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ABSTRACT 
Test minimization techniques aim at identifying and eliminating 

redundant test cases from test suites in order to reduce the total 

number of test cases to execute, thereby improving the efficiency 

of testing. In the context of software product line, we can save 

effort and cost in the selection and minimization of test cases for 

testing a specific product by modeling the product line. However, 

minimizing the test suite for a product requires addressing two 

potential issues: 1) the minimized test suite may not cover all test 

requirements compared with the original suite; 2) the minimized 

test suite may have less fault revealing capability than the original 

suite. In this paper, we apply weight-based Genetic Algorithms 

(GAs) to minimize the test suite for testing a product, while 

preserving fault detection capability and testing coverage of the 

original test suite. The challenge behind is to define an 

appropriate fitness function, which is able to preserve the 

coverage of complex testing criteria (e.g., Combinatorial 

Interaction Testing criterion). Based on the defined fitness 

function, we have empirically evaluated three different weight-

based GAs on an industrial case study provided by Cisco Systems, 

Inc. Norway. We also presented our results of applying the three 

weight-based GAs on five existing case studies from the literature. 

Based on these case studies, we conclude that among the three 

weight-based GAs, Random-Weighted GA (RWGA) achieved 

significantly better performance than the other ones. 

Categories and Subject Descriptors 

D.2.5 [Software Engineering]: Testing and Debugging 

I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search 

General Terms 

Algorithms, Performance, Experimentation, Verification 

Keywords 

Test minimization, feature pairwise coverage, fault detection 

capability, weight-based GAs 

 

1. INTRODUCTION 
Software Product Line Engineering (SPLE) is becoming a cost-

effective way to develop similar products by exploiting and 

managing commonalities and variabilities among a large number 

of products [1][2]. SPLE has shown promising benefits in both 

academia and industry such as reducing development time and 

costs, speeding up product time-to-market and improving the 

quality of products of a product line family [2].  

For testing a product line, in the current practice of industry (e.g., 

based on our experience of working with Cisco Systems, Inc. 

Norway), a test suite is typically developed to test the whole 

product line and the test suite will be modified as new products 

come into play or the current products need to be improved [1][3]. 

However, as the number of products increases, the number of test 

cases for testing the product line will also increase. Therefore, it 

becomes practically impossible to execute all the test cases of the 

product line due to limited available time and resources for each 

new product. It is therefore essential to seek a solution to 

minimize test suites for a specific product efficiently before 

execution to reduce the cost of testing [3].  

Based on our collaboration with Cisco, a methodology has been 

proposed to support automated test case selection using Feature 

Model (FM) and Component Family Model (CFM) [4][5]. This 

methodology captures the commonalties and variabilities of a 

product line using a FM and the domain knowledge of test experts 

using a CFM. However, after carefully studying the results, we 

observed there still exist redundant test cases in the selected test 

suite and eliminating these redundant test cases can reduce the 

execution cost of testing (test minimization). Moreover, there are 

two potential risks for test minimization, i.e., the minimized test 

suite might not cover all testing functionalities (i.e., test 

requirements) and have lower fault detection capability than the 

original test suite. Therefore, we are facing a challenge, in our 

industrial context, to minimize the test suite for testing a product, 

whereas at the same time achieving high fault detection capability 

and functionality coverage. However, the current practice of 

reducing the number of test cases is manual and not systematic, 

which often decreases the functionality coverage and fault 

detection capability in addition to being time consuming as we 

observed in our previous work [4].  

Based on the above-mentioned challenges, the problem we are 

targeting is a multi-objective optimization problem and multi-

objective Genetic Algorithms (GAs) are known for solving such a 

problem [6]. Moreover, Weight-based GAs suits our context well 

since our goal is to minimize the test suite for testing a product, 

while keeping high feature pairwise coverage of testing and fault 

detection capability, i.e., we aim at balancing all the proposed 
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objectives and achieving them best together. Therefore, in this 

paper, we propose an application of weight-based Genetic 

Algorithms (GAs) to minimize test suites for a product. More 

specifically, we first formally define the above-mentioned issues 

as three objectives: Test Minimization Percentage (TMP), Feature 

Pairwise Coverage (FPC) and Fault Detection Capability (FDC), 

and propose objective functions for them. Second, a fitness 

function is defined, based on these objectives to guide the search 

towards an optimal solution. Third, we present an industrial case 

study and five other case studies from SPLOT (http://www.splot-

research.org/) to evaluate three different weight-based GAs (i.e., 

Weight–Based Genetic Algorithm (WBGA), Weight-Based 

Genetic Algorithm for Multi-objective Optimization (WBGA-

MO), Random-Weighted Genetic Algorithm (RWGA)) based on 

the proposed fitness function. Random Search (RS) is used as the 

baseline to evaluate the performance of the selected weight-based 

GAs. Last, based on the obtained results and analysis, we propose 

a guideline for future practitioners to solve test minimization 

problems using weight-based GAs. 

