
Migration from RDBMS to Column-Oriented
NoSQL: Lessons Learned and Open Problems

Ho-Jun Kim, Eun-Jeong Ko, Young-Ho Jeon, and Ki-Hoon Lee(&)

School of Computer and Information Engineering,
Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu,

Seoul 01897, Republic of Korea
kihoonlee@kw.ac.kr

Abstract. Migration from RDBMS to NoSQL has become an important topic
in a big data era. This paper provides a comprehensive study on important issues
in the migration from RDBMS to NoSQL. We discuss the challenges faced in
translating SQL queries; the effect of denormalization, secondary indexes, and
join algorithms; and open problems. We focus on a column-oriented NoSQL,
HBase, because it is widely used by many Internet enterprises such as Facebook,
Twitter, and LinkedIn. Because HBase does not support SQL, we use Apache
Phoenix as an SQL layer on top of HBase. Experimental results using TPC-H
show that column-level denormalization with atomicity significantly improves
query performance, the use of secondary indexes on foreign keys is not as
effective as in RDBMSs, and the query optimizer of Phoenix is not very
sophisticated. Important open problems are supporting complex SQL queries,
automatic index selection, and optimizing SQL queries for NoSQL.

Keywords: Migration � RDBMS � NoSQL � HBase � Phoenix �
Denormalization � Secondary index � Query optimization

1 Introduction

NoSQL databases have become a popular alternative to traditional relational databases
due to the capability of handling big data, and the demand on the migration from
RDBMS to NoSQL is growing rapidly [1]. Because NoSQL has different data and
query model comparing with RDBMS, the migration is a challenging research problem.
For example, NoSQL does not provide sufficient support for SQL queries, join oper-
ations, and ACID transactions.

This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning
(NRF-2015R 1C 1A 1A02036517).

© Springer Nature Singapore Pte Ltd. 2018
W. Lee et al. (eds.), Proceedings of the 7th International Conference
on Emerging Databases, Lecture Notes in Electrical Engineering 461,
https://doi.org/10.1007/978-981-10-6520-0_3

In this paper, we provide a comprehensive study on important issues in the
migration from RDBMS to NoSQL. We make three main contributions. First, we
investigate the challenges faced in translating SQL queries for NoSQL. Second, we
evaluate the effect of denormalization, secondary indexes, and join algorithms on query
performance of NoSQL. Third, we identify open problems and future work. We focus
on HBase because it is widely used by many Internet enterprises such as Facebook,
Twitter, and LinkedIn. Because HBase does not support SQL, we use Apache Phoenix
as an SQL layer on top of HBase.

Experimental results using TPC-H show that column-level denormalization with
atomicity significantly improves query performance, the use of secondary indexes on
foreign keys is not as effective as in RDBMSs, and the query optimizer of Phoenix is
not very sophisticated. Important open problems are supporting complex SQL queries,
automatic index selection, and optimizing SQL queries for NoSQL.

The remainder of this paper is organized as follows. Section 2 presents background
and related work. Section 3 discusses important issues in the migration from RDBMS
to column-oriented NoSQL. Section 4 presents experimental results on the issues and
open problems. Section 5 provides conclusions.

2 Background and Related Work

HBase is a column-oriented NoSQL and uses Hadoop Distributed File System (HDFS)
as underlying storage for providing data replication and fault tolerance. HBase does not
support SQL queries and secondary indexes. Apache Phoenix works as an SQL layer
for HBase by compiling SQL queries into HBase native calls and supports secondary
indexes.

Reference [1] proposed a denormalization method called CLDA that avoids join
operations and supports atomicity using the notions of column-level denormalization
and atomic aggregates. The CLDA method improves query performance with less
space compared with table-level denormalization methods [2–8], which duplicate
whole tables. For a column-oriented NoSQL, [9] proposed a column partitioning
algorithm. Reference [10] studied the implementation of secondary indexes for HBase.

3 Migration from RDBMS to Column-Oriented NoSQL

In this section, we provide a comprehensive study on important issues in the migration
from RDBMS to HBase with Phoenix. The issues are exemplified and discussed using
a case study on TPC-H.

26 H.-J. Kim et al.

3.1 Translating SQL Queries

Phoenix does not provide sufficient support for complex SQL queries with complex
predicates, subqueries, and views. To migrate such complex queries, we need to
simplify complex queries using query unnesting techniques [11–14] and temporary
tables.

