
Future Generation Computer Systems 100 (2019) 531–541

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Resource allocation and computation offloadingwith data security for
mobile edge computing
Ibrahim A. Elgendy a, Weizhe Zhang a,b,∗, Yu-Chu Tian c, Keqin Li d
a School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
b Peng Cheng laboratory, Shenzhen, China
c School of Electrical Engineering and Computer Science, QUT, Brisbane QLD, Australia
d Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• Resource allocation and computation-offloading model for MEC system is proposed.
• An AES is introduced as a security layer to protect the computation tasks.
• An offloading algorithm is designed to find the optimal computation offloading decision.
• Minimization of time and energy consumption of the entire system is the main goal.

a r t i c l e i n f o

Article history:
Received 10 November 2018
Received in revised form 25 April 2019
Accepted 14 May 2019
Available online 23 May 2019

Keywords:
Computation offloading
Internet of Things (IoT)
Mobile-edge computing
Optimization
Security

a b s t r a c t

With the considerable growth of mobile users (MUs) and IoT devices, complex applications and
multimedia services are rapidly increasing, thereby requiring additional computations and high data
communication. However, these devices are still resource-constrained with limited computation
power and energy. Furthermore, security is considered a critical issue for sensitive information
communication. This study presents a multiuser resource allocation and computation offloading model
with data security to address the limitations of such devices. First, the computation and radio
resources are jointly considered for multiuser scenarios to guarantee the efficient utilization of shared
resources. In addition, an AES cryptographic technique is introduced as a security layer to protect
sensitive information from cyber-attacks. Furthermore, an integrated model, which jointly considers
security, computation offloading, and resource allocation, is formulated to minimize time and energy
consumption of the entire system. Finally, an offloading algorithm is developed with detailed processes
to determine the optimal computation offloading decision for MUs. Simulation results show that our
model and algorithm can significantly improve the performance of the entire system compared with
local execution and full offloading schemes.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, mobile network and wireless technology de-
velopment has resulted in various powerful mobile applications
and multimedia services, such as video games, face recognition,
augmented reality, healthcare, and natural language process-
ing [1,2]. In addition, most of these applications and services typ-
ically require intensive computation and high processing, which
are incompatible with devices due to their limited resources [3–
5].

∗ Corresponding author at: School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, China.

E-mail addresses: ibrahim.elgendy@hit.edu.cn (I.A. Elgendy),
wzzhang@hit.edu.cn (W. Zhang), y.tian@qut.edu.au (Y.-C. Tian),
lik@newpaltz.edu (K. Li).

Mobile cloud computing is considered a prominent solution
that address the limitations of mobile users (MUs), in which
mobile applications’ intensive computations will be offloaded to
a centralized cloud via a wireless channel to mitigate the load
and extend the battery life [6–9]. However, high latency is one
of the main shortcomings of centralized cloud computing, in
which the MUs may take a long time for lagged data transmis-
sion and have difficulty addressing real-time applications [10].
Moreover, security is considered another evident challenge of the
cloud paradigm, in which the applications’ data and services are
vulnerable to different threats during cloud transmission.

To address the challenges of mobile cloud computing, re-
searchers have realized that utilizing the resources and services
that are nearest to the MUs is considered a cost-efficient solution
with low latency. This finding has led to a new paradigm called
mobile edge computing (MEC) [11]. MEC is defined as a network

https://doi.org/10.1016/j.future.2019.05.037
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.05.037
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.05.037&domain=pdf
mailto:ibrahim.elgendy@hit.edu.cn
mailto:wzzhang@hit.edu.cn
mailto:y.tian@qut.edu.au
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.future.2019.05.037

532 I.A. Elgendy, W. Zhang, Y.-C. Tian et al. / Future Generation Computer Systems 100 (2019) 531–541

Fig. 1. Mobile edge computing architecture.

architecture that pushes cloud computing capabilities at edge
nodes that are close to MUs and connected to cloud servers via a
core network, as shown in Fig. 1. In addition, MEC is characterized
by high bandwidth and low latency, which allows the execution
of real-time applications [12,13].

Many studies have applied the concept of computation of-
floading on the mobile edge computing paradigm to minimize
energy consumption, satisfy delay requirements, allocate radio
resources efficiently, maximize total revenue, maximize system
utility, and/or the reduce total cost of MUs. In addition, studies
that specifically address the security for fog computing and MEC
are fewer than those that focus on mobile cloud computing. Fur-
thermore, although most MUs and multimedia services generate
a large amount of data and information that can be transmitted
over mobile cellular networks, the security issue for multiusers
in MEC is not recognized well [14,15]. This concern motivates
our study to address the security issue of multiuser compu-
tation offloading and allocate radio and computation resources
efficiently.

Therefore, in this study, we propose to consider resource allo-
cation and computation offloading jointly to minimize the overall
energy and time consumption of the entire system. In addition,
an efficient and secured layer is introduced to protect the com-
putation tasks and their related data from any cyber-attack before
edge server transmission using an AES cryptographic technique.
The main contributions of this study are summarized as follows:

• An AES cryptographic technique is introduced as a security
layer to protect the computation tasks and their related data
from any cyber-attack before data are transferred to the
MEC server.

• An optimization problem, which jointly considers compu-
tation offloading and resource allocation, is formulated to
minimize time and energy consumption of the entire sys-
tem. This optimization problem is a 0–1 linear optimiza-
tion problem, which is considered NP-hard. Therefore, the
solution can be calculated via the branch and bound method.

