
Accepted Manuscript

Reconfigurable FPGA implementation of neural networks

Zbigniew Hajduk

PII: S0925-2312(18)30539-3
DOI: 10.1016/j.neucom.2018.04.077
Reference: NEUCOM 19558

To appear in: Neurocomputing

Received date: 9 October 2017
Revised date: 16 March 2018
Accepted date: 30 April 2018

Please cite this article as: Zbigniew Hajduk , Reconfigurable FPGA implementation of neural networks,
Neurocomputing (2018), doi: 10.1016/j.neucom.2018.04.077

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.neucom.2018.04.077
https://doi.org/10.1016/j.neucom.2018.04.077

ACCEPTED MANUSCRIPT

Reconfigurable FPGA implementation of neural networks

Zbigniew Hajduk
*
 zhajduk@kia.prz.edu.pl

Rzeszów University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.

Corresponding author. *

 Abstract

This brief paper presents two implementations of feed-forward artificial neural networks in FPGAs. The

implementations differ in the FPGA resources requirement and calculations speed. Both implementations

exercise floating point arithmetic, apply very high accuracy activation function realization, and enable easy

alteration of the neural network's structure without the need of a re-implementation of the entire FPGA

project.

Keywords

FPGA; Neural networks

1. Introduction

Most of the existing artificial neural networks (ANNs) applications, particularly for commercial

environment, are developed as software. Yet, the parallelism offered by hardware may deliver some

advantages such as higher speed, reduced cost, and higher tolerance of faults (graceful degradation) [1, 2].

Among various developed methods of ANNs implementations in field programmable gate arrays (FPGAs),

e.g., [3 - 6], there is a breed of implementation which allows the structure of the ANN (i.e., the number of

layers and/or neurons, etc.) to be altered without the need of re-synthesizing and re-implementation of the

whole FPGA project. This feature increases the ANNs implementation flexibility to the similar level as

offered by software, at the same time maintaining the advantages delivered by hardware. Unfortunately,

existing solutions, e.g., [7 - 9], are based on fixed point arithmetic, have strongly limited calculations

accuracy of the activation function, and require dedicated software tools for the formulation of a set of user

instructions controlling the ANN calculations in the developed hardware. Some of them [9, 10] do not

employ parallel architecture exploiting only a single neuron block for the calculations of the whole ANN. In

ACCEPTED MANUSCRIPT

the case of [10] floating point (FP) arithmetic is used and a relatively high accuracy of the activation

function is achieved, however the feasibility of the alteration of the ANN structure without

reimplementation of the whole project is heavily compromised.

In this brief paper the FPGA implementations of feed forward ANNs, namely the resource-saving and

parallel, are presented. The resource-saving implementation characterizes considerably lower calculations

speed than the parallel one, but requires remarkably lower number of FPGA resources. Both

implementations employ single precision floating point arithmetic and apply a very high accuracy algorithm

for the activation function calculation with the Padé approximation of the exponential function. This enables

the direct exploitations of the ANN's weights and biases values calculated off-line, e.g., by the Matlab

software. The important feature of the proposed implementations is that the structure of the ANN can easily

be changed (even on-line during the system operation) by the replacement of the FPGA Block RAM

memory content without the usage of FPGA synthesis tools. The aforementioned traits of the developed

implementations make them a solid and versatile candidate for a hardware accelerator of ANNs

calculations. Particularly, the Padé approximation of the exponential function as well as the usage of the

block RAM memory for the ANN's structure definition also constitute a novelty of the proposed solution.

2. Resources-saving implementation

The resource-saving implementation employs only one or two pairs of the floating point (FP) multiplier-

adder blocks (actually, two versions of this implementation have been considered - the usage of two pairs of

FP blocks shortens overall calculations time but simultaneously increases the FPGA resources requirement).

It calculates the result in a serial manner - neuron by neuron and layer by layer. However, as many FP

operations are performed simultaneously as possible, e.g., for the version with two FP multiplier-adder

pairs, two additions and two multiplications can be accomplished at the same time.

The architecture of the resource-saving implementation with the single pair of the FP multiplier-adder

blocks is presented in Fig. 1. The bold lines denote multi-bit buses. The architecture is comprised of the FP

ACCEPTED MANUSCRIPT

adder (FPADD), multiplier (FPMUL) and divider (FPDIV), ROM memory block for the storage of certain

values of the exponential function, distributed RAM block for the storage of the intermediate calculations

results, Block RAM memory containing the weights and biases as well as the description of the ANN's

structure, input multiplexer for the selection of the ANN's inputs X0,...,XK-1, output D flip-flops (FD0,...,

FDK-1) for the storage of the ANN's output values Y0,...,YK-1, and the control unit (CU). The ND external

signal activates the calculations, whereas the output RDY signal indicates the readiness of the calculations

result. Each of the FP blocks has three data buses dubbed xA (the first operand), xB (the second operand),

xY (the operation result), and two control signals named xND (activation of the operation) and xRDY

(readiness of the operation result), where here the x prefix denotes the type of the operation (ADD, MUL,

DIV). The AOP signal for the FPADD block determines whether the addition (AOP=0) or subtraction

(AOP=1) operation is performed. The Block RAM memory block as well as the distributed ROM block

have only two buses, namely the address bus (BADR and ROMADR for the former and latter

aforementioned blocks, respectively) and output data bus (BDO, ROMDO). The distributed RAM has two

separate ports: the first one for the synchronous write operation and the second one for the asynchronous

read operation. For both ports, the address buses (WRADR, RDADR) consist of the concatenation of the

SEL signal or its negation (the MSB bit of the buses) and the DADR or MS signals (the LSB bits of the

buses). The DDI is the data input, whereas the DDO bus denotes the data output. The DWE signal enables

the write operation.

