
Minimizing Test Suites in Software Product Lines Using
Weight-based Genetic Algorithms

Shuai Wang

Certus Software V&V Center
Simula Research Laboratory

Dept of Informatics, University of Oslo
P.O. Box 134, Lysaker, Norway

shuai@simula.no

Shaukat Ali

Certus Software V&V Center
Simula Research Laboratory

P.O. Box 134, Lysaker, Norway

shaukat@simula.no

Arnaud Gotlieb

Certus Software V&V Center
Simula Research Laboratory

P.O. Box 134, Lysaker, Norway

arnaud@simula.no

ABSTRACT
Test minimization techniques aim at identifying and eliminating

redundant test cases from test suites in order to reduce the total

number of test cases to execute, thereby improving the efficiency

of testing. In the context of software product line, we can save

effort and cost in the selection and minimization of test cases for

testing a specific product by modeling the product line. However,

minimizing the test suite for a product requires addressing two

potential issues: 1) the minimized test suite may not cover all test

requirements compared with the original suite; 2) the minimized

test suite may have less fault revealing capability than the original

suite. In this paper, we apply weight-based Genetic Algorithms

(GAs) to minimize the test suite for testing a product, while

preserving fault detection capability and testing coverage of the

original test suite. The challenge behind is to define an

appropriate fitness function, which is able to preserve the

coverage of complex testing criteria (e.g., Combinatorial

Interaction Testing criterion). Based on the defined fitness

function, we have empirically evaluated three different weight-

based GAs on an industrial case study provided by Cisco Systems,

Inc. Norway. We also presented our results of applying the three

weight-based GAs on five existing case studies from the literature.

Based on these case studies, we conclude that among the three

weight-based GAs, Random-Weighted GA (RWGA) achieved

significantly better performance than the other ones.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms

Algorithms, Performance, Experimentation, Verification

Keywords

Test minimization, feature pairwise coverage, fault detection

capability, weight-based GAs

1. INTRODUCTION
Software Product Line Engineering (SPLE) is becoming a cost-

effective way to develop similar products by exploiting and

managing commonalities and variabilities among a large number

of products [1][2]. SPLE has shown promising benefits in both

academia and industry such as reducing development time and

costs, speeding up product time-to-market and improving the

quality of products of a product line family [2].

For testing a product line, in the current practice of industry (e.g.,

based on our experience of working with Cisco Systems, Inc.

Norway), a test suite is typically developed to test the whole

product line and the test suite will be modified as new products

come into play or the current products need to be improved [1][3].

However, as the number of products increases, the number of test

cases for testing the product line will also increase. Therefore, it

becomes practically impossible to execute all the test cases of the

product line due to limited available time and resources for each

new product. It is therefore essential to seek a solution to

minimize test suites for a specific product efficiently before

execution to reduce the cost of testing [3].

Based on our collaboration with Cisco, a methodology has been

proposed to support automated test case selection using Feature

Model (FM) and Component Family Model (CFM) [4][5]. This

methodology captures the commonalties and variabilities of a

product line using a FM and the domain knowledge of test experts

using a CFM. However, after carefully studying the results, we

observed there still exist redundant test cases in the selected test

suite and eliminating these redundant test cases can reduce the

execution cost of testing (test minimization). Moreover, there are

two potential risks for test minimization, i.e., the minimized test

suite might not cover all testing functionalities (i.e., test

requirements) and have lower fault detection capability than the

original test suite. Therefore, we are facing a challenge, in our

industrial context, to minimize the test suite for testing a product,

whereas at the same time achieving high fault detection capability

and functionality coverage. However, the current practice of

reducing the number of test cases is manual and not systematic,

which often decreases the functionality coverage and fault

detection capability in addition to being time consuming as we

observed in our previous work [4].

Based on the above-mentioned challenges, the problem we are

targeting is a multi-objective optimization problem and multi-

objective Genetic Algorithms (GAs) are known for solving such a

problem [6]. Moreover, Weight-based GAs suits our context well

since our goal is to minimize the test suite for testing a product,

while keeping high feature pairwise coverage of testing and fault

detection capability, i.e., we aim at balancing all the proposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.

Copyright © 2013 ACM 978-1-4503-1963-8/13/07...$15.00.

1493

objectives and achieving them best together. Therefore, in this

paper, we propose an application of weight-based Genetic

Algorithms (GAs) to minimize test suites for a product. More

specifically, we first formally define the above-mentioned issues

as three objectives: Test Minimization Percentage (TMP), Feature

Pairwise Coverage (FPC) and Fault Detection Capability (FDC),

and propose objective functions for them. Second, a fitness

function is defined, based on these objectives to guide the search

towards an optimal solution. Third, we present an industrial case

study and five other case studies from SPLOT (http://www.splot-

research.org/) to evaluate three different weight-based GAs (i.e.,

Weight–Based Genetic Algorithm (WBGA), Weight-Based

Genetic Algorithm for Multi-objective Optimization (WBGA-

MO), Random-Weighted Genetic Algorithm (RWGA)) based on

the proposed fitness function. Random Search (RS) is used as the

baseline to evaluate the performance of the selected weight-based

GAs. Last, based on the obtained results and analysis, we propose

a guideline for future practitioners to solve test minimization

problems using weight-based GAs.

The contributions of this paper are: 1) Definition of a fitness

function based on the three objectives; 2) Empirical evaluation of

the three weight-based GAs by comparing them with RS, based

on an industrial case study and five case studies from SPLOT.

