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Abstract
In this study, a scheme is presented to estimate groundwater storage variations in Iran. The variations are estimated using

11 years of Gravity Recovery and Climate Experiments (GRACE) observations from period of 2003 to April 2014 in combination with
the outputs of Global Land Data Assimilation Systems (GLDAS) model including soil moisture, snow water equivalent, and total
canopy water storage. To do so, the sums of GLDAS outputs are subtracted from terrestrial water storage variations determined by
GRACE observations. Because of stripping errors in the GRACE data, two methodologies based on wavelet analysis and Gaussian
filtering are applied to refine the GRACE data. It is shown that the wavelet approach could better localize the desired signal and
increase the signal-to-noise ratio and thus results in more accurate estimation of groundwater storage variations. To validate the
results of our procedure in estimation of ground water storage variations, they are compared with the measurements of pisometric
wells data near the Urmia Lake which shows favorable agreements with our results.

Introduction
From all of the available water in the world, about

97% is distributed in the oceans and seas where the
value of salinity is very high and not suitable for specific
civilian use. From the 3% of the remaining water, about
2% is frozen in the polar ice sheets, unattainable to
most, and only 1% is terrestrial water storage (TWS).
TWS is the most important component of the global
water cycle comprising the water stored in soil, snow
over land, and the so-called groundwater storage (Chen
et al. 2014). TWS variations reflect the accumulation of
precipitation, evaporation, canopy, and runoff in a region.
The estimation of TWS variations is a powerful tool for
investigation of forecast flood, natural phenomena such
as drought, and the other uses of water supply. Among
the aforementioned ingredients in the TWS, groundwater
storage is an important parameter in water resource
management, land-surface processes, and hydrological
cycle.
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TWS variations could be estimated using space-
based data, such as remote sensing images or satellite
gravimetric measurements, as well as ground-based data
such as pisometric wells observations or climatological
experiments. The remote sensing images have a good
spatial coverage, but their sensing regions reached down
to a depth of many centimeters. The data of pisometric
wells could provide useful information of groundwater
down to a depth of about 100 m and more, but they suffer
from drawback of point-wise measurement which does
not provide a good spatial resolution. Satellite gravimetric
measurements of time variable gravity field are a new
data type which is capable of modeling and detecting
global mass transfer within the Earth. This subject, in
its present form, began with the launch of the GRACE
mission (Gravity Recovery and Climate Experiments).
The GRACE mission provides a useful apparatus to
study the time variation of the gravity field of the Earth.
GRACE is able to monitor changes in a TWS from the
land surface to the base of the deepest aquifer (surface
water, soil moisture, groundwater, and snow) (Tapley
et al. 2004b).

Numerous studies have shown that GRACE can offer
useful constraints on TWS, including ocean mass change
(e.g., Chambers et al. 2004; Lombard et al. 2007), mass
balance of the ice sheets (e.g., Lutchke et al. 2006;
Ramillien et al. 2006; Velicogna and Wahr 2006), polar
ice sheet melting (e.g., Velicogna and Wahr 2006), and
groundwater variations (Moiwo et al. 2012; Jin and Feng
2013; Lenk 2013).
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GRACE consists of twin satellites which provide a
unique opportunity to estimate the groundwater storage
and its temporal variations. Because GRACE observations
are affected by all sources of TWS, extraction of
the groundwater component from GRACE observations
requires the estimation of other impacts from auxiliary
data sets. The useful data sets that can be used for
this purpose are hydrological models such as GLDAS
(the Global Land Data Assimilation Systems) or WGHM
(WaterGAP Global Hydrology Model) (Rodell et al.
2004). In this study, the GLDAS outputs that are soil
moisture, snow water equivalent, and total canopy water
storage are used.

