2007) indicated
that climate fluctuations might result in significant change in vegeta-
tion across the Middle East, and the authors concluded that the vege-
tation in the Euphrates Plain is predominantly limited by soil moisture
availability. In Syria, rain-fed agriculture is affected by fluctuation in
precipitation; therefore, crop production and food availability have
been impacted by the prolonged-frequent drought events over the
country (Tolba and Saab, 2009).

Expanding aridity associated with environmental stresses such as
frequent drought and heat stresses (Ahmadalipour and
Moradkhani, 2018a; Hameed et al., 2018; Abbas et al., 2018) can im-
pose serious threat to food security in the Middle East.
Saadi et al. (2015) assessed the impact of climate change on winter
tomato and wheat yields in the Mediterranean region. Their results
indicated that spatial and seasonal variations of air temperature and
precipitation are two main factors affecting winter tomato and wheat
crops in the region. Lelieveld et al. (2012) suggested that the Eastern
Mediterranean and the Middle East (EMME) region is likely to be im-
pacted by frequent and intense droughts associated with hot weather
conditions in the 21st century.

This study builds up on previous assessments and aims to quanti-
tatively investigate the relation between drought and food security in
the Middle East. The overarching goals of this paper are as follows: 1)
Characterizing historical drought conditions across the Middle East
using long-term (1948–2017) hydro-climatological variables.
Meteorological, agricultural, and hydrological droughts are analyzed
across the Middle East at different time scales. 2) Statistical simulation
of food security in the Middle East considering drought condition and
socio-economic drivers. A Bayesian modeling approach is conducted to
determine the appropriate model that can accurately simulate food
security in the region.

2. Study area and data

The proposed study area is the Middle East region, defined here as
sixteen countries, namely, the Arabian Peninsula (Bahrain, Kuwait,
Oman, Qatar, Saudi Arabia (KSA), United Arab Emirates (UAE), and
Yemen), Iraq, Iran, Syria, Lebanon, Israel, Palestine, Egypt, and Turkey.
The Middle East is located in western Asia and northeastern Africa, and
it covers an area of roughly 6928,000 km2 (2675,000mi2) residing
about 320 million people. According to the International Institute for
Applied Systems Analysis (IIASA) and the Food and Agriculture
Organization (FAO), the dominant land cover pattern in the region is
mostly barren land. Notably, Turkey, northwestern Iran, northeastern
Iraq, western parts of Syria, Lebanon, and along the Nile River in Egypt
are among the regions dominated with grassland, woodland, and cul-
tivated lands. Forests cover the northern parts of Turkey and Iran (see
Fig. 1).

In this study and according to the available data provided by FAO,
the crop production index (agricultural production for each year re-
lative to the base period of 2004–2006) and food deficit (kilocalories
per person per day) are considered as food security indicators in the
Middle East. To quantify food security in the Middle East, the relevant
factors that explain food availability in the region are identified, in-
cluding drought, water stress, energy, and other socio-economic factors.
Different data sources are explored to investigate the appropriate fac-
tors, including the International Energy Agency (IEA), FAO of the
United Nations, and the World Bank. The definition of food security and
the associated influential factors are regionally explicit due to the dif-
ferences in natural and anthropogenic resources. Therefore, expert

knowledge about the study domain is essential for the analysis
(Hameed et al., 2019).

The Global Land Data Assimilation System (GLDAS-2) and (GLDAS-
2.1) (Beaudoing and Rodell, 2016, 2015; Rodell et al., 2004) hydro-
climatic variables are utilized for characterizing drought. GLDAS-2
covers the period of 1948–2010 and GLDAS-2.1 extends to the period of
2000–current. Monthly precipitation, soil moisture, and runoff data at a
0.25° spatial resolution are used to drive meteorological, agricultural,
and hydrological droughts, respectively, at multiple timescales (i.e. 3,
6, 12, 18, and 24 months) over the Middle East for the period of
1948–2017.