The rest of paper is organized as follows: Section 2 provides a

briefly introduction of the existing methodology for test case

selection and the weight-based GAs we applied. Section 3

presents a formal representation of the problem, definitions and

functions for all the three objectives followed by fitness function

used by all the algorithms. In Section 4, empirical evaluation

based on an industrial case study and five other case studies are

presented. Section 5 discusses threats to validity and related work

is presented in Section 6. Section 7 concludes the paper.

2. BACKGROUND
In this section, we briefly present our existing methodology for

test case selection based on FM and CFM in the context of

product line (Section 2.1) followed by related description of

selected weight-based GAs (Section 2.2).

2.1 Test Case Selection based on FM and

CFM
Feature modeling is a hierarchical modeling approach for

capturing commonalities and variabilities in product line [2][7].

By modeling a product line with Feature Model (FM), various

products can be configured through feature selection in a

systematic way. A component family model (CFM) is used to

represent how products are assembled and generated in a product

line by modeling relations among software architectural elements

[8]. It has a hierarchical structure including items such as

components and parts. Meanwhile, restrictions play a key role,

which are used to specify relations between features in FM and

components/parts in CFM. Via restrictions, a specific product can

be configured automatically from a valid selected feature model in

a product line.

In our previous work [4][5], we proposed a systematic and

automated methodology using a Feature Model for Testing

(FM_T) to capture commonalities and variabilities of a product

line and a Component Family Model for Testing (CFM_T) to

capture the overall structure of test cases in the repository. With

our methodology, a test engineer does not need to manually go

through the repository to select a relevant set of test cases for a

new product. Instead, a test engineer only needs to select a set of

relevant features using FM_T at a higher level of abstraction for a

product and a set of relevant test cases will be selected

automatically. In addition, we developed a tool named as Import

Plugin and Transformation (IPT) to support this automated test

case selection methodology and it has been applied in Cisco

Systems, Norway.

2.2 Description of Selected Weight-based GAs
Genetic Algorithms (GAs) are inspired by the Darwinian

evolution theory, which are well known to address complex

problems in Search-Based Software Engineering (SBSE) [9].

When applying GA, a population of individuals (i.e., candidate

solutions) is evolved through a series of generations, where

reproducing individuals evolve through crossover and mutation

operators. Meanwhile, GAs are often compared with the

techniques based on random search (RS) when applying to

determine whether the complexity is warranted to address a

specific SBSE problem. The use of the GAs may only be justified

if it performs significantly better than, for instance, RS. To use a

GA, a fitness function needs to be defined to evaluate the quality

of a candidate solution (i.e., an element in the search space). The

fitness function is problem dependent, and proper care needs to be

taken for developing adequate fitness functions. The fitness

function will be used to guide the search toward fitter solutions.

Below, we provide a brief description of the weight-based GAs

that we used in this paper, i.e., Weight–Based Genetic Algorithm

(WBGA), Weight-Based Genetic Algorithm for Multi-objective

Optimization (WBGA-MO), and Random-Weighted Genetic

Algorithm (RWGA).

The working theory of these three weight-based GAs is to assign a

particular weight to each objective function for converting the

multi-objective problem to a single objective problem with a

scalar objective function [6]. The difference of these algorithms

can be summarized as the different mechanisms of assigning

weights for each objective, which is shown in Table 1.

Table 1 Mechanisms of Assigning Weights for the Three

Weight-based GAs

Algorithms Mechanisms of Assigning Weights

WBGA Predefined fixed weights

WBGA-MO Weights in weight pool

RWGA Randomly normalized weights

As shown in Table 1, WBGA assigns fixed weights for each

objective defined for each objective before, which can be

provided by users based on the domain knowledge and expertise.

The same weight for each objective is used during all generations

of the algorithm. WBGA-MO uses a weight pool including a set

of predefined weights and each solution can choose weights for

each objective randomly during running. The assigned weight for

each objective changes during each generation, but is still limited

from ones existing in the weight pool. Notice that such weight

pool can also be provided by users. As for RWGA, different

normalized weights are assigned randomly for each objective at

each generation, i.e., it is not required to assign particular weights

before and weights for each objective are assigned dynamically

during running.

Based on the above discussions, these algorithms can be classified

as fixed-weight algorithms and dynamic-weight algorithms

according to their assigning ways of weights. Therefore, WBGA

and WBGA-MO can be classified into fixed-weight algorithms

and RWGA can be classified into dynamic-weight algorithms.

1494

3. PROBLEM REPRESENTATION AND

FITNESS FUNCTION
To guide the search towards an optimal solution using weight-

based GAs, it is essential to define a fitness function, as is the case

for any search algorithm. Our goal is to find a minimum subset of

test cases to test a product in a product line from the entire set of

test cases available for the product line. At the same time, we also

want to achieve high feature pairwise coverage and fault detection

capability. In Section 3.1, we first present formal representation of

the search problem. Second, we define three objectives and

related functions, i.e., TMP, FPC and FDC in Section 3.2

followed by the definition of the fitness function in Section 3.3.

3.1 Problem Representation
Suppose a product line P has a set of products

 , where np is the number of products in P.