For example, benchmark queries of TPC-H are very complex, and Phoenix does not
sufficiently support queries Q11, Q15, Q18, Q19, and Q21. For Q11, we unnest the
subquery in the HAVING clause because Phoenix does not support it. For Q15, we
store the result of a view into a temporary table because Phoenix supports only a view
defined over a single table using a SELECT * statement. For Q18, we unnest the
subquery with the GROUP BY and HAVING clauses because Phoenix produces
wrong results. For Q19, Phoenix does not efficiently evaluate a complex predicate of
the disjunctive normal form, which is a disjunction of multiple condition clauses. For
the query, Phoenix does not push down predicates. To efficiently evaluate the query,
we compute results for each condition clause and union the results using temporary
tables. For Q21, we unnest the subqueries because Phoenix does not support non-equi
correlated-subquery conditions.

3.2 Denormalization

Because NoSQL systems do not efficiently support join operations, we need denor-
malization, which duplicates data so that one can retrieve data from a single table
without joining multiple tables. To denormalize relational schema, we use the method
called Column-Level Denormalization with Atomicity (CLDA) [1], which is the
state-of-the-art denormalization method. Although CLDA was originally proposed for
a document-oriented NoSQL, it is general enough to be applied to other types of
NoSQL. CLDA avoids join operations without denormalizing entire tables by dupli-
cating only columns that are accessed in non-primary-foreign-key-join predicates.
CLDA also combines tables that are modified within the same transaction into a unit of
atomic updates to support atomicity.

For example, Fig. 1 shows TPC-H Q8 where non-primary-foreign-key-join predi-
cates are shaded. If we add r_name to orders and p_type to lineitem, we can
avoid “orders ⋈ customer ⋈ nation ⋈ region” and “lineitem ⋈ part.”
Table 1 shows the columns duplicated by CLDA for the 22 TPC-H queries. The name
of each column contains the names of the foreign keys. The number of duplicated
columns is small because there are common columns appearing in multiple
non-primary-foreign-key-join predicates. According to the TPC-H specifications, the
lineitem and orders tables should be modified within the same transaction. To
support transaction-like behavior, CLDA combines the lineitem and orders
tables into a single table. Thus, we can avoid “orders ⋈ lineitem” with atomicity.

Migration from RDBMS to Column-Oriented NoSQL 27

Fig. 1. TPC-H Q8.

Table 1. Columns duplicated by the CLDA method for the 22 TPC-H queries.

Table Duplicated columns

supplier s_nationkey_n_name

partsupp ps_partkey_p_brand
ps_partkey_p_type
ps_partkey_p_size
ps_suppkey_s_nationkey_n_name
ps_suppkey_s_nationkey_n_regoinkey_r_name

orders o_custkey_c_nationkey
o_custkey_c_mktsegment
o_custkey_c_nationkey_n_name
o_custkey_c_nationkey_n_regoinkey_r_name

lineitem l_partkey_p_name
l_partkey_p_brand
l_partkey_p_type
l_partkey_p_size
l_partkey_p_container
l_suppkey_s_nationkey
l_suppkey_s_nationkey_n_name

28 H.-J. Kim et al.

3.3 Secondary Indexes

Phoenix offers a secondary index on top of HBase using an index table, which consists
of index columns and the primary key of the indexed data table. The query optimizer of
Phoenix internally rewrites the query to use the index table if it is estimated to be
beneficial. If the index table does not contain all the columns referenced in the query,
Phoenix accesses the data table to retrieve the columns not in the index table. Phoenix
also offers a covered index, which is an index that contains all the columns referenced
in the query. Using a covered index, we can avoid the costly access to the data table,
but the overhead of data synchronization and space consumption increase.

3.4 Join Algorithms

Phoenix supports a sort-merge join and a broadcast hash join. The broadcast hash join
first computes the result for the expression at the right-hand side of a join condition and
then broadcasts the result onto all the cluster nodes; each cluster node has a partition of
the table at the left-hand side and computes the join locally. When both sides of the join
are bigger than the available memory size, the sort-merge join should be used. Currently,
the query optimizer of Phoenix does not make this determination by itself. We can force
the optimizer to use a sort-merge join by using the USE_SORT_MERGE_JOIN hint.