The natural and socioeconomic factors are explained in
Supplementary Table S1, some of which consist of other sub-factors (i.e.
agricultural products (8) and drought indices (17)). Agricultural pro-
ducts consist of 12 main products in the region, and drought indices
consist of 4 different drought indices which are covered in this study.

3. Methodology

The food security assessment of this study is performed in several
steps as follows:

• Data selection, extraction, pre-processing, and reformatting

• Calculating drought indices: the Standardized Precipitation Index
(SPI), Standardized Soil Moisture Index (SSI), and Standardized
Runoff Index (SRI)

• Normalization to compare different variables

• Multi-collinearity tests to remove redundant variables

• Bayesian analysis to simulate food deficit, crop production index,
and model verification

3.1. Drought Analysis

In this study, the monthly precipitation (total precipitation rate),
surface soil moisture (0–10 cm), root zone soil moisture, and surface-
groundwater runoff are used to derive different types of drought in-
dices: SPI, SSI, SSIrz, and SRI, respectively. The drought indices are
calculated and analyzed at different timescales: 3-, 6-, and 9-month for
short-term changes and 12-, 18-, and 24-month for long term drought
changes over the Middle East. The calculation of SSI, SSIrz, and SRI are
similar to that of the SPI (Mckee et al., 1993) as a reference (Hao et al.,
2017; Shukla and Wood, 2008; Wu et al., 2016; Zhang et al., 2017).

SPI is a widely used probability-based index detecting precipitation
deficiency in a region by quantifying precipitation deviation from his-
torical mean. To avoid dealing with data fitting to a distribution, which
is known to have a few issues, a nonparametric approach is im-
plemented to calculate drought indices (i.e. SPI, SSI, SSIrz, and SRI) in
this study. Precipitation, soil moisture, and runoff of each grid cell were
accumulated to the desired accumulation period, and the empirical
Gringorten plotting position (Gringorten, 1963) was utilized as follows:

=
−

+
p x i

n
( ) 0.44

0.12i (1)

Where n is the sample size, i denotes the rank of non-zero variable data
from the smallest, and p(xi) is the corresponding empirical probability.
The outputs of Eq. (1) can be transformed into a Standardized Index (SI)
as:

= ∅−SI p( )1 (2)

Where ϕ is the standard normal distribution function, and p is prob-
ability derived from Eq. (1). A negative value of the standardized
drought index indicates a dry condition, whereas a positive value in-
dicates a wet condition. A value of zero represents normal climate
condition. Table 1 classifies the dry/wet conditions of the standardized
drought index as suggested by Mckee et al. (1993).
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3.2. Mann-Kendall test and Sen's slope

A non-parametric monotonic trend test computing Mann-Kendall
Tau, Tau-b, and Sen's slope estimator is implemented in this study for
analyzing trends of each drought index (Burkey, 2006). The Mann-
Kendall test (Kendall, 1955; Mann, 1945) is a well-known statistical test
that has been used to verify the significance of temporal trends of
variables in long-term behavior of time series (Das et al., 2015;
Güner Bacanli, 2017). In this study, the significance of trends are ex-
amined based on a significance level of α=0.05. The non-parametric
procedure developed by Sen (1968) is used. For more details, readers
are referred to Drapela and Drapelova (2011).

To better understand the regional trends of drought intensity, the
monthly variations and long-term linear trends are investigated for
each drought index.

3.3. Food security analysis

3.3.1. Natural and socioeconomic factors selection
A total of 25 factors were initially considered during the period of

1960 to 2017. Supplementary Table S1 explains each factor and its
availability. Based on the data availability and continuity of the data,
some of these factors were eliminated. In this study, each factor should
be available for at least half of the Middle Eastern countries and for a
continuous period of 24 years to be selected for further analysis.
Therefore, 12 factors remain to be considered for the period of 1992 to
2015. Each of the chosen factors are normalized separately using the
data from all countries to compare different variables.