Moreover, P can be represented as a feature model with a set of

features [2][5], where nf is the number of

features (i.e., functionalities need to be tested for P). To test P,

there is a test suite comprising of a large

number of test cases (nt). A specific product pi in P, where

 , can be represented as a subset of :

 , where
 can be any feature in (

)

and
 is the number of features used to represent the product pi

(
). To test pi, based on [4], there is a subset of the

test suite TS:

 comprising
test cases,

where
 can be any test case in TS (

) and
 .

Based on
 for pi, there is a set of potential solutions

 , where

is the total number of solutions

for testing pi, which can be measured as . As the

number of test cases increases, the potential solutions increase

exponentially. Suppose we have 1000 test cases to test the product

line P and using the methodology proposed by [4], 100 test cases

are obtained to test the product pi. Then there will be

potential solutions for testing pi, which is a huge solution space.

Each solution si in
 is comprised of test cases from

:

 , where
 and has a certain

 and , which are measured as described in the next

section.

Based on the above discussion, the detailed problem can be

represented as:

Problem: Search for a solution sk (sk is comprised by

{

 } from
, where

) from

 for testing the product pi to achieve 1) high (i.e., less

number of test cases); 2) high ; 3) high .

3.2 Definitions and Functions for Three

Objectives
In this section, based on the above-mentioned problem, we

provide mathematical definitions and functions for these three

objectives required to achieve test minimization.

3.2.1 Test Minimization Percentage (TMP)
TMP is used to measure the amount of reduction in the number of

test cases and is calculated as follows.

 (

)

As discussed in section 3.1, is the number of test cases for the

solution sk, where
.

 is the number of test

cases in the test suite for testing product pi. TMP value ranges

from 0 to 1 and a higher value of TMP represents higher test

minimization.

3.2.2 Feature Pairwise Coverage (FPC)
FPC is used to measure how much pairwise coverage can be

achieved by a chosen solution [10][11]. We chose this type of

coverage based on our domain knowledge, discussion with test

engineers, and history data about faults because a higher

percentage of detected faults are mainly due to the interactions

between features. FPC is designed to compute the capability of

covering feature pairs by a chosen solution, which is computed as

below:

 is the number of feature pairs covered in the test cases

for the solution sk, which can be measured as follows.

 ∑

 is the number of test cases for the solution sk, where

.

 is the number of unduplicated feature

pairs covered by the test case i (). The feature pairs covered by

 can be computed as:

 .

 is

the number of features tested by test case . For instance, test

case is used to test three features. Then the feature pairs

covered by test case i are
 = 3*2/2 = 3. Notice that if some

feature pairs are repeated ones compared with the feature pairs

covered by the previous test cases, repeated pairs will be removed

when computing .

 is all number of feature pairs for testing the product pi

which can be measured as:
 (

)

is the set of features representing the product pi

including
 features. For instance, if pi is represented by ten

features, all feature pairs covered by the product are
 = 10*9/2

= 45. Note that FPC is calculated for a chosen test solution and

ranges from 0 to 1 and a higher value of FPC shows higher

feature pairwise coverage.

3.2.3 Fault Detection Capability (FDC)
FDC measures the fault detection capability of a selected test

solution for a product. In out context, fault detection refers to the

success rate of a test case in a given time, e.g., a week or a month.

In our context, a test case is defined as a success if it can detect

faults in a given time and as a fail if it does not detect any fault.

The success rate of a test case can be measured as below.

 is the success rate of execution for test case i during the

given time (in our case, the given time is per week);

 is the number of success executions for the given test

case i during the given time;

is the number of fail executions for the given test case

i during the given time.

1495

For instance, a test case is usually executed 1000 times per week

in Cisco. So if a test case executes successfully for 800 times in

the given week, the fault detection capability for the test case is

800/1000 = 0.8. Similarly, for a test solution including a set of test

cases for a specific product, the fault detection capability can be

measured as below.

∑

 is the number of test cases for the solution sk, where

. Note that FDC value also ranges from 0 to 1 and a

higher value of FDC represents higher fault detection capability.

3.3 Fitness Function
In this stage, TMP, FPC, and FDC have been defined and can be

computed through the mathematical formulas. To ease

computation of the fitness function, the values for all the three

objectives have been normalized by the above-proposed formulas,

which range from 0 to 1. We adopted a fitness function for

weight-based GAs presented in [6][12], and is defined as follows:

 , and are a set of assigned weights to TMP, FPC and

FDC respectively, and they need to satisfy the constraint:

 . Using this way, multi-objective

optimization problem is converted to a single objective problem

with a scalar objective function, which is a classical approach and

is efficient to be solved using GAs [6]. Notice that different set of

weights can represent distinct testing preferences. For instance, if

TMP is considered as the most important objective, can be

assigned the highest weight, such as 0.6. In practice, , and

 must be identified in a more systematic way such as by a

thorough domain analysis followed by a comprehensive

questionnaire. In our context, we obtained two sets of values of

 , and via domain analysis and discussion with test

engineers of Cisco, i.e., = 1/3, = = 1/3, = 1/3 and =

0.2, = 0.4, = 0.4.

In this paper, three different weight-based GAs are used, which

are the commonly used GAs based on weight theory, i.e., WBGA,

WBGA-MO, and RWGA. We have used two sets of weights for

WBGA which are: WBGA_W1 (W1 = (1/3, 1/3, 1/3)), WBGA_W2

(W2 = (0.2, 0.4, 0.4). As for WBGA-MO, we create weight pool

using these two sets of weights for different objectives.