The contributions of this paper are: 1) Definition of a fitness 

function based on the three objectives; 2) Empirical evaluation of 

the three weight-based GAs by comparing them with RS, based 

on an industrial case study and five case studies from SPLOT. 

The rest of paper is organized as follows: Section 2 provides a 

briefly introduction of the existing methodology for test case 

selection and the weight-based GAs we applied. Section 3 

presents a formal representation of the problem, definitions and 

functions for all the three objectives followed by fitness function 

used by all the algorithms. In Section 4, empirical evaluation 

based on an industrial case study and five other case studies are 

presented. Section 5 discusses threats to validity and related work 

is presented in Section 6. Section 7 concludes the paper. 

2. BACKGROUND 
In this section, we briefly present our existing methodology for 

test case selection based on FM and CFM in the context of 

product line (Section 2.1) followed by related description of 

selected weight-based GAs (Section 2.2). 

2.1 Test Case Selection based on FM and 

CFM 
Feature modeling is a hierarchical modeling approach for 

capturing commonalities and variabilities in product line [2][7]. 

By modeling a product line with Feature Model (FM), various 

products can be configured through feature selection in a 

systematic way. A component family model (CFM) is used to 

represent how products are assembled and generated in a product 

line by modeling relations among software architectural elements 

[8]. It has a hierarchical structure including items such as 

components and parts. Meanwhile, restrictions play a key role, 

which are used to specify relations between features in FM and 

components/parts in CFM. Via restrictions, a specific product can 

be configured automatically from a valid selected feature model in 

a product line. 

In our previous work [4][5], we proposed a systematic and 

automated methodology using a Feature Model for Testing 

(FM_T) to capture commonalities and variabilities of a product 

line and a Component Family Model for Testing (CFM_T) to 

capture the overall structure of test cases in the repository. With 

our methodology, a test engineer does not need to manually go 

through the repository to select a relevant set of test cases for a 

new product. Instead, a test engineer only needs to select a set of 

relevant features using FM_T at a higher level of abstraction for a 

product and a set of relevant test cases will be selected 

automatically. In addition, we developed a tool named as Import 

Plugin and Transformation (IPT) to support this automated test 

case selection methodology and it has been applied in Cisco 

Systems, Norway. 

2.2 Description of Selected Weight-based GAs 
Genetic Algorithms (GAs) are inspired by the Darwinian 

evolution theory, which are well known to address complex 

problems in Search-Based Software Engineering (SBSE) [9]. 

When applying GA, a population of individuals (i.e., candidate 

solutions) is evolved through a series of generations, where 

reproducing individuals evolve through crossover and mutation 

operators. Meanwhile, GAs are often compared with the 

techniques based on random search (RS) when applying to 

determine whether the complexity is warranted to address a 

specific SBSE problem. The use of the GAs may only be justified 

if it performs significantly better than, for instance, RS. To use a 

GA, a fitness function needs to be defined to evaluate the quality 

of a candidate solution (i.e., an element in the search space). The 

fitness function is problem dependent, and proper care needs to be 

taken for developing adequate fitness functions. The fitness 

function will be used to guide the search toward fitter solutions. 

Below, we provide a brief description of the weight-based GAs 

that we used in this paper, i.e., Weight–Based Genetic Algorithm 

(WBGA), Weight-Based Genetic Algorithm for Multi-objective 

Optimization (WBGA-MO), and Random-Weighted Genetic 

Algorithm (RWGA). 

The working theory of these three weight-based GAs is to assign a 

particular weight to each objective function for converting the 

multi-objective problem to a single objective problem with a 

scalar objective function [6]. The difference of these algorithms 

can be summarized as the different mechanisms of assigning 

weights for each objective, which is shown in Table 1.  

Table 1 Mechanisms of Assigning Weights for the Three 

Weight-based GAs 

Algorithms Mechanisms of Assigning Weights 

WBGA Predefined fixed weights  

WBGA-MO Weights in weight pool 

RWGA Randomly normalized weights 

 

As shown in Table 1, WBGA assigns fixed weights for each 

objective defined for each objective before, which can be 

provided by users based on the domain knowledge and expertise. 

The same weight for each objective is used during all generations 

of the algorithm. WBGA-MO uses a weight pool including a set 

of predefined weights and each solution can choose weights for 

each objective randomly during running. The assigned weight for 

each objective changes during each generation, but is still limited 

from ones existing in the weight pool. Notice that such weight 

pool can also be provided by users. As for RWGA, different 

normalized weights are assigned randomly for each objective at 

each generation, i.e., it is not required to assign particular weights 

before and weights for each objective are assigned dynamically 

during running.  