Given that the principal component analysis (PCA) specifies the
relationship among various variables, PCA is performed in this study to
eliminate the variables that introduce redundancy and multi-colli-
nearity. The PCA is a popular statistical technique of multivariate
analysis (Jolliffe, 2002). The main purpose behind the PCA is di-
mensionality reduction of data comprising a large number of associated
variables, meanwhile preserving data variation as much as possible.
This can be attained by transforming the data to a new set of variables
(the principal components), which are uncorrelated and ordered in a
way that the first few components capture most of the variance in all of
the original variables (Jolliffe, 2002). The user can decide the number
of PCs based on the acceptable level of variance explained by each PC.
PCA has been used by many researchers for various objectives
(Kopec et al., 2018; Lecher et al., 2018; Liu et al., 2015; Malik et al.,
2018; Meng et al., 2016; Santos et al., 2010; Tan et al., 2016;
Thecla et al., 2018; Tielbörger et al., 2014). Generally, the PCA is
considered for simplification, data reduction, modeling, outlier detec-
tion, variable selection, classification, prediction, and unmixing

Fig. 1. Elevation map of the Middle East. Data source: http://www.diva-gis.org.

Table 1
Categories of dry/wet classes by drought indices fol-
lowing Mckee et al. (1993).

Category SI value
(min-max)

Extremely dry Less than −2
Severe dry −1.99 to −1.5
Moderate dry −1.49 to −1.0
Near normal −1.0 to 1.0
Moderate wet 1.0 to 1.49
Severe wet 1.50 to 1.99
Extremely wet More than 2
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(Wold 1987). However, to ensure the independence among the selected
variables, the Variance Inflation Factor (VIF) is applied in this study
(Ahmadalipour and Moradkhani, 2018b; Kim et al., 2015;
O'Brien, 2007). The VIF is a simple technique for measuring the degree
of multi-collinearity among variables, defined as:

=
−

VIF
R

1
1i

i
2 (3)

Note that VIF measures the impact of collinearity of the variable Xi,
i=1, …, n, with the rest of the variables on the square of the radius of
the confidence interval. Ri is the correlation coefficient of Xi and the
other covariates. A value of VIF > 4 indicates the existence of multi-
collinearity and that the factors are statistically insignificant
(Ahmadalipour and Moradkhani, 2018b). Eventually, the results of the
PCA and VIF led to the selection of 7 independent factors for quanti-
fying food security in the Middle East.

3.3.2. Bayesian modeling
Regression analysis is a statistical method that exploits the re-

lationship between two or more quantitative variables, and it can sys-
tematically express the variation of the response variable based on the
predictors (Neter et al., 1996). To more accurately model the food se-
curity in the Middle East, a Bayesian framework is applied in this study.
Bayesian methods assist in assimilating an optimal model, dealing with
linear and non-linear states, and handling small sample size of data
(Vannucci et al., 2012).

Given the aforementioned attributes and approach flexibility, the
Bayesian Linear Regression (BLR) method is utilized in this study. In
Bayesian analysis, prior distribution assumptions are imposed on model
parameters to incorporate knowledge about the model. Moreover, the
Bayesian analysis updates the probability distributions of model para-
meters by acquiring information about the parameters from observing
the data. The distribution of the updated parameters is called posterior
distribution. These prior-posterior pairs represent the prior model for
data likelihood. The data likelihood is defined as:

∏ ∅
=

y x β σ( ; , )
t

T

t t
1

2

(4)

Where∅ (yt; xt β, σ2) is the Gaussian probability density evaluated at yt
with xt, prior mean β, and variance σ2.

Five of the seven selected factors are the inputs (predictors) to the
BLR model, as follows: population growth, energy, agricultural pro-
ducts, drought indices, and livestock. Food deficit and crop production
index are the outputs of the BLR model. It should be noted that the
mean of 12 agricultural products (number 8 in Supplementary Table
S1) are considered as one input to the BLR model. Whereas, each
drought index is considered as an input to the BLR model.