4. CASE STUDIES AND EMPIRICAL

EVALUATION
In this section, first we present an industrial case study and five

other case studies and then an empirical evaluation of various

weight-based GAs is presented.

4.1 Case Studies
We evaluated our fitness function using one industrial case study

and five case studies from the literature.

4.1.1 Industrial Case Study
Our industrial case study is provided by Cisco and is part of a

large project on model-based testing of a Video Conferencing

System (VCS) product line called Saturn [13]. The Saturn product

line comprises of several VCSs such as C20, C40, and C60. The

Saturn product line has more than 2000 test cases and for each

product (e.g., C20), only a subset of all test cases is needed.

We chose four products C20, C40, C60 and C90 from Saturn.

Based on our domain analysis, there are 169 features in Saturn

and each product includes a subset of all features. Meanwhile,

each feature can be tested by at least one test case (usually more

than one). Table 2 shows more details about this. For instance,

C20 contains 17 features (i.e., testing functionalities) and 138 test

cases are used to test these features. Each test case has a

success rate for execution (
). In general, for Saturn, each

feature is associated with 5-10 test cases; each test case is

associated with 1-5 features and the fault detection capability

ranges from 50% to 95%.

Table 2 Four Products in Saturn

Product #Features # Test Cases

C20 17 138

C40 25 167

C60 32 192

C90 43 239

4.1.2 Other Case Studies
Our other case studies are of five other products from different

product lines from SPLOT (http://www.splot-research.org/). Each

product line is represented by a feature model and each product

includes a subset of all features [14]. Meanwhile, all test cases for

testing the product line can be represented by a component family

model and a subset of test cases can be obtained automatically for

testing a specific product as discussed in [4]. For other five

products represented by different sets of features from SPLOT as

shown in Table 3. Here, we follow the similar phenomenon

observed from Saturn and assume that each feature can be tested

by 5-10 test cases, each test case can be used to test 1-5 features

and the success rate (SucR) for each test case ranges from 50% to

95%.

Table 3 Five Case Studies from SPLOT

Name Author Description #Features

Car

Software

System

Chr Wol

Simple model of a

car's software

product line

18

ATM

Software
TCN

A feature model for

ATM software
29

DELL

Laptop/Not

ebook

Computers

Moises

Branco

A feature model

describes the features

of DELL

Laptop/Notebook

Products

46

SmartHome Conejero

Adaptation of the

original feature

models for the

SmartHome system

used by AMPLE

project as case study

59

J2EE web

architecture

Reinout

Korbee

A feature model for

web architectures
77

4.2 Empirical Evaluation
This section discusses experiment design, execution, and analysis

of the evaluation based on the guidelines reported in [15][16].

4.2.1 Experiment Design
The goal of our experiments is to assess the effectiveness of

weight-based GAs for test minimization and at the same time

achieving high feature pairwise coverage and fault detection

capability.

1496

4.2.1.1 Research Questions
From this experiment, we want to answer the following research

questions:

RQ1: Are weight-based GAs effective to solve test minimization

problem in our context?

RQ2: How do the weight-based GAs (WBGA, WBGA-MO,

RWGA) compare to RS and among WBGA, WBGA-MO,

RWGA, which one fares best in solving test minimization

problem?

4.2.1.2 Experiment Settings
In our experiments, we compared three weight-based multi-

objective GAs and RS, i.e., WGBA with two set of fixed weights

based on the domain knowledge and expertise (WBGA_W1 (W1 =

(1/3, 1/3, 1/3)), WBGA_W2 (W2 = (0.2, 0.4, 0.4)), WBGA-MO

and RWGA. For all of them, we used a standard one-point

crossover with a rate of 0.9 and mutation of a variable is done

with the standard probability 1/n, where n is the number of

variables. Meanwhile, the size of population and maximum

number of fitness evaluation are set as 100 and 2000, respectively.

Finally, RS was used as the comparison baseline to assess the

difficulty of the addressed minimization problems [16]. Notice

that different settings may lead to different performance for

genetic algorithms, but standard settings usually perform well [15].

Moreover, a set of threshold values for TMP, FPC, and FDC are

selected that show the minimum acceptable values for a particular

context in our experiments. Note that these thresholds are set

through the domain analysis and discussion with test engineers

and a test manager at Cisco, and history data about test execution.

In the context of our industrial case study, these thresholds values

are: TMP:=0.8; FPC:=0.8; and FDC:=0.85.

4.2.1.3 Statistical Tests
To compare the obtained result and given thresholds, the Vargha

and Delaney statistics and Mann-Whitney U test are used based

on the guidelines for reporting statistical tests for randomized

algorithms presented in [15].

 ̂ : The Vargha and Delaney statistics is used to calculate

 ̂ , which is a non-parametric effect size measure [15]. In

our context, given performance measure

 , ̂ is used to compare the

probability of yielding higher performance value F for two

algorithms A and B. If ̂ is equal to 0.5, the two algorithms

are equivalent. If ̂ is greater than 0.5, it means the first

algorithm A has higher chances of obtaining higher F value

than B.

 p-value: The non-parametric U-test (The Mann-Whitney U

test) is used to calculate p-value for deciding whether there is

a significant difference between two algorithms. We chose

the significance level of 0.05, which means there is a

significant difference if p-value is less than 0.05.