Based on the above discussions, these algorithms can be classified 

as fixed-weight algorithms and dynamic-weight algorithms 

according to their assigning ways of weights. Therefore, WBGA 

and WBGA-MO can be classified into fixed-weight algorithms 

and RWGA can be classified into dynamic-weight algorithms. 
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3. PROBLEM REPRESENTATION AND 

FITNESS FUNCTION  
To guide the search towards an optimal solution using weight-

based GAs, it is essential to define a fitness function, as is the case 

for any search algorithm. Our goal is to find a minimum subset of 

test cases to test a product in a product line from the entire set of 

test cases available for the product line. At the same time, we also 

want to achieve high feature pairwise coverage and fault detection 

capability. In Section 3.1, we first present formal representation of 

the search problem. Second, we define three objectives and 

related functions, i.e., TMP, FPC and FDC in Section 3.2 

followed by the definition of the fitness function in Section 3.3.  

3.1 Problem Representation 
Suppose a product line P has a set of products 

                   , where np is the number of products in P. 

Moreover, P can be represented as a feature model with a set of 

features                     [2][5], where nf is the number of 

features (i.e., functionalities need to be tested for P). To test P, 

there is a test suite                      comprising of a large 

number of test cases (nt). A specific product pi in P, where 

      , can be represented as a subset of  :    
 

   
    

    
       

  , where   
  can be any feature in   (  

     ) 

and     
 is the number of features used to represent the product pi 

(      
   ). To test pi, based on [4], there is a subset of the 

test suite TS:     
      

    
    

       

   comprising     
test cases, 

where   
  can be any test case in TS (  

      ) and       
   . 

Based on     
 for pi, there is a set of potential solutions    

 

                     
 , where     

is the total number of solutions 

for testing pi, which can be measured as          . As the 

number of test cases increases, the potential solutions increase 

exponentially. Suppose we have 1000 test cases to test the product 

line P and using the methodology proposed by [4], 100 test cases 

are obtained to test the product pi. Then there will be          

potential solutions for testing pi, which is a huge solution space. 

Each solution si in    
 is comprised of      test cases from     

: 

     
      

      
       

  , where             
 and has a certain 

      and      , which are measured as described in the next 

section.  

Based on the above discussion, the detailed problem can be 

represented as: 

Problem: Search for a solution sk (sk is comprised by 

{    
      

      
       

 } from     
, where             

) from 

   
 for testing the product pi to achieve 1) high     (i.e., less 

number of test cases); 2) high      ; 3) high      . 

3.2 Definitions and Functions for Three 

Objectives 
In this section, based on the above-mentioned problem, we 

provide mathematical definitions and functions for these three 

objectives required to achieve test minimization. 

3.2.1 Test Minimization Percentage (TMP) 
TMP is used to measure the amount of reduction in the number of 

test cases and is calculated as follows.  

       (  
    
    

)       

As discussed in section 3.1,     is the number of test cases for the 

solution sk, where             
.     

 is the number of test 

cases in the test suite for testing product pi. TMP value ranges 

from 0 to 1 and a higher value of TMP represents higher test 

minimization. 

3.2.2 Feature Pairwise Coverage (FPC) 
FPC is used to measure how much pairwise coverage can be 

achieved by a chosen solution [10][11]. We chose this type of 

coverage based on our domain knowledge, discussion with test 

engineers, and history data about faults because a higher 

percentage of detected faults are mainly due to the interactions 

between features. FPC is designed to compute the capability of 

covering feature pairs by a chosen solution, which is computed as 

below:  

       
        
         

      

         is the number of feature pairs covered in the test cases 

for the solution sk, which can be measured as follows. 

         ∑          

    

   

 

    is the number of test cases for the solution sk, where   

          
.          

 is the number of unduplicated  feature 

pairs covered by the test case i (   ). The feature pairs covered by 

    can be computed as:          
             

 
 .           

  is 

the number of features tested by test case    . For instance, test 

case     is used to test three features. Then the feature pairs 

covered by test case i are   
  = 3*2/2 = 3. Notice that if some 

feature pairs are repeated ones compared with the feature pairs 

covered by the previous test cases, repeated pairs will be removed 

when computing         .  

          is all number of feature pairs for testing the product pi 

which can be measured as:             
     (   

)

       
 

     
          

is the set of features representing the product pi 

including     
 features. For instance, if pi is represented by ten 

features, all feature pairs covered by the product are    
 = 10*9/2 

= 45. Note that FPC is calculated for a chosen test solution and 

ranges from 0 to 1 and a higher value of FPC shows higher 

feature pairwise coverage. 

3.2.3 Fault Detection Capability (FDC) 
FDC measures the fault detection capability of a selected test 

solution for a product. In out context, fault detection refers to the 

success rate of a test case in a given time, e.g., a week or a month. 

In our context, a test case is defined as a success if it can detect 

faults in a given time and as a fail if it does not detect any fault. 

The success rate of a test case can be measured as below.  

       
 

         

         
           

 

       
 is the success rate of execution for test case i during the 

given time (in our case, the given time is per week);  

         
 is the number of success executions for the given test 

case i during the given time; 

          
is the number of fail executions for the given test case 

i during the given time. 
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For instance, a test case is usually executed 1000 times per week 

in Cisco. So if a test case executes successfully for 800 times in 

the given week, the fault detection capability for the test case is 

800/1000 = 0.8. Similarly, for a test solution including a set of test 

cases for a specific product, the fault detection capability can be 

measured as below.  