The Akaike information criteria (AIC; Akaike 1974) and Bayesian
information criterion (BIC; Schwarz 1978) are utilized to evaluate the
quality of each model, and they are defined as follows:

= − +AIC m L m( ) 2 2 (5)

= − +BIC m L mlog n( ) 2 ( ) (6)

Where m denotes the number of fitted parameters, n is the number
of observations, and L is the maximized value of likelihood function of a
statistical model for a given data. A lower value for AIC and BIC criteria
indicates a better model. Moreover, the root mean square error (RMSE)
metric, which is the square root of the average of squared differences
between prediction and actual observation, is also utilized to evaluate
the final model.

4. Results

4.1. Drought characterization

4.1.1. Trends of drought intensity
It is of high importance to assess drought trends in a changing cli-

mate (Güner Bacanli, 2017). Therefore, spatial variability of the long-
term trends of meteorological, agricultural, and hydrological drought
intensity are estimated over the Middle East in this study. Trends are
calculated for short timescales (i.e. 1-, 3-, and 6-month) and long

Fig. 2. Drought trends for the period of 1948–2017 according to the SI-1, −3, −6, −12, −18, and −24 months over the Middle East. Please note that the color bar
indicates the mean change of SI in seven decades.
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timescales (i.e. 12-, 18-, and 24-month). First, a linear trend for each SI
is estimated using the least squares method. Fig. 2 shows the linear
trend of each SI at each grid cell during the study period (1948–2017).
The estimated slope represents the mean change of the drought index
during the seven decades. The positive slope value (shown in blue)
denotes a decrease in drought intensity, whereas, a negative value
(shown in red) indicates a decreasing drought index and therefore, an
aggravation in drought intensity. From Fig. 2, the 24-months timescales
(SI-24) show the most intensified drought trends in the Middle East
compared to other timescales. Results of SPI-1, −3, −6 indicate minor
changes in the intensity of meteorological drought in the region.
However, results of SPI-12, −18, and −24 show considerable changes
of meteorological drought, especially over Egypt and eastern Iran.
Hydrological drought (at all timescales) is mostly intensified in Egypt,
western Iraq, Saudi Arabia, and northern parts of Oman. The results of
agricultural drought at root zone show intensified drought at SSIrz-12,
−18, and −24 over Iraq, Syria, Lebanon, Palestine, Israel, northern
Jordan, Oman, and Saudi Arabia. Whereas, agricultural drought based
on near surface soil moisture (SSI) reveals less intensification of drought
in the region.

Fig. 3 shows the results of the Mann-Kendall and Sen slope estimator
statistical test at 1-, 3-, 6-, 12-, 18-, 24-months SIs (all of which are
aggregated to annual timescale) over the Middle East during the study
period (1948–2017). The analysis of Mann–Kendall test of hydrological
and agricultural droughts reveal that the negative trends in drought
magnitudes (intensified droughts) are significant at 5% level of sig-
nificance for all timescales. Whereas, both trend tests (i.e. linear trend

Fig. 3. Trend test including Sen's slope method using Mann-Kendall Tau-b technique. The results for 1-, 3-, 6-, 12-, 18-, 24-months SRI, SSI, and SSIrz during the study
period (1948–2017). All the trends are significant at 0.05 significance level, and the slope in each case is included for each plot.

Fig. 4. Temporal variations of monthly dry (SI < −1) and wet (SI > 1) extent
over the Middle East. All indices are showing the results of 12-months time-
scale.
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and Mann–Kendall) indicate that SPI trends at all timescales are not
significant at the 0.05 significance level, and therefore, the SPI results
are not included in Fig. 3.

From Fig. 3, SRI indicates wet condition after 2010 over the Middle
East. Whereas, SSI and SSIrz indicate both wet and dry conditions after
2010 across the region. In general, slopes of all drought indices indicate
larger decreasing trends (more drought intensification) at longer
timescales. Moreover, SRI shows more intensifying drought (sharper
slopes) than SSI and SSIrz at all time scales.