FPADD

A
D

D
R

D
Y

A
D

D
Y

A
D

D
B

A
D

D
A

A
D

D
N

D

A
O

P

FPMUL

M
U

L
R

D
Y

M
U

L
Y

M
U

L
B

M
U

L
A

M
U

L
N

D

FPDIV

D
IV

N
D

D
IV

A

D
IV

Y

D
IV

R
D

Y

D
IV

B

ND

RDY
BLOCK RAM

DISTRIBUTED

RAM

DISTRIBUTED

ROM

B
A

D
R

B
D

O

R
O

M
A

D
R

R
O

M
D

O

D Q

CE

D Q

CE

D Q

CE

...

Y0

Y1

YK-1

E
X

T
B

U
S

CE 0

CE 1

CEK-1

FD0

FD1

FD K-1

...

X0

X1

XK-1

CONTROL UNIT

MS

D
A

D
R

S
E

L

D
D

O

D
W

E

D
D

I

~
S

E
L

M
S

[WRADR] [RDADR]

Fig. 1. Architecture of the resources-saving implementation

ACCEPTED MANUSCRIPT

Detailed algorithmic state machine (ASM) diagram, describing the CU operations, is presented in Fig. 2.

The signals' names denoted using capital letters relate to external signals and buses showed in Fig. 1,

whereas non-capital letters are exploited to mark the internal variables (registers).

RDY ß 0

BADR ß 0

S0

ND

BADR=0

fs

BADR ß 1

fs ß 0

1

fs ß 1

1

1

0

0

ln ß BDO[11:0]

0

BADR ß BADR+1

cl ß 1

SEL ß 0

S1

BADR ß BADR+1

DADR ß 0

t ß BDO[25:24]

cm ß BDO[23:12]

m ß BDO[23:12]

n ß BDO[11:0]

MS ß 0

S2

AOP ß 0

n ß n – 1

cm ß cm – 1

DWE ß 0

ADDA ß BDO

fsc ß 0

DWE

DADR ß DADR+1

1

S3
DWE ß 0

fsc ß 1

MS ß MS + 1

cm ß cm – 1

MULA ß BDO

MULND ß 1

ADDND ß 1

mm ß 0

ma ß 0

cl=1

MULB ß EIN

MULB ß DDO

0

S4
1

0

fsc

ADDB ß 0

0

1

cm≠0

DADR ß DADR+1

1

0

SUB1

S5

0

1
cm≠0

S4

S6

t=0
0

1

x ß ADDY

DWE ß 1

DDI ß ADDY

MS ß 0

cm ß m

n≠0 BADR ß BADR+1
1

S3
0

DWE ß 0

S7

cl=ln
1

RDY ß1
S0

BADR ß BADR+1

cl ß cl + 1

SEL ß ~SEL

0

S2

S8

t=1

1

MULA ß x

MULB ß -2.0

MULND ß1

S9

MULND ß 0

MULRDY
01

k ß x[30:23] -127

 w ß x

0

w ß MULY

k ß MULY[30:23] -127

S10

k[8]

MULA ß w

MULB ß 840

MULND ß 1

AOP ß 0

f ß w

me ß 0

1

k=0

1

k=1
1

k=2
1

p ß {w[31],‘0001’,w[22]}

ADDB ß {‘0’,w[30:22],’0...0'}

0

0

S11

0

k=4
p ß {w[31],‘1’,w[22:19]}

ADDB ß {‘0’,w[30:19],’0...0'}
0

1 p ß {w[31],‘00001’}

ADDB ß {‘0’,w[30:22],’0...0'}

1

0

k=3
p ß {w[31],‘01’,w[22:20]}

ADDB ß {‘0’,w[30:20],’0...0'}

p ß {w[31],‘001’,w[22:21]}

ADDB ß {‘0’,w[30:21],’0...0'}

10
w[22:20]≠’000'