4 Experimental Evaluation

4.1 Experimental Setup

For the migration from RDBMS to HBase with Phoenix, we evaluate the effect of
denormalization, secondary indexes, and join algorithms on query performance. Using
the TPC-H benchmark with scale factors (SFs) 1 and 10, we measure the average query
execution time for the TPC-H queries. For each query, we first run the query once to
warm up the cache and then measure the average execution time for two subsequent runs.

We use HBase 0.9.22, Phoenix 4.8.1, and MySQL 5.7.18. All experiments were
conducted on a cluster of four PCs with an Intel Core i5-6600 CPU, 16 GB of memory,
Samsung 850 PRO256 GBSSDs, andUbuntu 16.04.We set the JVMmemory to 12 GB.
One PC is a master, and the other three PCs are slaves. For MySQL, we use only one PC.

We conduct the following experiments.

Experiment 1: The effect of denormalization
To see the effect of denormalization, we compare query performance for the denor-
malized schema generated by the CLDA method and for the normalized schema, which
has a one-to-one correspondence with the relational schema. We also compare database
size. We use secondary indexes on foreign keys and the USE_SORT_MERGE_JOIN
hint for all the queries.

Experiment 2: The effect of secondary indexes on foreign keys
To see the effect of secondary indexes on foreign keys, we compare query performance
for databases with and without secondary indexes on foreign keys. We use the nor-
malized schema and the USE_SORT_MERGE_JOIN hint for all the queries. We also
run the same test for MySQL to see the effect of secondary indexes on RDBMS.

Migration from RDBMS to Column-Oriented NoSQL 29

Experiment 3: The effect of join algorithms
To see the effect of join algorithms, we compare query performance with and without
the USE_SORT_MERGE_JOIN hint. We exclude queries that are failed due to
out-of-memory errors if the USE_SORT_MERGE_JOIN hint is not used. We use
foreign key indexes and the normalized schema.

4.2 Experimental Results

Experiment 1: The effect of denormalization
Figure 2 shows that the CLDA method significantly improves query performance at the
expense of using more space compared with the normalization method that uses the

(a) Query performance with/without CLDA

(b) Database size with/without CLDA

Fig. 2. The effect of column-level denormalization with atomicity

30 H.-J. Kim et al.

relational schema as it is. This is because the CLDA method reduces the number of
joins by duplicating columns. For SF 1, the CLDA method is 2.7 times faster, but uses
2.0 times more space. For SF 10, the CLDA method is 2.7 times faster, but uses 2.3
times more space. We note that, for SF 10, queries Q2, Q7, Q8, Q9, Q17, and Q21
failed for the normalization method; queries Q9, Q13, Q17, Q18, and Q21 failed for the
CLDA method. Queries Q2, Q7, Q8, Q9, Q13, and Q18 failed due to out-of-memory
errors; queries Q17 and Q21 failed due to HRegionServer failures. We exclude the
failed queries.

Experiment 2: The effect of secondary indexes on foreign keys
For MySQL, secondary indexes on foreign keys are very effective. Without secondary
indexes, 73% of queries (16 queries) takes more than one hour, and the average query
execution time of the other 27% (6 queries) is 5.4 s even for SF 1. With secondary
indexes, the average query execution time of all queries is 0.2 s for SF 1. Figure 3
shows that for HBase with Phoenix, the average query execution times with and
without secondary indexes are almost the same for both SFs 1 and 10. For SF 10, we
exclude the failed queries.

Experiment 3: The effect of join algorithms
The broadcast hash join incurs out-of-memory errors for 27% of queries (6 queries) for
SF 1 and 59% of queries (13 queries) for SF 10. For the other queries without any
errors, the broadcast hash join improves the average query execution time by 2.0 times
for both SFs 1 and 10 compared with the sort-merge join as shown in Fig. 4.

Fig. 3. Query performance with/without secondary indexes on foreign keys

Migration from RDBMS to Column-Oriented NoSQL 31

4.3 Discussion

Column-level denormalization with atomicity proposed for a document-oriented
NoSQL is also effective for a column-oriented NoSQL. Because the secondary index is
implemented outside HBase, it is not as efficient as in RDBMSs. We should use
covered indexes for performance. Because the query optimizer of Phoenix does not
consider the case where the broadcast hash join incurs out-of-memory errors, we often
need to manually specify to use the sort-merge join. For a large database, many queries
are failed due to out-of-memory errors or HRegionServer failures.