4.1.2. Spatial extent of drought
Temporal variations of monthly drought condition (SI<−1) and

wet condition (SI>1) are investigated in this section. This is obtained
by calculating the ratio of the number of grids with dry or wet condition
to the total number of grids covering the Middle East during the study
period of 1948–2017 (Fig. 4). Here, the 12-months timescale is selected
for each drought index as it captures a relatively long-term drought
analysis. From Fig. 4, it can be seen that the temporal patterns vary
towards greater drought extent in the late 1990s and the period be-
tween 2007–2013. Whereas, lower drought extent is observed in the
previous decades (1950s, 1960s, 1970s, and 1980s). In general, drought
indices indicate coherence for most of the study period. Meteorological
drought extent (SPI, top panel) reached its peak in early 1970s, early
2000s, and the period of 2008–2012 with about 60% drought extent.
Whereas, hydrological drought (SRI, second panel) governs the period
of 1999–2012 over the Middle East and reaches its maximum in 2009
with more than 50% drought extent. Moreover, agricultural drought
(SSI, bottom two panels) affected the region in late 1990s-early 2000s,
the period of 2007–2012, and reached its maximum in 2017 with al-
most 80% drought extent over the region.

To better understand the seasonal changes in the spatial extent of
drought, seasonal drought patterns are invistigated for each drought
type during the growing season (April-September) for the two main
drought periods invistigated in the study: (1998–2002) and
(2007–2013) (Figs. 5 and 6). From Fig. 5, meteorological, hydrological,
and agricultural droughts occured over most of the northern, eastern,
and central parts of the Middle East during 1999 to 2001. The most
intensified droughts occured in 2000 over the eastern parts of the

Middle East (i.e. Tigris-Euphrates basin and Gulf region). Most parts of
Turkey and eastern Iran were under the three types of drought (me-
teorological, hydrological, and agricultural) in 2001 (Fig. 5). From
Fig. 6, all types of drought occurred in 2008 and 2009 over the Middle
East, espetially the Tigris-Euphrates basin and the Gulf region. The most
intensified meteorological and agricultural droughts occurred in Iran in
2011. Whereas, Egypt and Saudi Arabia were under intensified drought
condition in 2012 (Fig. 6). The results indicate that if drought happens
in winter, it generally persists in summer months, as the majority of the
study area receives precipitation mainly in fall and winter, and due to
high temperature in summer, drought usually persists during growing
season and intensifies in summer. Early-season drought can delay crop
planting activities, subsequently reducing agricultural area and pro-
duction. Remarkably, mid-season drought can impact crop growth,
whereas the late-season drought may affect the harvest (Das et al.,
2015). Additional seasonal drought patterns are available in the sup-
plementary file.

4.2. Principal component analysis (PCA)

Fig. 7 shows the results of PCA considering the 12 selected factors.
PC1 explains about 68% of the total variance, whereas PC2 accounts for
12% of the total variability. The length of each vector with respect to
each PC indicates the relative contribution of that factor to that PC. In
other words, the longer vectors contribute more than the shorter vec-
tors with respect to the given component. Vectors of similar length and
extending in the same direction represent correlated factors. For in-
stance, crop production and food production are negatively correlated
with PC1 and positively correlated with each other, showing that as one
of the two factors increase, so does the other factor. Conversely, food
deficit is positively correlated with PC1. This means as crop production
and food production increase, the food deficit decreases. Population
growth and agricultural land are correlated more strongly with PC2.
Knowing that the inputs to the BLR model have to be uncorrelated, PCA
results assist identifying the correlated factors.

Fig. 5. Seasonal drought patterns over the Middle East for the growing season during the period of 1998–2002.
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4.3. Bayesian linear regression analysis

Food security in the Middle East is investigated in this study using
two measures: food deficit and crop production index. A total of six
models are presented here to predict food security in the region. To
overcome multi-collinearity existence among the selected factors in
each model, PCA and VIF tests are used as explained in Section 3.3.
Population growth, agricultural products, livestock, energy, and
drought indices are selected as inputs to the BLR models. Crop pro-
duction index and food deficit are selected as models targets/outputs.