w[31]DDI ß 1.0

t=2

1

0

1

0

DDI ß -1.0

DDI ß 0

DWE ß 1

MS ß 0

cm ß m

S12

n≠0

1

BADR ß BADR+1

S7
0

S3

S14

MULND ß 0

MULRDY
0 1

ADDA ß 1680

ADDB ß MULY

AOP ß 1

MULA ß f

MULB ß f

MULND ß1

ADDND ß1

ma ß0

mm ß0

S13

ADDND ß 0

ADDRDY
0

1

AOP ß 1

ADDA ß {‘0’,w[30:0]}

ADDND ß 1

MULBß 840

f ß{w[31],ADDY[30:0]}

MULA ß{w[31],ADDY[30:0]}

MULND ß 1

ROMADR ß p

me ß 1

SUB1

S15 tmp1 ß ADDY

tmp2 ß MULY

AOP ß 0

MULA ß 180

MULB ß MULY

MULND ß1

ADDND ß1

ma ß0

mm ß0

SUB1

S16
tmp3 ß ADDY

ADDA ß tmp1

ADDB ß MULY

AOP ß 0

MULA ß tmp2

MULB ß f

MULND ß1

ADDND ß1

ma ß0

mm ß0

S14

SUB1

S17

tmp1 ß ADDY

tmp2 ß MULY

AOP ß 0

ADDA ß tmp3

MULA ß 20

MULB ß MULY

MULND ß1

ADDND ß1

ma ß0

mm ß0

SUB1

S18

tmp3 ß ADDY

AOP ß 1

ADDA ß tmp1

ADDB ß MULY

MULA ß tmp2

MULB ß f

MULND ß1

ADDND ß1

ma ß0

mm ß0

tmp3 ß ADDY

AOP ß 0

ADDA ß ADDY

ADDB ß tmp2

ADDND ß1

S20

ADDND ß 0

ADDRDY
1 0

S21

ADDND ß 0

ADDRDY
0 1

tmp3 ß ADDY

AOP ß 0

ADDA ß tmp1

ADDB ß tmp2

ADDND ß1

S22

ADDND ß 0

ADDRDY
1 0

S19
SUB1

tmp1 ß ADDY

tmp2 ß MULY

AOP ß 0

ADDA ß tmp3

ADDND ß1

DIVA ß ADDY

DIVB ß tmp3

DIVND ß1

ADDA ß MULY

ADDB ß ADDY

S23

DIVRDY
0

1

DIVND ß 0

MULA ß DIVY

MULB ß ROMDO

MULND ß1

me

0

1

AOP ß 0

ADDA ß 1.0

ADDB ß DIVY

ADDND ß1

tmp1 ß DIVY

S24

MULRDY
0

MULND ß 0

AOP ß 0

ADDA ß 1.0

ADDB ß MULY

ADDND ß1

tmp1 ß MULY

1

S25

ADDND ß 0

ADDRDY

1

0

t=1
0

1

DIVA ß 1.0

DIVB ß ADDY

DIVND ß1

DIVB ß ADDY

ADDA ß tmp1

ADDB ß 1.0

AOP ß 1

S26

ADDRDY
0

ADDND ß 0

DIVA ß ADDY

DIVND ß1

S27

DIVND ß 0

DIVRDY

1

0

DWE ß 1

DDI ß DIVY

MS ß 0

cm ß m

n≠0 BADR ß BADR+1
1

S7

S3

0

MULRDY
1

0

ADDRDY

0

ma ß 1
1

MULND ß0

ADDND ß0

mm ß 1

(MULRDY | mm) &

ADDRDY | ma)

0

1

S0_1

10
cl=ln & DWE

EXTBUS ß DDI

DADR=0
1

CE ß 1

0

DADR=1
1

CE ß 1

1

DADR=K-1
1

CE ß 1

...

K-1

0

0

CE ß 0

CE ß 0

CE ß 0

0

K-1

...

1

a)

b) c)

Fig. 2. The ASM for the control unit (a), structure of the SUB1 block (b) and sub-ASM for the output flip-flops (c)

ACCEPTED MANUSCRIPT

The diagram applies syntax elements similar to those used in the Verilog hardware description language,

particularly the bit-select, part-select and concatenation operators. The empty rectangular boxes (i.e., S8 and

S11) indicate that no unconditional operations are performed in the current state. States S1-S7 of the ASM

from Fig. 2a are responsible for the subsequent neurons and the ANN's layers calculations, whereas states

S8-S27 deal with the activation function calculations. Three types of activation functions are supported,

namely the hyperbolic tangent, sigmoid and linear.

The realization of a neuron's non-linear activation function constitutes a pivotal element of any FPGA

implementation of ANNs. A number of solutions for this issue have been proposed, e.g., [4, 11, 12].

Unfortunately, they are usually focused on a mathematical modeling of the activation function providing too

little details for a tangible digital reimplementation. The realization method of the activation functions,

applied by the ASM from Fig. 2a, is based on the idea shortly described in [13]. However, instead of the

McLaurin series interpolation of the exponential function, presented in detail in [13], the Padé

approximation has been applied. This enables a shorter calculations time with only a slightly lower

accuracy. The Padé approximation is only valid for a fractional part of the exponential function's argument;

therefore in states S10-S13 of the ASM from Fig. 2a, the integer and fractional part (the p and f variables

respectively) are determined. A binary representation of single precision FP numbers is heavily exploited

for the determination of the integer part, whereas the fractional part is computed by a subtraction of the

absolute values of the original exponential function's argument and the FP representation of the integer part.

The exponential function value for the fractional part, approximated by the Padé rational function given by

equation (1), is then calculated in states S14-S23.

.
201808401680

201808401680
432

432

xxxx

xxxx
e x

 (1)

The exponential function values for the integer part of the function's argument are stored in the distributed

ROM memory (actually, 18 values are stored) and, if necessary, a certain value is multiplied by the result of

the calculation of equation (1). This happens in state S24. The remaining states (S25-S27) concludes the

activation function calculations taking into consideration the actual function's type (hyperbolic tangent or

ACCEPTED MANUSCRIPT

sigmoid). The conducted experiments show that, for the hyperbolic tangent function, the maximum absolute

error, calculated according to the proposed method for 1E6 points equally spaced within the [-10, 10]

interval, amounts to 2.384E-7 (which is a rather very high accuracy as the short survey form [13] reveals). It

is of note that the increase of the Padé approximation order beyond the value from equation (1) as well as

the increase of the number of values stored in the distributed ROM memory does not lead to the increase of

the calculations accuracy of the activation function. It is also of note that the accuracy of the activation

function calculations has an essential impact on the overall calculations accuracy of an ANN.