      
∑        

    
   

    
 

    is the number of test cases for the solution sk, where   

          
. Note that FDC value also ranges from 0 to 1 and a 

higher value of FDC represents higher fault detection capability. 

3.3 Fitness Function 
In this stage, TMP, FPC, and FDC have been defined and can be 

computed through the mathematical formulas. To ease 

computation of the fitness function, the values for all the three 

objectives have been normalized by the above-proposed formulas, 

which range from 0 to 1. We adopted a fitness function for 

weight-based GAs presented in [6][12], and is defined as follows: 

                                      

  ,    and    are a set of assigned weights to TMP, FPC and 

FDC respectively, and they need to satisfy the constraint: 

             . Using this way, multi-objective 

optimization problem is converted to a single objective problem 

with a scalar objective function, which is a classical approach and 

is efficient to be solved using GAs [6]. Notice that different set of 

weights can represent distinct testing preferences. For instance, if 

TMP is considered as the most important objective,    can be 

assigned the highest weight, such as 0.6. In practice,   ,    and 

   must be identified in a more systematic way such as by a 

thorough domain analysis followed by a comprehensive 

questionnaire. In our context, we obtained two sets of values of 

  ,    and    via domain analysis and discussion with test 

engineers of Cisco, i.e.,     = 1/3,    = = 1/3,    = 1/3 and     = 

0.2,     = 0.4,     = 0.4. 

In this paper, three different weight-based GAs are used, which 

are the commonly used GAs based on weight theory, i.e., WBGA, 

WBGA-MO, and RWGA. We have used two sets of weights for 

WBGA which are: WBGA_W1 (W1 = (1/3, 1/3, 1/3)), WBGA_W2 

(W2 = (0.2, 0.4, 0.4). As for WBGA-MO, we create weight pool 

using these two sets of weights for different objectives. 

4. CASE STUDIES AND EMPIRICAL 

EVALUATION 
In this section, first we present an industrial case study and five 

other case studies and then an empirical evaluation of various 

weight-based GAs is presented.  

4.1 Case Studies 
We evaluated our fitness function using one industrial case study 

and five case studies from the literature.  

4.1.1 Industrial Case Study 
Our industrial case study is provided by Cisco and is part of a 

large project on model-based testing of a Video Conferencing 

System (VCS) product line called Saturn [13]. The Saturn product 

line comprises of several VCSs such as C20, C40, and C60. The 

Saturn product line has more than 2000 test cases and for each 

product (e.g., C20), only a subset of all test cases is needed.  

We chose four products C20, C40, C60 and C90 from Saturn. 

Based on our domain analysis, there are 169 features in Saturn 

and each product includes a subset of all features. Meanwhile, 

each feature can be tested by at least one test case (usually more 

than one). Table 2 shows more details about this. For instance, 

C20 contains 17 features (i.e., testing functionalities) and 138 test 

cases are used to test these features. Each test case     has a 

success rate for execution (       
). In general, for Saturn, each 

feature is associated with 5-10 test cases; each test case is 

associated with 1-5 features and the fault detection capability 

ranges from 50% to 95%. 

Table 2 Four Products in Saturn 

Product #Features # Test Cases 

C20 17 138 

C40 25 167 

C60 32 192 

C90 43 239 

4.1.2 Other Case Studies 
Our other case studies are of five other products from different 

product lines from SPLOT (http://www.splot-research.org/). Each 

product line is represented by a feature model and each product 

includes a subset of all features [14]. Meanwhile, all test cases for 

testing the product line can be represented by a component family 

model and a subset of test cases can be obtained automatically for 

testing a specific product as discussed in [4]. For other five 

products represented by different sets of features from SPLOT as 

shown in Table 3. Here, we follow the similar phenomenon 

observed from Saturn and assume that each feature can be tested 

by 5-10 test cases, each test case can be used to test 1-5 features 

and the success rate (SucR) for each test case ranges from 50% to 

95%. 

Table 3 Five Case Studies from SPLOT 

Name Author Description #Features 

Car 

Software 

System 

Chr Wol 

Simple model of a 

car's software 

product line 

18 

ATM 

Software 
TCN 

A feature model for 

ATM software 
29 

DELL 

Laptop/Not

ebook 

Computers 

Moises 

Branco 

A feature model 

describes the features 

of DELL 

Laptop/Notebook 

Products 

46 

SmartHome Conejero 

Adaptation of the 

original feature 

models for the 

SmartHome system 

used by AMPLE 

project as case study 

59 

J2EE web 

architecture 

Reinout 

Korbee 

A feature model for 

web architectures 
77 

4.2 Empirical Evaluation 
This section discusses experiment design, execution, and analysis 

of the evaluation based on the guidelines reported in [15][16]. 

4.2.1 Experiment Design 
The goal of our experiments is to assess the effectiveness of 

weight-based GAs for test minimization and at the same time 

achieving high feature pairwise coverage and fault detection 

capability.  
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4.2.1.1 Research Questions 
From this experiment, we want to answer the following research 

questions: 

RQ1: Are weight-based GAs effective to solve test minimization 

problem in our context?   