The following section will present the models that predict food se-
curity in Middle East according to the chosen inputs in this study.

4.3.1. Food deficit and crop production index models
Agricultural products, population growth, energy used in agri-

culture, livestock, meteorological drought, agricultural drought, and
hydrological drought are the final selected factors utilized to simulate
food deficit and crop production index (using BLR models) during the
period of 1992–2015. The analysis is conducted on the spatially aver-
aged data for the entire Middle East region at annual scale. Table 2
presents the food deficit and crop production index models as indicators
of food security in the Middle East. The table also provides the per-
formance measures for model verification purposes.

Fig. 8 shows the linear fit of each model with 95% confidence in-
terval. In Fig. 8, the x-axis shows BLR model outputs and y-axis shows
the observations. The results indicate that the 2nd model was the most

Fig. 6. Seasonal drought patterns over the Middle East for the growing season during the period of 2007–2013.

Fig. 7. Results of the Principal Component Analysis (PCA).
Components 1 and 2 accounted for 68% and 12% of the
total variability, respectively. Coefficient vectors represent
how much each factor contributed to the component, with
the longer vectors contributing more than the shorter ones.
The numbers next to each factor indicate the factor order
provided in Supplementary Table S1.
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accurate model for food deficit (RMSE=0.45, Adjusted R2= 0.78),
and the 5th model was the most accurate one for crop production index
(RMSE=0.28, Adjusted R2= 0.92). In general, the crop production
index models indicate more accuracy and higher precision than the
food deficit models in all cases. The 3rd and 6th models in Table 2 are
the same as the 2nd and 5th models, respectively, except that the
drought factors are excluded in them. The reason for removing drought
indices is to investigate how much drought indices contribute in-
formation to food deficit and crop production index models. The results
suggest that including drought indices enhances the accuracy of food
deficit model and crop production index model by more than 15% and
10%, respectively (Table 2).

To better understand how drought may impact food security in the
Middle East, a temporal comparison is conducted between the most
severe recent droughts over the Middle East and the major agricultural
products in the region. Fig. 9 shows the temporal variations of agri-
cultural products and agricultural drought index (SSI-12) during the
period of 1992–2016. The 12 agricultural products, food deficit, and
crop production index are individually de-trended and normalized
around their mean. From Fig. 9, the red area shows the SSI-12, and if it
falls below zero, it indicates agricultural drought. The yellow line re-
presents food deficit, the blue line represents crop production index,
and the green line represents the mean of the 12 agricultural products
(number 8 in Supplementary Table S1). Two major drought periods are

detected in this study: 1998–2002 and 2007–2013. The mean agri-
cultural products and crop production index are decreased in both
drought periods, and they indicate lower than average values. Whereas
food deficit is increased in the second drought period (i.e. 2007–2013).
Our analysis suggest that the mean agricultural products are positively
correlated with SSI-12 (R=0.40), meaning that decreasing SSI (dry
condition) will decrease agricultural products. It is to be noted that food
deficit is a function of many factors such as food imports and exports,
population, trades, political stability, and planning and management;
some of which are not necessarily impacted by regional drought con-
ditions or agricultural yield (Hameed et al., 2019; Hillman and
Baydoun, 2017).

5. Discussion

Food insecurity may arise due to deficiency of food production as a
result of extreme weather events (e.g. drought or flood), population
growth exceeding the food supply production, and increasing food
prices as a consequence of poor economic growth and market fluctua-
tions (Silva et al., 2018). In east Africa, 13 million people were im-
pacted by food crisis as a consequence of the 2011 drought in the re-
gion, which resulted in death of 250,000 people due to starvation in
Somalia (Vicente-Serrano et al., 2012). Many studies investigated food
security in different regions around the world. However, each study

Table 2
Food deficit and crop production models as indicators of food security in the Middle East. The VIF results and statistical metrics are provided in this table too.