Based on the above description, we define that algorithm A has

better performance than algorithm B, if the ̂ value is greater

than 0.5. Moreover, algorithm A has significantly better

performance than algorithm B, if the ̂ value is greater than 0.5

and p-value is less than 0.05.

4.2.2 Experiment Execution
According to the guidelines in [15], each algorithm is run for 1000

times to account for random variations inherited in search

algorithms and is essential to increase the power of statistical tests

that further improves the confidence on the results. We let

WBGA_W1, WBGA_W2, WBGA-MO, RWGA and RS run up to

2000 fitness generations each time and collected the optimal

solution including the final value of fitness function. We ran our

experiments on a PC with Intel Core i7 2.3GHz with 4 GB of

RAM, running Microsoft Windows 7 operating system.

4.2.3 Results and Analysis
In this section, we discuss and analyze the obtained results for the

individual research question followed by an overall discussion.

Note that Table 4 and Table 5 are shown in the last page of paper

as landscape to save the space.

4.2.3.1 Results and Analysis for Research Question 1
Table 4 shows the results, when the performance of search

algorithms is compared with the threshold values for our

industrial case study and five case studies from SPLOT. In Table

4, we did one sample Mann Whitney test since we compared the

obtained results from different algorithms with one set of fixed

values for TMP, FPC and FDC.

Based on the obtained results, we can answer RQ1 as follows:

RWGA has higher probability to obtain better results when

compared with the given thresholds. In other words, RWGA has

higher probability to be adapted when required since most of

 ̂ values are greater than 0.5 and there is no significant

difference (all p-values are greater than 0.05) when comparing

with the given thresholds as shown in Table 4.

In a way, the results obtained by WBGA-MO are almost

equivalent to the given thresholds since most of ̂ values are

close to 0.5. Meanwhile, there are no significant difference

between the results of WBGA-MO and the given thresholds (all p-

values are greater than 0.05) as shown in Table 4.

For WBGA_W1 and WBGA_W2, the results do not stay stable.

For some products, ̂ values are close to 0.5, for other products,

 ̂ values are much less than 0.5 (the given thresholds have

much higher probability to be used). Meanwhile, for some

products, there is no significant difference when compared with

the given thresholds and there is a significant difference with the

thresholds for other products as shown in Table 4. Since the only

difference between WBGA_W1 and WBGA_W2 is the sets of

weights, different weights can result in total different results when

using WBGA. So providing reasonable weights before using

WBGA is essential to obtain expected results.

Based on the results, we can see that RS always has less

probability to be used in practice when compared with the given

thresholds since all ̂ values are less than 0.5 and there are

significant differences when comparing with the given thresholds

since p-values are less than 0.05 as shown in Table 4.

In general, weight-based GAs can assist to achieve the given

thresholds. Given different weights, using WBGA can obtain total

different results. So assigning a reasonable set of weights before

using WBGA plays a key role to gain expected results. Notice that

the obtained results by WBGA-MO and RWGA are more stable

than WBGA, which is because WBGA-MO and RWGA are less

dependent on a certain set of weights. Especially, since there is no

need to provide weights before using, the obtained results by

RWGA are more stable than WBGA-MO.

1497

4.2.3.2 Results and Analysis for Research Question 2
Table 5 shows the results when different algorithms are compared

for the Saturn products and five other products. According to the

combination theory, 10 (
 = 5*4/2) pairs are compared.

Based on the obtained results, we can answer RQ2 as follows:

Firstly, as shown in Table 5, we compared the performance of

various algorithms with RS. When WBGA_W1 is compared with

RS, the ̂ values are all greater than 0.5 and the p-values are

mostly less than 0.05 (8 out of 9 in four VCS products and five

other case studies). For the comparison of WBGA_W2 and RS,

the ̂ values are mostly greater than 0.5 (8 out of 9 in four VCS

products and five other case studies) and the p-values are all less

than 0.05. When comparing WBGA-MO with RS, the ̂ values

are all greater than 0.5 and the p-values are all less than 0.05.

Finally, when RWGA is compared with RS, the ̂ values are all

greater than 0.5 and the p-values are all less than 0.05. Based on

the above results, we can conclude that weight-based GAs have

significantly better performance than RS.

Now we discuss the results, when various weight-based GAs are

compared. Firstly, when WBGA_W1 is compared with RWGA,

Table 5 shows that the ̂ values are all less than 0.5 and the p-

values are mostly less than 0.05 (8 out of 9 in four VCS products

and five other case studies); secondly, comparing WBGA_W2

with RWGA, the ̂ values are all less than 0.5 and the p-values

are also mostly less than 0.05 (8 out of 9 in four VCS products

and five other case studies); thirdly, comparing WBGA-MO with

RWGA, the ̂ values are all less than 0.5 and the p-values are

all less than 0.05. Based on the above results, we concluded that

RWGA has significantly better performance than WBGA_W1,

WBGA_W2 and WBGA-MO.

Finally, WBGA_W1, WBGA_W2 and WBGA-MO were

compared. Since both WBGA_W1 and WBGA_W2 belong to

WBGA, we studied them together and compare WBGA and

WBGA-MO. Based on the obtained results as shown in Table 5,

for the ̂ values, 10 out of 18 are less than 0.5 and 8 out of 18

are greater than 0.5 in four VCS products and five other case

studies, and for the p-values, 4 out of 18 are less than 0.05 and 14

out of 18 are greater than 0.05. Based on the results, we can

conclude that WBGA-MO has better performance than WBGA,

but not significantly.