5 Conclusions

We summarized the challenges faced, lessons learned, and open problems for the
migration from RDBMS to HBase with Phoenix. We addressed important issues of
query translation, denormalization, secondary indexes, and join processing. Extensive
experiments show that column-level denormalization with atomicity improves query
performance by up to 2.7 times, the use of secondary indexes on foreign keys is not as
effective as in RDBMSs, and the query optimizer of Phoenix is not very sophisticated.
Important open problems for future work are supporting complex SQL queries, auto-
matic index selection, and optimizing SQL queries for NoSQL.

References

1. Yoo, J., Lee, K.-H., Jeon, Y.-H.: Migration from RDBMS to NoSQL using column-level
denormalization and atomic aggregates. J. Inf. Sci. Eng. 34(1) (2018 to appear). http://
journal.iis.sinica.edu.tw/paper/1/160464-2.pdf?cd=EF95C1D50DCDC958E

2. Karnitis, G., Arnicans, G.: Migration of relational database to document-oriented database:
structure denormalization and data transformation. In: CICSyN, pp. 113–118 (2015)

Fig. 4. Query performance with/without the USE_SORT_MERGE_JOIN hint

32 H.-J. Kim et al.

http://journal.iis.sinica.edu.tw/paper/1/160464-2.pdf%3fcd%3dEF95C1D50DCDC958E
http://journal.iis.sinica.edu.tw/paper/1/160464-2.pdf%3fcd%3dEF95C1D50DCDC958E

3. Zhao, G., Lin, Q., Li, L., Li, Z.: Schema conversion model of SQL database to NoSQL. In:
3PGCIC, pp. 355–362 (2014)

4. Lee, C.-H., Zheng, Y.-L.: Automatic SQL-to-NoSQL schema transformation over the
MySQL and HBase databases. In: IEEE ICCE-TW, pp. 426–427 (2015)

5. Zhao, G., Li, L., Li, Z., Lin, Q.: Multiple nested schema of HBase for migration from SQL.
In: 3PGCIC, pp. 338–343 (2014)

6. Lee, C.-H., Zheng, Y.-L.: SQL-to-NoSQL schema denormalization and migration: a study
on content management systems. In: IEEE SMC, pp. 2022–2026 (2015)

7. Vajk, T., Feher, P., Fekete, K., Charaf, H.: Denormalizing data into schema-free databases.
In: IEEE CogInfoCom, pp. 747–752 (2013)

8. Vajk, T., Deak, L., Fekete, K., Mezei, G.: Automatic NoSQL schema development: a case
study. In: PDCN, pp. 656–663 (2013)

9. Ho, L.-Y., Hsieh, M.-J., Wu, J.-J., Liu, P.: Data partition optimization for column-family
NoSQL databases. In: IEEE Smart City, pp. 668–675 (2015)

10. Ge, W., Huang, Y., Zhao, D., Luo, S., Yuan, C., Zhou, W., Tang, Y., Zhou, J.: A secondary
index with hotscore caching policy on key-value data store. In: ADMA 2014. LNCS, vol.
8933, pp. 602–615 (2014)

11. Lee, K.-H., Park, Y.-H.: Revisiting source-level XQuery normalization. IEICE Trans. Inf.
Syst. E94-D(3), 622–631 (2011)

12. Lee, K.-H., Kim, S.-Y., Whang, E., Lee, J.-G.: A practitioner’s approach to normalizing
XQuery expressions. In: DASFAA 2006. LNCS, vol. 3882, pp. 437–453 (2006)

13. Kim, W.: On optimizing an SQL-like nested query. ACM Trans. Database Syst. 7(3), 443–
469 (1982)

14. Ganski, R., Wong, H.: Optimization of nested SQL queries revisited. In: ACM SIGMOD,
pp. 23–33 (1987)

Migration from RDBMS to Column-Oriented NoSQL 33

	Migration from RDBMS to Column-Oriented NoSQL: Lessons Learned and Open Problems
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Migration from RDBMS to Column-Oriented NoSQL
	3.1 Translating SQL Queries
	3.2 Denormalization
	3.3 Secondary Indexes
	3.4 Join Algorithms

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Discussion

	5 Conclusions
	References