RQ2: How do the weight-based GAs (WBGA, WBGA-MO, 

RWGA) compare to RS and among WBGA, WBGA-MO, 

RWGA, which one fares best in solving test minimization 

problem? 

4.2.1.2 Experiment Settings 
In our experiments, we compared three weight-based multi-

objective GAs and RS, i.e., WGBA with two set of fixed weights 

based on the domain knowledge and expertise (WBGA_W1 (W1 = 

(1/3, 1/3, 1/3)), WBGA_W2 (W2 = (0.2, 0.4, 0.4)), WBGA-MO 

and RWGA. For all of them, we used a standard one-point 

crossover with a rate of 0.9 and mutation of a variable is done 

with the standard probability 1/n, where n is the number of 

variables. Meanwhile, the size of population and maximum 

number of fitness evaluation are set as 100 and 2000, respectively. 

Finally, RS was used as the comparison baseline to assess the 

difficulty of the addressed minimization problems [16]. Notice 

that different settings may lead to different performance for 

genetic algorithms, but standard settings usually perform well [15]. 

Moreover, a set of threshold values for TMP, FPC, and FDC are 

selected that show the minimum acceptable values for a particular 

context in our experiments. Note that these thresholds are set 

through the domain analysis and discussion with test engineers 

and a test manager at Cisco, and history data about test execution. 

In the context of our industrial case study, these thresholds values 

are: TMP:=0.8; FPC:=0.8; and FDC:=0.85.  

4.2.1.3 Statistical Tests 
To compare the obtained result and given thresholds, the Vargha 

and Delaney statistics and Mann-Whitney U test are used based 

on the guidelines for reporting statistical tests for randomized 

algorithms presented in [15].  

  ̂  : The Vargha and Delaney statistics is used to calculate 

 ̂  , which is a non-parametric effect size measure [15]. In 

our context, given performance measure          

                  ,  ̂   is used to compare the 

probability of yielding higher performance value F for two 

algorithms A and B. If  ̂   is equal to 0.5, the two algorithms 

are equivalent. If  ̂   is greater than 0.5, it means the first 

algorithm A has higher chances of obtaining higher F value 

than B.  

 p-value: The non-parametric U-test (The Mann-Whitney U 

test) is used to calculate p-value for deciding whether there is 

a significant difference between two algorithms. We chose 

the significance level of 0.05, which means there is a 

significant difference if p-value is less than 0.05.  

Based on the above description, we define that algorithm A has 

better performance than algorithm B, if the  ̂   value is greater 

than 0.5. Moreover, algorithm A has significantly better 

performance than algorithm B, if the  ̂   value is greater than 0.5 

and p-value is less than 0.05. 

4.2.2 Experiment Execution 
According to the guidelines in [15], each algorithm is run for 1000 

times to account for random variations inherited in search 

algorithms and is essential to increase the power of statistical tests 

that further improves the confidence on the results. We let 

WBGA_W1, WBGA_W2, WBGA-MO, RWGA and RS run up to 

2000 fitness generations each time and collected the optimal 

solution including the final value of fitness function. We ran our 

experiments on a PC with Intel Core i7 2.3GHz with 4 GB of 

RAM, running Microsoft Windows 7 operating system. 

4.2.3 Results and Analysis 
In this section, we discuss and analyze the obtained results for the 

individual research question followed by an overall discussion. 

Note that Table 4 and Table 5 are shown in the last page of paper 

as landscape to save the space. 

4.2.3.1 Results and Analysis for Research Question 1 
Table 4 shows the results, when the performance of search 

algorithms is compared with the threshold values for our 

industrial case study and five case studies from SPLOT. In Table 

4, we did one sample Mann Whitney test since we compared the 

obtained results from different algorithms with one set of fixed 

values for TMP, FPC and FDC. 

Based on the obtained results, we can answer RQ1 as follows:  

RWGA has higher probability to obtain better results when 

compared with the given thresholds. In other words, RWGA has 

higher probability to be adapted when required since most of 

 ̂  values are greater than 0.5 and there is no significant 

difference (all p-values are greater than 0.05) when comparing 

with the given thresholds as shown in Table 4. 

In a way, the results obtained by WBGA-MO are almost 

equivalent to the given thresholds since most of  ̂   values are 

close to 0.5. Meanwhile, there are no significant difference 

between the results of WBGA-MO and the given thresholds (all p-

values are greater than 0.05) as shown in Table 4. 

For WBGA_W1 and WBGA_W2, the results do not stay stable. 

For some products,  ̂   values are close to 0.5, for other products, 

 ̂   values are much less than 0.5 (the given thresholds have 

much higher probability to be used). Meanwhile, for some 

products, there is no significant difference when compared with 

the given thresholds and there is a significant difference with the 

thresholds for other products as shown in Table 4. Since the only 

difference between WBGA_W1 and WBGA_W2 is the sets of 

weights, different weights can result in total different results when 

using WBGA. So providing reasonable weights before using 

WBGA is essential to obtain expected results. 