Recent outcomes of the GRACE mark a major
step forward in assessing groundwater storage variations
in our study location. Forootan et al. (2014) derived
an estimation of TWS in Iran using combination of
GRACE, altimetry, and hydrological data and ana-
lyzed a mass decrease with an average linear rate of
15 mm/year and linear trend of groundwater storage for
the drought period of 2005 to March 2011. Joodaki et al.
(2014) estimated the human contribution to groundwater
depletion in the Middle East using GRACE and land
surface models and found that the largest groundwater
depletion is occurring in Iran, with a mass loss rate of
25 gigatonne (GT)/year and showed that over half of
the groundwater loss in Iran may be attributed to human
withdrawals. Moreover, Voss et al. (2013) estimated
approximately 91 km3 groundwater depletion in Middle
East particularly in Iran using GRACE observations from
2003 to 2009.

In this study, we apply GRACE TWS changes in
conjunction with GLDAS outputs to resolve groundwater
storage changes in Iran during the period of January
2003 to April 2014. Two different low pass filtering
schemes were applied to refine the GRACE spherical
harmonic (SH) coefficients, that is, the traditional
Gaussian filtering and an innovated wavelet analysis. To
show the performance and accuracy of the results, the
estimated groundwater changes are compared with
groundwater level obtained from in situ measurements of
pisometric wells data over the Urmia Lake.

Data and Processing

TWS Variations Using GRACE Coefficients
One of the objectives of the GRACE mission

is the Earth’s gravity field modeling. Using GRACE
observations, the Earth’s gravity field could be recovered
in the form of SH coefficients up to a degree and order
of 120 (Tapley et al. 2004a), which are known as stokes
coefficients. In this study, these coefficients which are
the latest release of GRACE gravity field coefficients
in the period of January 2003 to April 2014 covered
by 132 months are used (the release-05 or RL05 from
UTCSR, the Center for Space Research at the University
of Texas). GRACE can measure TWS variations in
form of equivalent water layer thickness by using stokes

coefficients variation (Wahr et al. 1998) as follow:

�TWS (φ, λ, t) = aρave

3ρw

60∑
n=2

n∑
m=0

P̃nm (sin φ)
2n + 1

1 + kn

(�Cnm cos (mλ) + �Snmsin (mλ))

(1)

where ρave is the mean density of the Earth, ρw is
the density of fresh water, a is the equatorial radius of
the Earth, P̃nm is the fully normalized Legendre function
of degree n and order m , and kn is the Love load number
of degree n (Wahr et al. 1998). Also, φ is latitude, λ

is longitude, and C nm and S nm are the so-called stokes
coefficients (the symbol � denotes the variation)

Atmospheric pressure variations, ocean tides, and
barotropic ocean signals have been removed by means
of three models, the European Centre for Meteorological
Weather Forecasting model, the Finite Element Solution
2004 model (Lyard et al. 2006), and the MOG2D-G
barotropic (Carrere and Lyard 2003) model, respectively.

Gaussian Filtering on GRACE Data
Equation 1 is the starting point for using GRACE

estimates of �C nm and �S nm to recover changes in
TWS. Because the errors in the GRACE coefficients
increase with n (i.e., for short wavelengths), the use
of Equation 1, can lead to highly inaccurate results as
n increases. Thus, it is necessary to somehow reduce
the large n contributions to the Equation 1 in order
to obtain more accurate results. This fact involves the
insertion of some additional multiplicative factors into
Equation 1 that are smaller for large values of n . The
problem is to seek a factor that reduces the errors, while
keeps the weighting function localized. Jekeli (1981)
introduced degree-dependent weighting factors W n , which
subsequently applied into the GRACE observations by
Wahr (1998). This averaging function was derived from
a spatial Gaussian function. The half-power point of
the Gaussian is determined by a parameter referred to
the averaging radius, r so that:

�TWS (φ, λ, t) = aρave

3ρw

60∑
n=2

n∑
m=0

P̃nm (sin φ)Wn

2n + 1

1 + kn

(�Cnm cos (mλ) + �Snmsin (mλ))

(2)

where the function W could be determined by a recursion
relation as:

W0 = 1, W1 = 1 + e−2b

1 − e−2b
− 1

b

Wn+1 = −2n + 1

b
Wn + Wn−1, b = ln (2)

1 − cos
(

r
a

) (3)

Figure 1 shows the behavior of Gaussian averaging
function for some radiuses:
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Figure 1. The spectral smoothing coefficients for Gaussian
smoothing with different radiuses.