The actual structure of the ANN can be defined by a certain layout of the Block RAM memory content. The

layout used by both considered implementations is depicted in Fig. 3. The Block RAM memory arranges a

number of 32-bit words. The first word (at the 0000h address) contains the number of ANN's layers (L) and

then follows the data of subsequent layers. Each data layer, in turn, consists of the layer information word

(LIW) and the subsequent weights and biases for all neurons in the layer. The layer information word

includes the number of neurons in the layer (N), number of weights/inputs of the single neuron (M), and the

activation function type (T).

L

0111223

NMT

31 26

bias

w0

wM-1

Layer 1

Neuron 0 data

LIW for Layer 1

w0

wM-1

Layer 1

Neuron N-1 data

bias

bias

w0

wM-1

w0

bias

NMT

wM-1

...
...

...
...

...
...

...

LIW for Layer L

Layer L

Neuron 0 data

Layer L

Neuron N-1 data

Fig. 3. Layout of the RAM memory content defining the ANN's structure

ACCEPTED MANUSCRIPT

3. Parallel implementation

Contrary to the resource-saving implementation the parallel implementation arranges simultaneous

calculations of all neurons within a single ANN's layer. The pivotal component of the implementation is the

neuron block whose general architecture (for the version with two pairs of FP multiplier-adder blocks) is

presented in Fig. 4. The neuron block calculates the neuron's output value (Y) taking into account the

neuron's inputs (i0,...,iM-1), weights (w0,...,wM-1), bias input, and auxiliary (aux) information which include

the activation function type and number of currently used inputs/weights. The ND and RDY signals, as well

as signals connecting the FP blocks and distributed ROM block with the control unit, perform the same

function as for the architecture from Fig. 1.

FPADD

A
D

D
Y

A
D

D
B

A
D

D
A

A
D

D
N

D

A
O

P

FPMUL
M

U
L

Y

M
U

L
B

M
U

L
A

M
U

L
N

D

FPDIV

D
IV

N
D

D
IV

A

D
IV

Y

D
IV

B

DISTRIBUTED

ROM

R
O

M
A

D
R

R
O

M
D

O

CONTROL UNIT

FPADD2

A
D

D
Y

2

A
D

D
B

2

A
D

D
A

2

A
D

D
N

D
2

A
O

P
2

FPMUL2

M
U

L
Y

2

M
U

L
B

2

M
U

L
A

2

M
U

L
N

D
2

...

i 0i 2i M-2

...

w0w2wM-2

...

i 1 i 3 i M-1

...

w1 w3 wM-1

M
1

A

M
1

B

M
1

S

M
2

A

M
2

B

M
2

S

Y

RDY

aux

ND

bias

Fig. 4. Architecture of the neuron block for the parallel implementation

ACCEPTED MANUSCRIPT

RDY ß 0

M1S ß 0

S0

ND

1

0

n[0]

1

nm ß n>>1

nm ß (n>>1)-1

0

AOP ß 0

AOP2 ß 0

ADDA ß bias

MULA ß M1A

MULB ß M1B

MULND ß 1

M1S ß 1

ni ß 2

S1

WAIT

S2

ADDB ß MULY

ADDA2 ß 0

ADDB2 ß 0

M2S ß M1S

M1S ß M1S + 1

n2i ß 2

ls ß 0

ADND ß 1

ADND2 ß 1

ni < n

MULA ß M2A

MULB ß M2B

MULND ß 1

MULND2 ß1

1

n[0] & nm=1

MULA2 ß M1A

MULB2 ß M1B

0

MULA2 ß 0

MULB2 ß 0

S3

S4

n=2 | ls

t≠0

x ß ADDY

1
S5

0

Y ß ADDY

RDY ß 1

S0

1

0

ADDA ß ADDY

ADDB ß ADDY2

ADDA2 ß MULY

ADDB2 ß MULY2

M2S ß M1S

M1S ß M1S + 1

n2i ß n2i + 1

ni ß ni + 2

ADND ß 1

ADND2 ß 1

ni < n

1

MULND ß 1

MULND2 ß 1

ls ß 1

n2i ≤ nm

1

MULA ß M2A

MULB ß M2B

n[0]&n2i=nm

1

MULA2 ß M1A

MULB2 ß M1B

MULA2 ß 0

MULB2 ß 0

0

MULA ß 0

MULB ß 0

MULA2 ß 0

MULB2 ß 0

0

0

n ß aux[7:0]

t ß aux[9:8]

1

0

S5

t=1

1

MULA ß x

MULB ß -2.0

MULND ß1

k ß x[30:23] -127

0

w ß MULY

k ß MULY[30:23] -127

S7

k[8]
1

k=0

1

k=1
1

k=2
1

p ß {w[31],‘0001’,w[22]}

ADDB ß {‘0’,w[30:22],’0...0'}

0

0

S8

0

k=4
p ß {w[31],‘1’,w[22:19]}

ADDB ß {‘0’,w[30:19],’0...0'}
0

1 p ß {w[31],‘00001’}

ADDB ß {‘0’,w[30:22],’0...0'}

1

0

k=3
p ß {w[31],‘01’,w[22:20]}

ADDB ß {‘0’,w[30:20],’0...0'}

p ß {w[31],‘001’,w[22:21]}

ADDB ß {‘0’,w[30:21],’0...0'}

10
w[22:20]≠’000'