Model VIF Metrics

1) Food Deficit= 0.0167+0.6495×Population Growth - 1.0115×Energy - 2.0535×Agricultural Products -
0.4482× SPI+ 2.2160× SSIrz

Population Growth:
3.26
Energy: 3.44
Agricultural
Products:1.26
SPI: 3.98
SSIrz: 3.25

RMSE: 0.62
R2: 0.70
Adjusted R2: 0.62
p-value: 0.00027
AIC: −1.64e+03
AICc: −1.64e+03
BIC: −1.64e+03

2) Food Deficit=−0.0691 −1.3153×Livestock+0.3746×Population Growth - 1.3116×Agricultural
Products+ 0.7845× SPI - 0.3554× SSI+ 1.0319× SRI

Livestock: 3.09
Population Growth:
1.72
Agricultural
Products:1.25
SPI: 1.89
SSI: 1.27
SRI: 3.28

RMSE: 0.45
R2: 0.84
Adjusted R2: 0.78
p-value: 7.07e-06
AIC: −1.62e+03
AICc: −1.61e+03
BIC: −1.61e+03

3) Food Deficit= 0.0074 - 0.7884× Livestock+ 0.0738×Population Growth - 1.2181×Agricultural Products Livestock: 1.12
Population Growth:
1.14
Agricultural
Products:1.03

RMSE: 0.61
R2: 0.68
Adjusted R2: 0.63
p-value: 3.37e-05
AIC: −1.68e+03
AICc: −1.67e+03
BIC: −1.67e+03

4) Crop Production Index= - 0.0066 - 0.4393×Population Growth+ 1.1492×Energy+ 1.5841×Agricultural
Products+ 0.1221× SPI - 1.0784× SSIrz

Population Growth:
3.26
Energy: 3.44
Agricultural
Products:1.26
SPI: 3.98
SSIrz: 3.25

RMSE: 0.41
R2: 0.87
Adjusted R2: 0.83
p-value: 2.26e-07
AIC: −1.64e+03
AICc: −1.64e+03
BIC: −1.64e+03

5) Crop Production Index=0.0188++1.1019× Livestock+ 0.0070×Population Growth+ 1.0704×Agricultural Products -
0.5705× SPI - 0.3479× SSI - 0.4101× SRI

Livestock: 3.09
Population Growth:
1.72
Agricultural
Products:1.25
SPI: 1.89
SSI: 1.27
SRI: 3.28

RMSE: 0.28
R2: 0.94
Adjusted R2: 0.92
p-value: 1.51e-09
AIC: −1.65e+03
AICc: −1.65e+03
BIC: −1.65e+03

6) Crop Production Index=0.0035++0.8296× Livestock+ 0.1870×Population Growth+ 0.8463×Agricultural Products Livestock: 1.12
Population Growth:
1.14
Agricultural
Products:1.03

RMSE: 0.39
R2: 0.87
Adjusted R2: 0.85
p-value: 4.29e-09
AIC: −1.66e+03
AICc: −1.65e+03
BIC: −1.65e+03
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defines food security distinctly according to the environment of the
region of interest. For instance, food security in Burkina Faso was de-
fined in terms of crop–livestock farming systems (Rigolot et al., 2017).
Rigolot et al. (2017) investigated the effect of different climate change
scenarios and recommended studying the effect of combining climate
related practices with social dimensions on food security.
Bakker et al. (2018) developed the Food Distributed Extendable COm-
plementarity (Food-DECO) model to integrate agricultural, transporta-
tion, and economic sectors in order to evaluate food security in
Ethiopia. The authors were able to investigate the effects of regional
crop failure on food security.