The correlated-error filter introduced by Swenson
and Wahr (2006) has also been tested on the results
which causes to remove real signals and necessitates the
implementation of suitable rescaling method. Moreover,
because in the study location of this research there was
no north–south stripes, this filtering approach is not
considered in the analysis and only the aforementioned
Gaussian filtering which does not require rescaling is
applied (Chen et al. 2005; Moiwo et al. 2012; Jin and
Feng 2013; Lenk 2013).

Filtering and Localization on GRACE Data by Wavelet
Wavelet analysis allows the use of long time intervals,

when more precise low frequency information is sought,
and shorter regions where high frequency information
is needed. One major advantage afforded by wavelets is
the ability to perform a local analysis to analyze a
localized area of a larger signal (Panet et al. 2007). Also,
wavelets are appropriate tools to investigate the regional
time variable effects in the gravity field (Kohlhaas 2005;
Fengler et al. 2006; Panet et al. 2007). In this study,
spherical wavelet modeling of regional and temporal
variations of the Earth’s gravity field observed by GRACE
is applied. Spherical wavelets, introduced by Freeden
and Schreiner (1995); Freeden and Windheuser (1996);
Freeden et al. (1998), have been used here based on
expansions in Legendre polynomials. They form radial
basis functions on the sphere whose argument depends
only on the spherical distance between the center of the
wavelet and its evaluation point.

The families
{{

�̂J (n)
}
n∈N0

}
J∈N0

and{{̂̃�J (n)
}

n∈N0

}
J∈N0

are said to be the generators of the

primal and the dual wavelets, respectively, where in this
work, we simply set �̃J (n) = �J (n) , J ∈ N0, n ∈ N ,
hence, the wavelet is computed by:

�̂J (n) =
√(

φ̂J+1 (n)
)2 − (

φ̂J (n)
)2

(4)

in which the family
{{

φ̂J (n)
}
n∈N0

}
J∈N0

is called a

generator of a scaling function, if it satisfies the following
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Figure 2. Symbol of the CuP scaling functions φ3, φ4, and
φ5.
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Figure 3. Symbol of the CuP wavelets �3 and �4.

requirements (Freeden et al. 1998):(
φ̂J (0)

)2 = 1, 0 ≤ (
φ̂J (n)

)2 ≤ (
φ̂

J
′ (n)

)2
,

lim
J→∞

(
φ̂J (n)

)2 = 1 (5)

For all J , J ′ ∈ N 0, with J ≤ J ′ and all n ∈ N .
In this study, scaling functions and wavelets, gener-

ated by a so-called cubic polynomial (CuP), are consid-
ered, so we let:

φ̂J (n) =
{(

1 − 2−J n
)2 (

1 + 2−J+1n
)

forn ∈ [
0, 2J

)
0 forn ∈ [

2J ,∞)
(6)

which one can easily verify that all three conditions of a
generator (Equation 5) are fulfilled. j = 2 is used in this
study. The corresponding symbols of the scaling function
and the wavelet are shown in Figures 2 and 3.
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In a case of GRACE, the following representation
provides us with the dimensionless wavelet coefficients
(Fengler et al. 2006):

R

GM
(�J ∗ �TWS)(t,x) =

√
4π

60∑
n=2

n∑
m=−n

�TWS (t) �̂J (n) Yn,m (7)

in which GM is the geocentric gravitational constant, R is
the radius of the Earth, and Yn ,m is surface SH of degree
n and order m .