WAIT

WAIT

S6

MULBß 840

MULA ß w

MULA2 ß{w[31],ADDY[30:0]}

MULB2 ß{w[31],ADDY[30:0]}

f ß w

MULNDß 1

MULND2 ß 1

me ß 1

0

w[31]

t=2

0

1

1

Y ß 1.0

RDY ß 1

Y ß -1.0

RDY ß 1

Y ß 0

RDY ß 1

AOP ß 1

ADDA ß {‘0’,w[30:0]}

ADDND ß 1

WAIT

S9

MULBß 840

MULA ß{w[31],ADDY[30:0]}

MULB2 ß{w[31],ADDY[30:0]}

MULA2 ß{w[31],ADDY[30:0]}

f ß{w[31],ADDY[30:0]}

MULNDß 1

MULND2 ß 1

me ß 1

0

S0

S0

S0

WAIT

S10

ADDB ß MULY

ADDB2 ß MULY

MULA ß 180

MULB ß MULY2

MULA2 ß MULY2

MULND ß1

MULND2 ß1

WAIT

S13

AOPß 1

AOP2ß 0

ADDA ß MULY

ADDA2 ß MULY

MULA ß 20

MULB ß MULY2

MULA2 ß MULY2

MULND ß1

MULND2 ß1

ADDND ß1

ADDND2 ß1

WAIT

S12

AOP ß 1

AOP2 ß 0

ADDA ß ADDY

ADDB ß MULY

ADDA2 ß ADDY2

ADDB2 ß MULY

ADDND ß1

ADDND2 ß1

AOPß 0

AOP2ß 0

ADDA ß ADDY

ADDB ß MULY2

ADDA2 ß ADDY2

ADDB2 ß MULY2

ADDND ß1

ADDND2 ß1

ADDA ß ADDY

ADDB ß 1680

ADDA2 ß ADDY2

ADDB2 ß 1680

ADDND ß1

ADDND2 ß1

WAIT

S14
WAIT

S15
WAIT

S16
WAIT2

me
0

1

MULB ß ADDY

MULA ß ROMDO

MULND ß 1

ADDA ß 1.0

ADDB ß DIVY

ADDND ß 1

ADDA2 ß DIVY

ADDB2 ß 1.0

ADDND2 ß 1

AOP ß 0

AOP2 ß 1

S17
WAIT

S18
WAIT

t=2

0

1

DIVA ß 1.0

DIVB ß ADDY

DIVND ß1

DIVA ß ADDY2

DIVB ß ADDY

DIVND ß1

S19
WAIT2

Y ß DIVY

RDY ß1

S0

ROMADR ß p

DIVA ß ADDY

DIVB ß ADDY2

DIVND ß1

ADDA ß 1.0

ADDB ß DIVY

ADDND ß 1

ADDA2 ß DIVY

ADDB2 ß 1.0

ADDND2 ß 1

AOP ß 0

AOP2 ß 1

S11

 w ß x

Fig. 5. The ASM for the control unit from Fig. 4

ACCEPTED MANUSCRIPT

ND

auxD Q

CE

Y

RDY

D Q

CE

D Q

CE

D Q

CE

D Q

CE

...

i 0

i 1

i M-2

...

w0

w1

w M-1

...

bias

...

10

32

32

32

32

NEURON 0

D
E

C
O

D
E

R

32

D Q

CE

D Q

CE

i M-1

...

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

...

...

...

FD
0
0

FD
0
M-1

FD
0
M

FD
0
2M-1

FD
0
2M+1

FD
0
2M

ND

auxD Q

CE

Y

RDY

D Q

CE

D Q

CE

D Q

CE

D Q

CE

...

i 0

i 1

i M-2

...

w0

w1

w M-1

...

bias

...

10

32

32

32

32

NEURON 1

D
E

C
O

D
E

R

32

D Q

CE

D Q

CE

i M-1

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

...

...

...

FD
1
M-1 FD

1
2M-1

FD
1
2M+1

FD
1
2M

FD
1
0

FD
1
M

ND

auxD Q

CE

Y

RDY

D Q

CE

D Q

CE

D Q

CE

D Q

CE

...

i 0

i 1

i M-2

...

w0

w1

w M-1

...

bias

...

10

32

32

32

32

NEURON N-2

D
E

C
O

D
E

R

32

D Q

CE

D Q

CE

i M-1

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

...

...

...

FD
N-2
0

FD
0
M-1

FD
N-2
M

FD
0
2M-1

FD
N-2
2M+1

FD
N-2
2M

ND

auxD Q

CE

Y

RDY

D Q

CE

D Q

CE

D Q

CE

D Q

CE

...

i 0

i 1

i M-2

...

w0

w1

w M-1

...

bias

...

10

32

32

32

32

NEURON N-1

D
E

C
O

D
E

R

32

D Q

CE

D Q

CE

i M-1

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

...

...

...

FD
1
M-1 FD

1
2M-1

FD
N-1
2M+1

FD
N-1
2M

FD
N-1
0

FD
N-1
M

...