Based on the results, we can see that RS always has less 

probability to be used in practice when compared with the given 

thresholds since all  ̂   values are less than 0.5 and there are 

significant differences when comparing with the given thresholds 

since p-values are less than 0.05 as shown in Table 4. 

In general, weight-based GAs can assist to achieve the given 

thresholds. Given different weights, using WBGA can obtain total 

different results. So assigning a reasonable set of weights before 

using WBGA plays a key role to gain expected results. Notice that 

the obtained results by WBGA-MO and RWGA are more stable 

than WBGA, which is because WBGA-MO and RWGA are less 

dependent on a certain set of weights. Especially, since there is no 

need to provide weights before using, the obtained results by 

RWGA are more stable than WBGA-MO. 
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4.2.3.2 Results and Analysis for Research Question 2 
Table 5 shows the results when different algorithms are compared 

for the Saturn products and five other products. According to the 

combination theory, 10 (  
  = 5*4/2) pairs are compared. 

Based on the obtained results, we can answer RQ2 as follows:  

Firstly, as shown in Table 5, we compared the performance of 

various algorithms with RS. When WBGA_W1 is compared with 

RS, the  ̂   values are all greater than 0.5 and the p-values are 

mostly less than 0.05 (8 out of 9 in four VCS products and five 

other case studies). For the comparison of WBGA_W2 and RS, 

the  ̂   values are mostly greater than 0.5 (8 out of 9 in four VCS 

products and five other case studies) and the p-values are all less 

than 0.05. When comparing WBGA-MO with RS, the  ̂   values 

are all greater than 0.5 and the p-values are all less than 0.05. 

Finally, when RWGA is compared with RS, the  ̂   values are all 

greater than 0.5 and the p-values are all less than 0.05. Based on 

the above results, we can conclude that weight-based GAs have 

significantly better performance than RS. 

Now we discuss the results, when various weight-based GAs are 

compared. Firstly, when WBGA_W1 is compared with RWGA, 

Table 5 shows that the  ̂   values are all less than 0.5 and the p-

values are mostly less than 0.05 (8 out of 9 in four VCS products 

and five other case studies); secondly, comparing WBGA_W2 

with RWGA, the  ̂   values are all less than 0.5 and the p-values 

are also mostly less than 0.05 (8 out of 9 in four VCS products 

and five other case studies); thirdly, comparing WBGA-MO with 

RWGA, the  ̂   values are all less than 0.5 and the p-values are 

all less than 0.05. Based on the above results, we concluded that 

RWGA has significantly better performance than WBGA_W1, 

WBGA_W2 and WBGA-MO.  

Finally, WBGA_W1, WBGA_W2 and WBGA-MO were 

compared. Since both WBGA_W1 and WBGA_W2 belong to 

WBGA, we studied them together and compare WBGA and 

WBGA-MO. Based on the obtained results as shown in Table 5, 

for the  ̂   values, 10 out of 18 are less than 0.5 and 8 out of 18 

are greater than 0.5 in four VCS products and five other case 

studies, and for the p-values, 4 out of 18 are less than 0.05 and 14 

out of 18 are greater than 0.05. Based on the results, we can 

conclude that WBGA-MO has better performance than WBGA, 

but not significantly.   

4.2.3.3 Overall Discussion 
Based on the above-mentioned discussions when using weight-

based GAs, different sets of weights (e.g.,   ,    and   ) can be 

provided depending on the testing requirements. So domain 

knowledge and thorough discussions with users is required before 

assigning weights.   

Moreover, based on the obtained results and analysis, RWGA has 

the best performance among the three weight-based GAs and RS. 

The main reason is that RWGA assigns weights dynamically 

during search and thus the search is guided towards the best 

weights to achieve threshold values for TMP, FPC and FDC. 

In particular, when testing requirements are not clear in practice, 

i.e., it is impossible to provide reasonable weights for TMP, FPC 

and FDC. We suggest using RWGA to minimize test suites for 

products since it assigns weights dynamically. In the context of 

VCS testing, after running RWGA 1000 times, based on the 

empirical evaluation, the best set of weights that obtains the best 

results of fitness function is    = 0.24 for TMP,    = 0.44 for 

FPC and    = 0.32 for FDC respectively.  

5. THREATS TO VALIDITY 
To reduce construct validity threats, we used the same stopping 

criteria for all algorithms, i.e., number of fitness evaluations. We 

ran each algorithm for 2000 evaluations to seek the best solution 

for test minimization. This criterion is a comparable measure 

across all the algorithms since each iteration requires updating the 

obtained solution and comparing the computed value of fitness 

function. 

A possible threat to internal validity is that we have experimented 

with only one configuration setting for the GA parameters. 

However, these settings are in accordance with the common 

guidelines in the literature and our previous experience on testing 

problems. Parameter tuning can improve the performance of GAs, 

although default parameters often provide reasonable results [15]. 