Outputs of GLDAS Model
GLDAS is a joint project between NASA and the

National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) (Rodell
et al. 2004). There are many hydrological models
such as GLDAS, Climate Prediction Center model, the
NCEP/NCAR, and reanalysis products, but the results
have shown that there is accordance between GLDAS
model and GRACE coefficients (Jin et al. 2012), so the
GLDAS model is used in this research. This land surface
model combines data of ground based and space based
for producing the optimal field of land surface state
(Rodell et al. 2004).

The GLDAS model comprises three land surface
models: Mosaic, Noah, and the Community Land Model
(Rodell et al. 2004). It has been shown that different selec-
tion of Land Surface Models (LSMs) could result in com-
pletely different groundwater storage change estimates.
Joodaki et al. (2014) showed that the Mosaic model gives
the best agreement with the seasonal cycle of GRACE
TWS changes. Long et al. (2013, 2014a) indicated that the
differences between LSMs can be larger during droughts.
Long et al. (2014b) demonstrated that both the frequency
and severity of droughts and floods are intensified in selec-
tion of different LSMs.

In this study, the Noah model with a resolution of
1◦ is used from the period of January 2003 to April
2014. We select this model because the soil moisture
only in this model was available to columns up to 2 m
(in spite of other models that only account for three
layers up to 1 m, the data of all four columns of soil
moisture are available in this model, see also Chen et al.
2005; Frappart et al. 2011; Moiwo et al. 2012; Lenk 2013;
Chen et al. 2014).

TWS variations from the GLDAS model are
computed from the sum of soil moisture, snow water
equivalent, and total canopy water storage. We have
reached the mean annual of outputs data with averaging
from the monthly data of GLDAS. A fair compari-
son with GRACE observations requires that GLDAS
fields be also spatially filtered in a consistent way. To
accomplish this, GLDAS gridded fields were represented
in a SH expansion to a degree and order 60. Finally,
GLDAS SH representations were also filtered on a global
1◦ × 1◦ grids (Lenk 2013).

Estimation of Groundwater Variations From
Combination of GRACE and GLDAS

As was stated, TWS in GRACE consists of ground-
water, snow, soil moisture, and total canopy water
storage. The GLDAS can model all of these components
except groundwater. So, coefficients which are relevant
to groundwater can be acquired if we subtract the output
parameters of the GLDAS model from the GRACE
coefficients which derive TWS in other way, therefore we
have (Moiwo et al. 2012; Jin and Feng 2013; Lenk 2013):

�GW = �TWS − (�SM + �SWE + �TCW) (8)

where �GW is related to groundwater variations, TWS
is related to GRACE, and �SM, �SWE, �TCW are soil
moisture, snow water equivalent, and total canopy water
related to the GLDAS model.

Data of Pisometric Wells
Urmia Lake is in Northwest of Iran and located

between two provinces: East Azerbaijan and West Azer-
baijan and between 37

◦
5′ to 38

◦
16′ north and 45

◦
01′ to

46
◦

east. This lake is the largest inner lake in Iran and the
second largest salt water lake in the world (Hassanzadeh
et al. 2011). It extends as much as 140 km from North to
South and is as wide as 85 km East to West during high
water periods. In the last decade, the intensive develop-
ments of agriculture, over-exploitation of groundwater,
and construction of dams have all deprived the lake of one
of its main water input resources. In this study, data from
pisometric wells distributed around Urmia Lake from
2003 to 2012 are used in order to validate our results.
The distribution of 20 groundwater wells near Urmia
Lake indicated by a triangle shape is shown in Figure 4.
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Figure 4. Location of 20 groundwater monitoring wells,
indicated by triangle shapes.
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Currently, groundwater level data from the wells are not
available for all of Urmia Lake. Only limited groundwater
level data are available in the east and north of it.

In order to evaluate the groundwater variation using
wells data, the monthly and annual water levels are
converted to equivalent water layer thickness for every
well using a unique yield coefficient that is a ratio between
0 and 1 and indicates the amount of water released due to
drainage from lowering the water level in an unconfined
aquifer (Johnson 1967). The unique yield for this region
was found to be 0.05 (the accurate unique yield was not
available for this region). Therefore we have:

�GW∗ = �H × SY (9)

where �H is water level variations determined by
measurements of well, SY is the unique yield, and
�GW* is the groundwater variations determined by wells
observations.