...

...

DOA

DOB

ADDRA

ADDRB

DPBRAM
CU1

CU2

ADDR

ADDR

SEL

SEL

CTRL

CTRL

CU3

CTRL1

CTRL2

OE

ACT
N

RYBUS

ND

RDY

ND

RDY

X0

Y0

X1

Y1

XN-1

YN-1

XN-2

YN-2

32

32

12

12

SEL

Fig. 6. Architecture of the parallel implementation

The ASM diagram describing operations performed by the neuron block is featured in Fig. 5. Similarly to

the previously considered ASM, the signals and variables names denoted using capital letters (with the

ACCEPTED MANUSCRIPT

exception of the aux and bias signals) relate to external signals and buses depicted in Fig. 4. States S1-S4 of

the ASM are responsible for the calculation of the sum of products of the neuron’s inputs and weights. The

exponential function value is computed within states S5-S16 (the same idea with the Padé approximation of

the fractional part is exploited). The actual neuron’s activation function value is calculated in states S17-

S19. Contrary to the architecture from Fig. 1 and the corresponding ASM, the readiness signals of the FP

arithmetic blocks are not exercised by the considered ASM. Instead, a simple wait operation for a certain

number of clock cycles, within which the FP block completes its calculations, is applied. Thus, the WAIT

and WAIT2 operational blocks from Fig. 5 simply inserts the delay of 2 and 8 clock cycles respectively

(the FP arithmetic blocks have been configured to perform their operations within as little clock cycles as

possible, maintaining at the same time as high maximum clock frequency as possible). Although this

solution is slightly less versatile, it enables a certain reduction of the FPGA resources requirement.

The complete architecture of the parallel implementation of ANNs is presented in Fig. 6. It consists of a

number of the neuron blocks, dual-port block RAM memory (DPBRAM) for the storage of the ANN's

structure, and three separate control units (CU1, CU2, CU3). Each of the neuron blocks is surrounded by

two sets of D flip-flops (FD
j
0,..., FD

j
M-1 and FD

j
M,..., FD

j
2M-1 respectively, where j denotes the neuron's

number) with the decoder block for the storage of weights, bias and auxiliary information, ANN's output D

flip-flops (FD
j
2M+1 and FD

j
2M respectively), and ANN's input multiplexers. The external buses X0,..., XK-1

and Y0,...,YK-1 are the inputs and outputs of the ANN respectively, whereas the ND and RDY signals

perform the same function as in the case of the resource-saving implementation.

It is of note that at the same time when the neuron blocks perform calculations, the weights and biases for

the next ANN's layer are simultaneously read from the DPBRAM memory and written to the selected D

flip-flops from the first set of flip-flops. Since the DPBRAM is a true dual-port memory, the weights for

two neuron blocks are loaded simultaneously (the first port of DPBRAM deals with even neuron blocks

whereas the second engages odd neuron blocks). This shortens the time needed for the preparation of data

for the calculations of the next ANN's layer.

ACCEPTED MANUSCRIPT

The CU3 block controls all of the calculations and initiates the operation of the CU1 and CU2 blocks. The

latter two blocks control, in turn, the data exchange process between the DPBRAM and the FD
j
0,...,FD

j
M-1

sets of flip-flops. The information from these flip-flops are copied to the FD
j
M,..., FD

j
2M-1 sets of flip-flops

when all data pertaining to the processed layer are read and all of the neuron blocks are ready to start new

calculations.

4. Resources requirement, calculations speed and accuracy

In order to evaluate the FPGA resources requirement, the developed architectures (described in Verilog

hardware description language) have been implemented in the ZedBoard evaluation board with the

moderate density Xilinx Zynq XC7Z020 chip. For the resources-saving implementation it was assumed that

the maximum number of neurons within a layer as well as inputs of a single neuron block and inputs/outputs

of the whole ANN amounts to 32. For the parallel implementation this number was limited to 16. The

number of ANN's layers for both implementations is only limited by the capacity of the block-RAM

memory (2048 32-bit words were actually used).

Table 1. Number of the utilized resources and maximum clock frequency for the Xilinx Zynq XC7Z020
Version LUTs FFs DSPs FMAX [MHz]

A 2232 1210 2 118.7

 (4.2%) (1.1%) (0.9%)

B 3306 1326 4 119.8

 (6.2%) (1.3%) (1.8%)

C 41297 33395 33 112.5

 (77.6%) (31.4%) (15.0%)

D 51028 35655 65 109.3

 (95.9%) (33.5%) (29.5%)

The implementation results including the number of used 6-input look-up tables (LUTs), flip-flops (FFs),

digital signal processing blocks (DSPs), and maximum allowable clock frequency (FMAX) are presented in

Table 1. The device utilization in percentages, related to the maximum number of available resources, is

also portrayed in parenthesis. Both resources-saving and parallel implementations have been prepared with

two subversions, namely with the usage of the single pair of the FP multiplier-adder blocks and with two

pairs of these FP blocks. The A and B versions from Table 1 refer to the resource saving implementations,

ACCEPTED MANUSCRIPT

whereas the C and D versions indicate the parallel implementations. The A and C versions exploit a single

pair of the FP multiplier-adder blocks, whereas the remaining versions apply two pairs of the FP multiplier-

adder blocks. Note that for the parallel implementation the term pair of FP multiplier-adder blocks refers to

the single neuron block whereas for the resources-saving implementation it denotes the absolute number of

the FP blocks in the implementation.