We ran our experiments on an industrial case study to seek the 

best solution to minimize test suites for testing a product. To 

reduce external validity threats (i.e., our results might not be 

applicable to other empirical studies), five other case studies from 

SPLOT were adapted using the same criteria, i.e., each feature can 

be tested by 5-10 test cases, each test case can be used to test 1-5 

features and success rate for each test case ranges from 50% to 

95%. In this way, the results obtained by the industrial case study 

and five other case studies should be more persuasive. 

The most probable conclusion validity threat in experiments 

involving randomized algorithms is due to random variations. To 

address it, we repeated experiments 1000 times to reduce the 

possibility that the results were obtained by chance. Furthermore, 

to determine the probability of yielding higher performance by 

different algorithms, we measured the effect size using  ̂   by 

Vargha and Delaney statistics test. We chose Vargha and Delaney 

statistics test since it is appropriate for non-parametric effect size 

measure, which match our situation [15]. Meanwhile, we 

performed Mann-Whitney U test to determine the statistical 

significance of the results.  

Finally, as already discussed in Section 4, our practical set of 

weights obtained by empirical evaluation may not be applicable to 

all product line testing. Therefore, in every specific product line 

needs to be tested, a different set of weights might be obtained 

when using RWGA. However, for some specific product line 

similar to VCS product line, the proposed set of weights could be 

adapted directly.  

6. RELATED WORK 
Software product line testing is a relatively new, but intense field 

of research since product line engineering has shown significant 

benefits in both academia and industry [1][17][18]. 

In [1], McGregor presented a set of activities, which can be used 

to address testing individual assets (e.g., verification of 

consistency between requirements and specifications) and testing 

artifacts (e.g., test-case derivation and test suite design) that 

represent complete products in the context of product line. In [17], 

based on a relational model capturing variability in product line, 

Cohen defined a family of cumulative coverage criteria to collect 

test coverage information, which was also used to map with 

existing combinatorial testing approaches for supporting product 

line testing. In [18], Muccini proposed associating regression 

testing with product line by comparing code execution with the 

architectural design, which can be used as guidelines for adapting 

existing techniques for regression testing to product line testing. 

However, most of these works are only proposals and only 

provide guidelines without specific testing process, which are not 

systematic. In our previous work [4], an methodology was 
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presented to obtain a set of test cases for testing a specific product 

automatically by modeling software product line using feature 

model and test case structure using component family model, 

which is more related with test selection and there are still 

redundant test cases in the obtained test suite for a specific 

product through more investigation. 

As for test minimization in regression testing, various types of 

minimizing techniques are proposed in the literatures [19]. In [20], 

Chen and Lau proposed GE and GRE heuristics to perform test 

minimization, which are thought as the variation of the greedy 

algorithms. In [21], Tallam and Gupta proposed an improved 

greedy algorithm called the delayed greedy approach based on the 

Formal Concept Analysis of the relation between test cases and 

testing requirements. In [22], Jeffrey and Gupta extended GE and 

GRE by introducing a secondary set of test requirements to 

determine whether a test case is redundant for test minimization. 

Although the number of techniques for regression test 

minimization is huge [19], there is no enough evidence to prove 

that these techniques still work well if being adapted in the 

context of product line.  

In particular, Shin and Mark [23] proposed to use search-based 

algorithms (i.e., Fast Non-dominated Sorting Genetic Algorithm 

(NSGA II)) for multi-objective test case selection (e.g., code 

coverage, fault detection history, execution time) in regression 

testing, which is similar with our two objectives (i.e., FPC and 

FDC). However, our context is product line and we minimized the 

test suite obtained by our proposed test case selection 

methodology in [4] for testing a product. Moreover, we defined 

one additional objective (i.e., TMP to measure the minimization 

percentage of the minimized test suite as compared with the 

original test suite based on our industrial problem. In addition, we 

compared different weight-based GAs and RS, which was not 

addressed in [23].  

7. CONCLUSION AND FUTURE WORK 
In this paper, we proposed an application of weight-based GAs to 

minimize the test suite for testing a product at the same time 

achieving high feature pairwise coverage and fault detection 

capability in the context of software product line. We formally 

defined three objectives (i.e., Test Minimization Percentage 

(TMP), Feature Pairwise Coverage (FPC) and Fault Detection 

Capability (FDC)), followed by the definition of a fitness function 

(based on the objectives) to guide three different weight-based 

Genetic Algorithms (GAs): Weight–Based Genetic Algorithm 

(WBGA), Weight-Based Genetic Algorithm for Multi-objective 

Optimization (WBGA-MO), Random-Weighted Genetic 

Algorithm (RWGA).  

We evaluated our fitness function based on an industrial case 

study and five other case studies from the literature using the three 

weight-based GAs. Given a set of thresholds, these three weight-

based GAs and Random Search (RS) were evaluated and a 

comparison among them was conducted. 