Numerical Results
Having discussed the general method for estimation

of groundwater storage variations, in this section, as a
case study, we evaluate the groundwater storage variations
in Iran within the period of 2003 to April 2014. As
mentioned in section 1, due to stripping errors in the
GRACE data, two methodologies based on wavelet
analysis and Gaussian filtering are applied to refine the
GRACE data. To select the best scale function for our
wavelet analysis, a comparative analysis is conducted
in which the mean root mean square error (RMSE) of
the groundwater storage variations between wavelet and
observation wells is computed at a square grid over all
available years for various scales (see Table 1). These
values represent that RMSE increases as wavelet scale
j becomes larger, and the most precise results are due
to j = 2, and therefore we select this scale function for
wavelet analysis.

Figures 5, 6, 7, and 8 show the point-wise ground-
water storage variations in the beginning (between 2003
and 2004) and ending (between 2013 and April 2014)
of the selected period calculated by Equation 8. As
shown, groundwater storage variations in the selected
periods based on wavelet analysis are more homogeneous
than the filtering approach. The groundwater variations
obtained by wavelet analysis within these yearly time

Table 1
The Mean RMSE Between Wavelet and

Observation Wells for Various Scales

Scale Mean RMSE (mm)

J = 2 6
J = 3 9
J = 4 11
J = 5 13

Figure 5. Groundwater storage variations related to
Equation 8 based on wavelet in 2004.

Figure 6. Groundwater storage variations related to
Equation 8 based on wavelet in 2014.

domain (2003–2004 and 2013–2014) decrease from 50
to −20 mm between 2003 and 2004 and 30 to −15 mm
between 2013 and 2014. However, with Gaussian filter-
ing approach, the corresponding results are 40 to −20 mm
and 35 to −15 mm

For a typical measure of yearly groundwater storage
variations, the average of total groundwater storage
variations throughout Iran for a period of 1 year, starting
from January 2003 and ending to April 2014, are
computed with wavelet and filtering methods which are
shown in Figure 9. As illustrated in this figure, there is an
approximate consistency between results of wavelet and
filtering in almost all periods (except three of them).

To show the groundwater storage variations of each
year with a respect to 2003, the results of this year is
compared with the following years up to April 2014.
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Figure 7. Groundwater storage variations related to
Equation 8 based on Gaussian filtering in 2004.

Figure 8. Groundwater storage variations related to
Equation 8 based on Gaussian filtering in 2014.

The time histories of groundwater storage variations
from 2003 to April 2014 are shown in Figure 10. In
this figure, the water storage in 2003 is selected as a
reference, and the groundwater variations in the other
years have been calculated with a respect to this reference.
As shown in this figure, variations increase in 2004
to 2007 and decrease in a period of 2007 to present.
Moreover, the maximum decreasing amplitude is larger
than the maximum increasing amplitude which shows
that there is a depletion in groundwater storage variations
in these years. This figure also shows the depletion of
groundwater storage from 2007 to present which is very
crucial problem in the water resources management.

We also compute the mean variations of groundwater
over a square grid with the dimensions of 2◦ in 2◦ cover
the whole of Urmia Lake with the coordinates of 37◦ to

Figure 9. The average of total yearly groundwater variations
in whole of Iran.
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Figure 10. The time histories of groundwater storage varia-
tions with a respect to 2003 as a reference year.
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Figure 11. Mean variations amplitude of groundwater by
wavelet over Urmia Lake.