For the evaluation of the calculations speed and accuracy an example of an auto-associative, 4-layer ANN

with 16-12-16-5 neurons in subsequent layers and 5 inputs/outputs has been considered. The hyperbolic

tangent activation function has been used with the exception of the 2-nd and 4-th layers (the bottleneck and

output layers) where the linear activation function has been applied. The network has been trained using the

Matlab software and then the developed simple program script has been used for the preparation of the

DPBRAM memory content, according to the format from Fig. 3. The task of the trained ANN was to mimic

on its outputs certain values delivered to the ANN's inputs.

Table 2. Calculations times of the test application

Platform
Calculations

time [ms]

PC desktop 8

Intel Core i7-950 @ 3.1GHz

Raspberry Pi 2 53.3

ARM Cortex-A7 @ 900MHz

Xilinx Zynq (Processing System part) 52.7

ARM Cortex-A9 @ 667MHz

Xilinx Zynq (Programmable Logic part) 33.1

Version A @118.2MHz

Xilinx Zynq (Programmable Logic part) 24.7

Version B @118.2MHz

Xilinx Zynq (Programmable Logic part) 5.7

Version C @112.5MHz

Xilinx Zynq (Programmable Logic part) 3.5

Version D @109.1MHz

Table 3. Maximum absolute, average and MSE errors
Version Maximum

error

Average

error

MSE errors

A 1.847E-6 2.905E-7 1.476E-13

B 1.549E-6 2.860E-7 1.525E-13

C 1.847E-6 2.906E-7 1.571E-13

D 1.430E-6 3.053E-7 1.624E-13

ACCEPTED MANUSCRIPT

The test application performed 1E3 calculations of the prepared ANN with the ANN's inputs values

changing within a certain range. The obtained test results, in terms of the calculations times and accuracy,

are portrayed in Table 2 and Table 3. Apart from FPGA implementations the test application has also been

implemented using popular microprocessor platforms (the software was written in C/C++). The calculations

times for all platforms with the exception of the Intel processor have been measured by the external

universal counter. For the PC platform the calculations time has been obtained by reading the system time

before and after the calculations.

The obtained results from Table 1-2 show that the most resources-consuming implementation version (D)

requires 22.9 times more LUTs than the most resource-saving implementation (A). However, the

calculations time of the test application for the D version is only 9.5 times shorter than for the A version.

It is of note that the calculations times of the test application provided by all of the developed

implementations are shorter than the times obtained by the software platforms with the ARM processors.

Additionally, the two parallel implementations calculate the test application faster (1.4 and 2.3 times

respectively) than the relatively high performance PC computer.

Table 3 shows the obtained accuracy of the FPGA implementations of the test application, conceived in

terms of the maximum absolute, average and mean square (MSE) errors. The errors have been calculated

taking into account the simulation results of the test application for all of the implementation versions and

the calculations results yielded by the PC software platform, used as the reference. The obtained errors only

slightly differ between the implementation versions. Yet, the parallel implementation with two pairs of the

FP multiplier-adder blocks seems to have the lowest maximum absolute error under the highest average

error. It is of note that the obtained maximum error value for the calculations of the test ANN is almost one

order of magnitude higher than the maximum error for the activation function calculations (1.847E-6 vs.

2.384E-7). This is possibly related to the cumulative rounding errors. Under the development of the

neuron's activation function implementation it was also observed numerous times that the sequence in

ACCEPTED MANUSCRIPT

which the FP calculations are performed has a considerable impact on the overall accuracy. The calculations

sequence, particularly for the sum of products of the neuron's inputs and weights, in the case of the FPGA

and software implementation is in fact different. This may contribute to the increase of the observed errors.

Making a direct ANN's calculations accuracy comparison between the proposed implementations and other

solutions is not straightforward. The published works either do not mention the obtained accuracy or apply

different errors measures and different ANN's structures for an accuracy test. However, one of the reliable

results is reported by [10] where the MSE error no higher than 5E-8 has been obtained. The other work of

[7] reports, in turn, the maximum error amounting to 8E-2. For the proposed implementation the MSE and

maximum errors are five and four orders of magnitude lower, respectively.

5. Conclusions

It has been shown that the FPGA implementations of ANNs may characterize high flexibility as well as

high calculations speed and reasonable accuracy in comparison with software realization of ANNs. On

account of the application of floating point arithmetic and very high accuracy of the activation function

calculation, the ANN can be trained off-line, e.g. by the Matlab software or using processing systems with

the ARM processors in such platforms as the Xilinx Zynq, and then the calculated weights can be directly

used by the developed implementations. The feasibility of the alteration of the ANN's structure by a simple

change of the RAM memory content makes the developed solution more flexible. Any existing methods or

the previously developed communication module for the P1-TS system [14] can be exploited for the

replacement of the FPGA-embedded block RAM memory content. The developed implementations can also

be applied as hardware function blocks for the previously developed multiprocessor programmable

controller [15], accelerating the calculations of ANNs.