Results show that RWGA and WBGA-MO achieved the given 

thresholds, WBGA achieved the given thresholds in some 

products and failed in others, and RS hardly achieved the given 

thresholds. Among all of these algorithms, RWGA has the best 

performance, and WBGA-MO and WBGA are almost equivalent, 

both of which have better performance than RS. 

In the future, we plan to conduct more case studies using the 

proposed application of weight-based GAs. Moreover, we want to 

investigate the quality of the minimized test suite as compared 

with the test suite selected by test engineers manually to assess 

whether the weight-based GAs are human competitive. 

Meanwhile, we will also evaluate the proposed fitness function 

using Pareto-based multi-objective GAs, such as Fast Non-

dominated Sorting Genetic Algorithm (NSGA II), to validate 

whether better results can be obtained as compared to weight-

based GAs.  
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Table 4 Results for Comparing Different Algorithms with the Given Thresholds* 

*PA: Pair of algorithms, A:  ̂  , p: p-value 

S1: Car Software System, S2: ATM Software, S3: DELL Laptop/Notebook Computers, S4: SmartHome, S5: J2EE web architecture. 
C1: WBGA_W1 vs. Thresholds, C2: WBGA_W2 vs. Thresholds, C3: WBGA-MO vs. Thresholds, C4: RWGA vs. Thresholds, C5: RS vs. Thresholds. 

All p-values less than 0.05 are identified as bold. 

Table 5 Results for Comparing Different Algorithms* 

PA 
C20 C40 C60 C90 S1 S2 S3 S4 S5 

A p A p A p A p A p A p A p A p A p 

C6 0.48 0.15 0.52 0.25 0.41 0.51 0.55 0.10 0.51 0.61 0.55 0.59 0.47 0.15 0.43 0.35 0.49 0.25 

C7 0.38 0.35 0.48 0.03 0.47 0.57 0.52 0.72 0.48 0.09 0.41 0.15 0.39 0.35 0.52 0.12 0.54 0.12 

C8 0.33 0.02 0.45 0.42 0.22 0.01 0.29 0.03 0.29 0.02 0.31 0.03 0.22 0.01 0.27 0.01 0.33 0.04 

C9 0.62 0.06 0.70 0.01 0.55 0.14 0.66 0.02 0.62 0.02 0.69 0.04 0.73 0.01 0.57 0.02 0.78 0.01 

C10 0.51 0.15 0.44 0.61 0.39 0.09 0.53 0.52 0.44 0.52 0.51 0.35 0.57 0.09 0.46 0.27 0.55 0.16 

C11 0.31 0.03 0.49 0.05 0.32 0.02 0.42 0.42 0.21 0.02 0.33 0.05 0.18 0.01 0.26 0.02 0.22 0.03 

C12 0.69 0.01 0.58 0.02 0.62 0.01 0.48 0.04 0.55 0.04 0.64 0.01 0.51 0.05 0.73 0.01 0.59 0.02 

C13 0.37 0.16 0.31 0.03 0.29 0.01 0.27 0.01 0.49 0.19 0.38 0.03 0.29 0.01 0.32 0.02 0.41 0.01 

C14 0.59 0.01 0.65 0.01 0.61 0.01 0.56 0.01 0.68 0.02 0.59 0.02 0.62 0.02 0.71 0.01 0.56 0.03 

C15 0.74 0.02 0.69 0.01 0.77 0.03 0.62 0.02 0.81 0.02 0.67 0.01 0.74 0.01 0.89 0.01 0.65 0.02 

*C6: WBGA_W1 vs. WBGA_W2, C7: WBGA_W1 vs. WBGA-MO, C8: WBGA_W1 vs. RWGA, C9: WBGA_W1 vs. RS, C10: WBGA_W2 vs. WBGA-MO, 

C11: WBGA_W2 vs. RWGA, C12: WBGA_W2 vs. RS, C13: WBGA -MO vs. RWGA, C14: WBGA-MO vs. RS, C15: RWGA vs. RS.    

All p-values less than 0.05 are identified as bold. 

PA 
C20 C40 C60 C90 S1 S2 S3 S4 S5 

A p A p A p A p A p A p A p A p A p 

C1 0.34 0.04 0.29 0.03 0.22 0.01 0.41 0.08 0.41 0.08 0.34 0.04 0.55 0.16 0.44 0.24 0.23 0.01 

C2 0.42 0.06 0.51 0.04 0.54 0.09 0.45 0.33 0.37 0.04 0.29 0.02 0.43 0.44 0.38 0.09 0.35 0.12 

C3 0.55 0.23 0.48 0.19 0.61 0.12 0.38 0.06 0.44 0.05 0.41 0.22 0.64 0.08 0.46 0.15 0.39 0.07 

C4 0.71 0.35 0.62 0.22 0.67 0.46 0.66 0.18 0.53 0.26 0.49 0.60 0.59 0.07 0.57 0.45 0.45 0.32 

C5 0.39 0.01 0.42 0.01 0.22 0.01 0.18 0.03 0.28 0.02 0.22 0.01 0.41 0.29 0.32 0.01 0.29 0.05 
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