39◦ in latitude and 44◦ to 46◦ in longitude. There are two
reasons for selection of this grid, one is the determination
of groundwater storage variations in Urmia Lake as an
important water resource of Iran and the other is that this
region contains some pisometric wells which can be used
for validation of our results as we are doing at the sequel.
The groundwater storage variations in this area determined
by both wavelet and filtering approaches from 2003 to
April 2014 are shown in Figures 11 and 12. By the wavelet
approach, the maximum decrease in groundwater variation
is −45 mm in 2011 and about −20 mm in 2008, 2010,
and 2013. The maximum increase in groundwater varia-
tion is about 20 mm in 2005. With the filtering approach,
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Figure 12. Mean variations amplitude of groundwater by
filtering over Urmia Lake.
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Figure 13. The time series of yearly groundwater storage
variations between wavelet, filtering, and pisometric wells.

the maximum decrease in groundwater variation is about
−40 mm in 2008 and about 15 mm in 2004 and 2010. The
amplitudes of these mean variations of groundwater over
Urmia Lake demonstrate that groundwater level in whole
of this region have decreased each year and if continue in
this way, it may lead to catastrophic environmental prob-
lems, such as decreasing in water level, loss of inhabitant
species, storm salt build up, the permeation of saltwater
into the plains near the lake, wide climate change in the
region, reduction of the fertility of agricultural land, and
disruption of the qualitative and quantitative interaction
in the groundwater of the region.

As we have stated in the preceding argument, in
order to validate the results of our analysis, we show
the accordance of their time series with pisometric wells
measurements located near the Urmia Lake. Figure 13
shows the yearly groundwater storage variations on the
selected grid using both GRACE-GLDAS and ground-
water wells level data from 2003 to 2012 (Equations 8
and 9). As shown in this Figure 13, there is a consistency
between wavelet approach and observation data of
wells. Moreover, from 2009 to 2010, well levels have a
maximum amplitude of 60 mm which is consistent neither
with Gaussian filtering nor with wavelet outputs. The
discrepancy observed in these years may be explained
by the leakage error in the GRACE observation (Baur
et al. 2009; Guo et al. 2010) or by the errors in the
groundwater storage variations introduced by the spatial

aggregation of point well measurements, as well as the
use of an average specific unique yield to calculate
groundwater storage changes. The limited amount of well
measurements, the limited spatial resolution of GRACE
data, and sparse well measurements could be mentioned
as the other sources of this discrepancy.

Also for a better check, we show the stochastic corre-
lations of wavelet and Gaussian filtering with pisometric
well measurements available nearby the Urmia Lake. In
this case, the statistical quantity, namely, a correlation
coefficient is computed which shows the degree of com-
patibility between the results of our analysis and obser-
vation data. The computed correlation coefficient between
filtering approach and groundwater level data is R2 = 0.49
while this correlation with wavelet approach is R2 = 0.70
which shows that wavelet analysis is more compatible
and has more accurate estimation of groundwater storage
variations. Also regression analysis as a simple linear
regression model used for prediction and forecasting
is computed as y = 0.9x + 16 and y = 0.78x + 14 for
wavelet and Gaussian filtering, respectively. The values
that obtained in regression model are calculated using the
least squares method.

Conclusions
In this study, groundwater storage variations have

been computed by a combination of GRACE data and
GLDAS model during January 2003 to April 2014. To
do so, groundwater storage variations are estimated by
subtracting the soil moisture, snow water equivalent,
and total canopy water storage which are the outputs
of GLDAS model, from TWS variations determined by
GRACE observations. Because of stripping errors in
the GRACE data, two methodologies based on wavelet
analysis and Gaussian filtering are applied to refine the
GRACE data. It is shown that the wavelet approach is
more consistent with in situ measurements of pisometric
wells drilled around the Urmia Lake. In comparison with
Gaussian filtering approaches, the wavelet method could
better localize the desired signal by increasing the signal-
to-noise ratio over the selected region which causes the
increase in the accuracy of estimation. Particularly, the
correlation analysis leads to correlation coefficient for
the wavelet analysis of about R2 = 0.70 and Gaussian
filtering of about R2 = 0.49. The results showed that
wavelet estimation are in good accordance with the limited
available wells groundwater data in the region.
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