The calculations speed of the developed implementations of ANNs seems to be high as well. The conducted

tests reveal that even the simplest resources-saving implementations carries out the calculations faster than

the ARM processors clocked with much higher frequency. The developed parallel implementations can also

ACCEPTED MANUSCRIPT

be reasonably faster than the relatively high performance PC computer. However, it is of note that the exact

relation between the calculations times of the software platforms and the developed parallel

implementations depends on the actual ANN's structure (the more neurons a ANN's layer contains, which

can be calculated in parallel, the more the parallel implementation is faster in relation to a software

solution). As far as the calculations accuracy of the proposed implementations is concerned, it is not as high

as the accuracy of the activation function implementation itself. However, it can still be considered as

reasonable high.

The prepared architectures of the two implementation versions (i.e., the resource-saving and parallel) also

constitute a good illustration for a known fact that the calculations speed advantage of hardware

implementations over high performance software platforms comes from the parallelization of executed

operations. The parallelism, however, can be obtained at the expense of a high FPGA resources requirement

(higher density and more expensive FPGA chips are needed, etc.). Yet, if the resources requirement for the

proposed parallel implementation of ANNs exceeds the acceptable level (e.g., the complete design is too

large and does not fit into a selected FPGA chip) and a lower calculations speed is still acceptable, then the

other presented implementation, namely resource-saving, can be applied.

References

[1] J. Misra, I. Saha, "Artificial neural networks in hardware: A survey of two decades of progress", Neurocomputing, vol. 74,

issues 1-3, pp. 239-255, 2010

[2] F. Morgado-Dias, R. Borralho, P. Fontes, A. Antunes, "FTSET-a software tool for fault tolerance evaluation and

improvement", Neural Computing and Applications, vol. 19, issue 5, pp. 701-712, 2010.

[3] F.D. Baptista, F. Morgado-Dias, "Automatic general-purpose neural hardware generator", Neural Computing and

Applications, vol. 28, issue 1, pp. 25-36, 2017.

[4] V. Tiwari, N. Khare, "Hardware implementation of neural network with Sigmoidal activation functions using CORDIC",

Microprocessors and Microsystems, vol. 39, pp. 373-381, 2015.

[5] V.P. Nambiar, M. Khalil-Hani, R. Sahnoun, M.N. Marsono, "Hardware implementation of evolvable block-based neural

networks utilizing a cost efficient sigmoid-like activation function", Neurocomputing, vol. 140, pp. 228-241, 2014.

ACCEPTED MANUSCRIPT

[6] T. Orlowska-Kowalska, M. Kaminski, "FPGA Implementation of the Multilayer Neural Network for the Speed Estimation

of the Two-Mass Drive System", IEEE Trns. on Industrial Informatics, vol. 7, no. 3, pp. 436-445, 2011.

[7] J.G. Oliveira, R.L. Moreno, O. de Oliveira Dutra, T.C. Pimenta, "Implementation of a reconfigurable neural network in

FPGA", Int. Caribbean Conf. on Devices, Circuits and Systems, 2017, DOI: 10.1109/ICCDCS.2017.7959699

[8] A. Youssef, K. Mohammed, A. Nassar, "A Reconfigurable, Generic and Programmable Feed Forward Neural Network

Implementation in FPGA", Int. Conf. on Computer Modelling and Simulation, 2012, DOI: 10.1109/UKSim.2012.12

[9] J. Renteria-Cedano, C. Peréz-Wences, L.M. Aguilar-Lobo, J.R. Loo-Yau, S. Ortega-Cisneros, P. Moreno, J.A. Reynoso-

Hernández, "A novel configurable FPGA architecture for hardware implementation of multilayer feedforward neural

networks suitable for digital pre-distortion technique", European Microwave Conference, 2016, DOI:

10.1109/EuMC.2016.7824478

[10] P. Ferreira, P. Ribeiro, A. Antunes, F. Morgado-Dias, "A high bit resolution FPGA implementation of a FNN with a new

algorithm for the activation function", Neurocomputing, vol. 71, issue 1-3, pp. 71–77, 2007.

[11] I. Nascimento, R. Jardim, F. Morgado-Dias, "A new solution to the hyperbolic tangent implementation in hardware:

polynomial modeling of the fractional exponential part", Neural Computing and Applications, vol. 23, issue 2, pp. 363-

369, 2013.

[12] D. Baptista, F. Morgado-Dias, "Low-resource hardware implementation of the hyperbolic tangent for artificial neural

networks", Neural Computing and Applications, Vol. 23, issue 3, pp. 601-607, 2013.

[13] Z. Hajduk, "High accuracy FPGA activation function implementation for neural networks", Neurocomputing, vol. 247, pp.

59-61, 2017.

[14] J. Kluska, Z. Hajduk, "Hardware implementation of P1-TS fuzzy rule-based systems on FPGA", Proc. Artif. Intell. Soft

Comput., vol. 7894, pp. 282-293, 2013.

[15] Z. Hajduk, B. Trybus, J. Sadolewski, "Architecture of FPGA Embedded Multiprocessor Programmable Controller", IEEE

Trans. Ind. Electron., vol. 62, no. 5, pp. 2952–2961, 2015.

ACCEPTED MANUSCRIPT

Zbigniew Hajduk received Ph.D. degree (with honors) in computer engineering from the University of

Zielona Góra, Zielona Góra, Poland, in 2006. He is an assistant professor at the Department of Computer

and Control Engineering, Rzeszów University of Technology. His main area of interest includes digital

systems design with FPGAs.