Food demand of a region may highly rely on population size and per
capita food consumption (Yang and Zehnder, 2002). Yang and
Zehnder (2002) projected the cereal demand in the southern Medi-
terranean countries based on consumption rate and population growth.
They concluded that water scarcity is a major limitation of food pro-
duction in the region. Their results are in coherence with our findings
that food security is impacted by drought (as a water stress factor) and
population growth. Alary et al. (2014) studied the adaptation strategies
of the recent drought (1995–2010) in the north coastal zone of Egypt,
and found that drought drastically impacted agricultural activities and
livestock in the region. Our study also confirms that agricultural

Fig. 8. A linear fit of data with 95% confidence interval of food security models in the Middle East. The x-axis shows BLR model outputs and y-axis is observations.
The details for each model is provided in Table 2.

Fig. 9. Annual time series of mean agricultural products, crop production index, food deficit, as well as agricultural drought index (SSI-12) during the period of
1992–2016.
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products were impacted by the two major recent droughts during the
period of 1998–2002 and 2007–2013 across the Middle East (see
Fig. 9).

Eklund and Thompson (2017) investigated the 2007–2009 drought
and vegetation productivity over the border region of Iraq, Iran, and
Turkey. The authors concluded that resource management may play
important role in reducing drought vulnerability. Kelley et al. (2015)
mentioned that before the 2007–2010 drought in Syria, agriculture
accounted for 25% of Syrian gross domestic products (GDP). Whereas,
wheat production considerably reduced and agriculture production
GDP dropped to 17% in 2008 drought year. These results are consistent
with our findings for the 2007–2013 drought period over the Middle
East. Crop production index and agricultural products indicted a de-
creasing trend during the 2007–2013 drought period, and food deficit
indicated an increasing trend during the same drought period (see
Fig. 9).

Joint evaluation of biophysical and socioeconomic drivers may en-
hance our understanding of climate impacts and responses (Islam et al.,
2016). The need to integrate climate and socioeconomic drivers to as-
sess food security in a region is one motivation of this study. In addi-
tion, our recent findings in Hameed et al. (2019) suggested that natural
hazards like drought, precipitation extremes, and heat waves may es-
calate water stress in the region, which can be exacerbated with in-
creasing population, subsequently impacting food production in Middle
East.

One limitation of this study was data availability, especially fresh-
water withdrawals for agriculture (Supplementary Table S1). More
accurate results may have been achieved with the same approach if
monthly data were available for the socioeconomic factors that were
considered in this study. Water withdrawals data was not available for
most of the study period. Therefore, drought was used as an indicator of
water stress in Middle East.

This study provided a quantitative assessment of food security as a
function of drought and socio-economic factors in the Middle East. The
approach of this study can be applied in any region but expert knowl-
edge about the study domain is essential for choosing the relevant
drivers of food security in that region. The factors considered in this
study are place-based and they are not supposed to be explicitly in-
cluded in another study regions.

6. Summary and conclusion

This study assessed drought and food security across the Middle
East. At first, drought conditions were characterized over the region
using short and long timescales of hydro-meteorological data during the
period of 1948–2017. Then, food security was modeled in the Middle
East based on drought and socio-economic factors. The Global Land
Data Assimilation System (GLDAS) monthly precipitation, soil
moisture, and runoff data at a 0.25° spatial resolution were utilized to
derive meteorological, agricultural, and hydrological droughts at mul-
tiple timescales during the past seven decades. Moreover, data from
different sources including the IEA, FAO, and the World Bank were
employed to investigate the socio-economic factors related to food se-
curity in the Middle East. The temporal variations and long-term trends
of meteorological, agricultural, and hydrological droughts over the re-
gion were investigated, and the main findings of the study are as fol-
lows:

• Hydrological drought is the most intensified drought type over the
region, especially in Egypt.

• Meteorological drought reached its peak in early 1970s, early 2000s,
and during 2008–2012 with about 60% drought extent across the
Middle East. Whereas, hydrological drought extent reached its
maximum in 2009 with over 50% drought extent. Agricultural
drought extent was at its maximum in 2017 with about 80% drought
extent over the region.

• The Bayesian linear regression model was capable of predicting food
security in the Middle East considering livestock, population
growth, agricultural products, and drought condition as inputs.

• Agricultural production decreased in the Middle East following a
drought episode, especially for the recent drought event of 2010.
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