4.2.3.3 Overall Discussion
Based on the above-mentioned discussions when using weight-

based GAs, different sets of weights (e.g., , and) can be

provided depending on the testing requirements. So domain

knowledge and thorough discussions with users is required before

assigning weights.

Moreover, based on the obtained results and analysis, RWGA has

the best performance among the three weight-based GAs and RS.

The main reason is that RWGA assigns weights dynamically

during search and thus the search is guided towards the best

weights to achieve threshold values for TMP, FPC and FDC.

In particular, when testing requirements are not clear in practice,

i.e., it is impossible to provide reasonable weights for TMP, FPC

and FDC. We suggest using RWGA to minimize test suites for

products since it assigns weights dynamically. In the context of

VCS testing, after running RWGA 1000 times, based on the

empirical evaluation, the best set of weights that obtains the best

results of fitness function is = 0.24 for TMP, = 0.44 for

FPC and = 0.32 for FDC respectively.

5. THREATS TO VALIDITY
To reduce construct validity threats, we used the same stopping

criteria for all algorithms, i.e., number of fitness evaluations. We

ran each algorithm for 2000 evaluations to seek the best solution

for test minimization. This criterion is a comparable measure

across all the algorithms since each iteration requires updating the

obtained solution and comparing the computed value of fitness

function.

A possible threat to internal validity is that we have experimented

with only one configuration setting for the GA parameters.

However, these settings are in accordance with the common

guidelines in the literature and our previous experience on testing

problems. Parameter tuning can improve the performance of GAs,

although default parameters often provide reasonable results [15].

We ran our experiments on an industrial case study to seek the

best solution to minimize test suites for testing a product. To

reduce external validity threats (i.e., our results might not be

applicable to other empirical studies), five other case studies from

SPLOT were adapted using the same criteria, i.e., each feature can

be tested by 5-10 test cases, each test case can be used to test 1-5

features and success rate for each test case ranges from 50% to

95%. In this way, the results obtained by the industrial case study

and five other case studies should be more persuasive.

The most probable conclusion validity threat in experiments

involving randomized algorithms is due to random variations. To

address it, we repeated experiments 1000 times to reduce the

possibility that the results were obtained by chance. Furthermore,

to determine the probability of yielding higher performance by

different algorithms, we measured the effect size using ̂ by

Vargha and Delaney statistics test. We chose Vargha and Delaney

statistics test since it is appropriate for non-parametric effect size

measure, which match our situation [15]. Meanwhile, we

performed Mann-Whitney U test to determine the statistical

significance of the results.

Finally, as already discussed in Section 4, our practical set of

weights obtained by empirical evaluation may not be applicable to

all product line testing. Therefore, in every specific product line

needs to be tested, a different set of weights might be obtained

when using RWGA. However, for some specific product line

similar to VCS product line, the proposed set of weights could be

adapted directly.

6. RELATED WORK
Software product line testing is a relatively new, but intense field

of research since product line engineering has shown significant

benefits in both academia and industry [1][17][18].

In [1], McGregor presented a set of activities, which can be used

to address testing individual assets (e.g., verification of

consistency between requirements and specifications) and testing

artifacts (e.g., test-case derivation and test suite design) that

represent complete products in the context of product line. In [17],

based on a relational model capturing variability in product line,

Cohen defined a family of cumulative coverage criteria to collect

test coverage information, which was also used to map with

existing combinatorial testing approaches for supporting product

line testing. In [18], Muccini proposed associating regression

testing with product line by comparing code execution with the

architectural design, which can be used as guidelines for adapting

existing techniques for regression testing to product line testing.

However, most of these works are only proposals and only

provide guidelines without specific testing process, which are not

systematic. In our previous work [4], an methodology was

1498

presented to obtain a set of test cases for testing a specific product

automatically by modeling software product line using feature

model and test case structure using component family model,

which is more related with test selection and there are still

redundant test cases in the obtained test suite for a specific

product through more investigation.

As for test minimization in regression testing, various types of

minimizing techniques are proposed in the literatures [19]. In [20],

Chen and Lau proposed GE and GRE heuristics to perform test

minimization, which are thought as the variation of the greedy

algorithms. In [21], Tallam and Gupta proposed an improved

greedy algorithm called the delayed greedy approach based on the

Formal Concept Analysis of the relation between test cases and

testing requirements. In [22], Jeffrey and Gupta extended GE and

GRE by introducing a secondary set of test requirements to

determine whether a test case is redundant for test minimization.

Although the number of techniques for regression test

minimization is huge [19], there is no enough evidence to prove

that these techniques still work well if being adapted in the

context of product line.

In particular, Shin and Mark [23] proposed to use search-based

algorithms (i.e., Fast Non-dominated Sorting Genetic Algorithm

(NSGA II)) for multi-objective test case selection (e.g., code

coverage, fault detection history, execution time) in regression

testing, which is similar with our two objectives (i.e., FPC and

FDC). However, our context is product line and we minimized the

test suite obtained by our proposed test case selection

methodology in [4] for testing a product. Moreover, we defined

one additional objective (i.e., TMP to measure the minimization

percentage of the minimized test suite as compared with the

original test suite based on our industrial problem. In addition, we

compared different weight-based GAs and RS, which was not

addressed in [23].

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed an application of weight-based GAs to

minimize the test suite for testing a product at the same time

achieving high feature pairwise coverage and fault detection

capability in the context of software product line. We formally

defined three objectives (i.e., Test Minimization Percentage

(TMP), Feature Pairwise Coverage (FPC) and Fault Detection

Capability (FDC)), followed by the definition of a fitness function

(based on the objectives) to guide three different weight-based

Genetic Algorithms (GAs): Weight–Based Genetic Algorithm

(WBGA), Weight-Based Genetic Algorithm for Multi-objective

Optimization (WBGA-MO), Random-Weighted Genetic

Algorithm (RWGA).

We evaluated our fitness function based on an industrial case

study and five other case studies from the literature using the three

weight-based GAs. Given a set of thresholds, these three weight-

based GAs and Random Search (RS) were evaluated and a

comparison among them was conducted.

Results show that RWGA and WBGA-MO achieved the given

thresholds, WBGA achieved the given thresholds in some

products and failed in others, and RS hardly achieved the given

thresholds. Among all of these algorithms, RWGA has the best

performance, and WBGA-MO and WBGA are almost equivalent,

both of which have better performance than RS.

In the future, we plan to conduct more case studies using the

proposed application of weight-based GAs. Moreover, we want to

investigate the quality of the minimized test suite as compared

with the test suite selected by test engineers manually to assess

whether the weight-based GAs are human competitive.

Meanwhile, we will also evaluate the proposed fitness function

using Pareto-based multi-objective GAs, such as Fast Non-

dominated Sorting Genetic Algorithm (NSGA II), to validate

whether better results can be obtained as compared to weight-

based GAs.

ACKNOWLEDGMENTS
The work reported in this paper is funded by the Norwegian

Research Council under the research-based innovation scheme

(SFI) in the Certus Center hosted by Simula Research Laboratory.

We would like to thank Marius Christian Liaaen (Cisco Systems,

Inc. Norway) for providing us the detailed case study and

thorough discussion.

8. REFERENCES
[1] J. McGregor. Testing a Software Product Line. Technical

Report CMU/SEI-2001-TR-022. Software Engineering

Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania. 2001.

http://www.sei.cmu.edu/library/abstracts/reports/01tr022.cfm

[2] D. Benavides, S. Segura, and A. R. Cortés. Automated

analysis of feature models 20 years later: A literature review.

Information Systems. (35), 615–636. 2010.

[3] T. Chen, and M. Lau. Dividing strategies for the optimization

of a test suite. Information Processing Letters. 60(3), pp.

135– 141. 1996.

[4] S. Wang, A. Gotlieb, M. Liaaen, and L. C. Briand.

Automatic selection of test execution plans from a Video

Conference System Product Line. In Proceedings of the

ACM MODELS Workshop VARiability for You (VARY’ 12),

pp. 30-35. 2012.

[5] S. Wang, A. Gotlieb, S. Ali, M. Liaaen. Automated Selection

of Test Cases using Feature Model: An Industrial Case Study.

Technical Report (2012-20), Simula Research Laboratory.

2012.

[6] A. Konak, D. W. Coit, and A. E. Smith. Multi-objective

optimization using genetic algorithms: A tutorial. Reliability

Engineering & System Safety. 91(9), pp. 992-1007. 2007.

[7] K. Czarnecki, C. Kim, and K. Kalleberg. Feature models are

views on ontologies. In Proceedings of International

Software Product Line Conference, pp. 41–51. 2006.

[8] Pure systems GmbH. Variant management with

pure::variants. Technical white paper. Available from

http://web.pure- systems.com, 2006.

[9] M. Harman, S. A. Mansouri, and Y. Zhang. Search based

software engineering: A comprehensive analysis and review

of trends techniques and applications. Technical Report TR-

09-032009. King’s College, London. 2009.

[10] K. C. Tai, and Y. Lei. A Test-Generation Strategy for

Pairwise Testing. IEEE Trans. of Software Engineering.

28(1), pp. 109 - 111. 2002.

[11] R. Kuhn, Y. Lei, and R. Kacker. Practical combinatorial

testing: Beyond pairwise. IT Professional. 10(3), pp. 19-23.

2008.

[12] T. Murata, T. Ishibuchi, and H. Tanaka. Multi-objective

genetic algorithm and its applications to flowshop

scheduling. Comput Ind Eng. 30(4), pp. 957–968. 1996.

1499

http://www.sciencedirect.com/science/journal/09518320
http://www.sciencedirect.com/science/journal/09518320
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4525537
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4525537
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6294

[13] Cisco Systems. Cisco telepresence codec c90. Data sheet.

2010. Available from http://www.cisco.com.

[14] D. Benavides. On the Automated Analysis of Software

Product Lines Using Feature Models. Doctoral Thesis.

Universidad de Sevilla. 2007.

[15] A. Arcuri, and L. C. Briand. A Practical Guide for Using

Statistical Tests to Assess Randomized Algorithms in

Software Engineering. In Proceedings of the International

Conference on Software Engineering. pp. 21-28. 2011.

[16] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-

Walawege. A Systematic Review of the Application and

Empirical Investigation of Search-Based Test Case

Generation. IEEE Trans on Software Engineering, 36(6), pp.

742-762. 2010.

[17] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and

Adequacy in Software Product Line Testing. In Proceedings

ACM ISSTA Workshop on Role of Software Architecture for

Testing and Analysis. pp. 53-63. 2006.

[18] H. Muccini, and A. Van Der Hoek. Towards Testing Product

Line Architectures. Electronic Notes in Theoretical

Computer Science. 82(6), pp. 99-109. 2003.

[19] S. Yoo, and M. Harman. Regression test minimization,

selection and prioritization: a survey. Software Testing,

Verification, and Reliability; 22(2), pp. 67-120. 2012.

[20] T. Y. Chen, and M. F. Lau. Dividing strategies for the

optimization of a test suite. Information Processing Letters.

60(3), pp. 135–141. 1996.

[21] S. Tallam, and N. Gupta. A concept analysis inspired greedy

algorithm for test suite minimization. SIGSOFT Software

Engineering Notes. 31(1), 35–42. 2006.

[22] D. Jeffrey, and N. Gupta. Test suite reduction with selective

redundancy. In Proceedings of the International Conference

on Software Maintenance. pp. 549-558. 2005.

[23] S. Yoo, and M. Harman. Pareto Efficient Multi-Objective

Test Case Selection. In Proceedings of the international

symposium on Software testing and analysis (ISSTA), pp.

140-150.2007.

Table 4 Results for Comparing Different Algorithms with the Given Thresholds*

*PA: Pair of algorithms, A: ̂ , p: p-value

S1: Car Software System, S2: ATM Software, S3: DELL Laptop/Notebook Computers, S4: SmartHome, S5: J2EE web architecture.
C1: WBGA_W1 vs. Thresholds, C2: WBGA_W2 vs. Thresholds, C3: WBGA-MO vs. Thresholds, C4: RWGA vs. Thresholds, C5: RS vs. Thresholds.

All p-values less than 0.05 are identified as bold.

Table 5 Results for Comparing Different Algorithms*

PA
C20 C40 C60 C90 S1 S2 S3 S4 S5

A p A p A p A p A p A p A p A p A p

C6 0.48 0.15 0.52 0.25 0.41 0.51 0.55 0.10 0.51 0.61 0.55 0.59 0.47 0.15 0.43 0.35 0.49 0.25

C7 0.38 0.35 0.48 0.03 0.47 0.57 0.52 0.72 0.48 0.09 0.41 0.15 0.39 0.35 0.52 0.12 0.54 0.12

C8 0.33 0.02 0.45 0.42 0.22 0.01 0.29 0.03 0.29 0.02 0.31 0.03 0.22 0.01 0.27 0.01 0.33 0.04

C9 0.62 0.06 0.70 0.01 0.55 0.14 0.66 0.02 0.62 0.02 0.69 0.04 0.73 0.01 0.57 0.02 0.78 0.01

C10 0.51 0.15 0.44 0.61 0.39 0.09 0.53 0.52 0.44 0.52 0.51 0.35 0.57 0.09 0.46 0.27 0.55 0.16

C11 0.31 0.03 0.49 0.05 0.32 0.02 0.42 0.42 0.21 0.02 0.33 0.05 0.18 0.01 0.26 0.02 0.22 0.03

C12 0.69 0.01 0.58 0.02 0.62 0.01 0.48 0.04 0.55 0.04 0.64 0.01 0.51 0.05 0.73 0.01 0.59 0.02

C13 0.37 0.16 0.31 0.03 0.29 0.01 0.27 0.01 0.49 0.19 0.38 0.03 0.29 0.01 0.32 0.02 0.41 0.01

C14 0.59 0.01 0.65 0.01 0.61 0.01 0.56 0.01 0.68 0.02 0.59 0.02 0.62 0.02 0.71 0.01 0.56 0.03

C15 0.74 0.02 0.69 0.01 0.77 0.03 0.62 0.02 0.81 0.02 0.67 0.01 0.74 0.01 0.89 0.01 0.65 0.02

*C6: WBGA_W1 vs. WBGA_W2, C7: WBGA_W1 vs. WBGA-MO, C8: WBGA_W1 vs. RWGA, C9: WBGA_W1 vs. RS, C10: WBGA_W2 vs. WBGA-MO,

C11: WBGA_W2 vs. RWGA, C12: WBGA_W2 vs. RS, C13: WBGA -MO vs. RWGA, C14: WBGA-MO vs. RS, C15: RWGA vs. RS.

All p-values less than 0.05 are identified as bold.

PA
C20 C40 C60 C90 S1 S2 S3 S4 S5

A p A p A p A p A p A p A p A p A p

C1 0.34 0.04 0.29 0.03 0.22 0.01 0.41 0.08 0.41 0.08 0.34 0.04 0.55 0.16 0.44 0.24 0.23 0.01

C2 0.42 0.06 0.51 0.04 0.54 0.09 0.45 0.33 0.37 0.04 0.29 0.02 0.43 0.44 0.38 0.09 0.35 0.12

C3 0.55 0.23 0.48 0.19 0.61 0.12 0.38 0.06 0.44 0.05 0.41 0.22 0.64 0.08 0.46 0.15 0.39 0.07

C4 0.71 0.35 0.62 0.22 0.67 0.46 0.66 0.18 0.53 0.26 0.49 0.60 0.59 0.07 0.57 0.45 0.45 0.32

C5 0.39 0.01 0.42 0.01 0.22 0.01 0.18 0.03 0.28 0.02 0.22 0.01 0.41 0.29 0.32 0.01 0.29 0.05

1500