• An offloading algorithm is designed to determine the opti-
mal computation offloading decision for all MUs in the MEC
system.

• Simulation results are presented to show the effectiveness
of our proposed model and algorithm on the performance
of the entire system in terms of energy and time.

The remainder of this paper is organized as follows. Section 2
reviews related works. Section 3 describes our system model in
terms of resource allocation, computation offloading, and secu-
rity, and the optimization problem is formulated. The algorithm
design is presented in Section 4. In Section 5, simulation exper-
iments are conducted to demonstrate our offloading model and
algorithm. Finally, Section 6 concludes the paper.

2. Related work

In recent years, the MEC system has used numerous strategies
and objectives for offloading computation tasks from MUs to the
edge server to address the challenges of MUs [12,13,16]. In this
section, we present some of the common computation offloading
models based on objective attributes.

(1) Minimize energy
An energy-efficient computation offloading approach is de-

signed in [17], in which computation task offloading and its
data transmission are jointly considered in the offloading deci-
sion. In addition, the minimization of energy consumption of the
offloading system under delay constraints is the main goal of
this approach. The results prove that the proposed approach has
enhanced energy efficiency, especially with large number of MUs.
Nevertheless, the proposed method of this work offloads all the
application for remote execution, which is considered resource
consuming, such that a large amount of data will be transferred
over the network. In addition, the application data must be safe
while transmitting; thus, an efficient security technique should
be applied.

The cooperative computing concept is investigated in [18–
20] to minimize the energy consumption of MUs. Cao et al. [18]
consider user cooperation in the MEC system, in which communi-
cation and computation resource allocation are jointly optimized.
Particularly, the authors consider a basic three-node MEC system
in utilizing joint communication and computation cooperation
to minimize the total energy consumption. Furthermore, in [19]
and [20], the cooperation is presented between MUs and wireless

I.A. Elgendy, W. Zhang, Y.-C. Tian et al. / Future Generation Computer Systems 100 (2019) 531–541 533

sensor nodes, respectively, in which an opportunistic helper is
used as a cooperative computing. In [19], each MU can uti-
lize noncausal information on the helper-CPU state to utilize
the random computation resources efficiently by offloading the
computation of input data. In [20], the authors assume that the
mobile applications are partitioned into independent tasks that
will be offloaded and executed efficiently and jointly consider
computation and communication resources. However, the main
drawback in [17–19] is identifying the proper computing devices
in proximity (helper node) while guaranteeing that the processed
data will be delivered back to the source mobile device. Therefore,
quality of service and quality of experience (QoE) for users can
be hardly guaranteed. In addition, these studies only consider the
single MU scenario.

Recently, an innovative framework with a wireless-powered
multiuser MEC system is developed in [21]. This framework al-
lows flexibility for each user to offload all or part of the com-
putation tasks using a time-division multiple access protocol. In
addition, an optimal resource allocation approach is proposed to
improve the performance of the entire system in terms of energy
consumption. Nonetheless, the near-far problem is considered
one of the main drawbacks of this work, in which the farther
MU can harvest less energy and require to communicate in long
distances, thereby consuming additional energy. In addition, each
MU cannot obtain the result until all the other devices offload
their computation task because TDMA is used. Consequently,
handling real-time applications is difficult when the number of
users increase.

(2) Minimize latency
Kao et al. [22] propose a polynomial-time approximation ap-

proach for the task dependency of general mobile applications
to minimize the latency of a mobile application while addressing
resource utilization constraints. In addition, an online learning al-
gorithm is proposed with a provable performance guarantee. The
results show that compared with the heuristic method, the pro-
posed approach not only improves the latency performance but
also scale well with the problem size. However, the researchers
do not consider the optimization of data traffic incurred during
task execution and the application data are not protected from
attacks during transfer to the server. In addition, this approach
only works on one offloading request scenario.

The minimization of mobile applications’ latency is also the
main goal in [23,24] and [25]. In [23], a distributed cloud-aware
power control algorithm, which is considered a suitable algorithm
for real-time applications, is proposed. From the MU perspective,
the work in [24] proposes an autonomic computation offloading
framework based on deep reinforcement Q-learning approach for
handling resource requirement and mobility issues in the MEC
system. Furthermore, Liu et al. [25] develop a one-dimensional
search algorithm based on Markov chain theory. In addition, an
optimal computation task-scheduling policy and an optimization
problem are formulated for the MEC system. Nevertheless, the
application data are not protected from cyber-attacks during
transfer to the server, which is considered the main disadvan-
tage of [23–25]. In addition, the work in [23] is insufficient for
large MU mobility. Furthermore, in [24], the cost increased by
increasing the number of nodes and applying machine learning.

A conceptual fog-computing framework is proposed in [26],
in which an arbitrary number of fog devices are combined to
provide a suitable resource provisioning solution at nearby places
and offload the computation tasks among these devices. In ad-
dition, the service placement is formulated as an optimization
problem to minimize the latency of the communication and maxi-
mize the resource utilization of fog devices. Furthermore, genetic
and first fit algorithms are applied to solve this problem. How-
ever, identifying the appropriate IoT devices in proximity and

the communication between them while guaranteeing that the
processed data will be delivered back to the source mobile device
is considered the main drawback of this method.

Ren et al. [27] propose three different models for multiuser
MEC based on the TDMA technique. The first two models com-
press the application’s data locally on the MU and the edge
server, whereas the application’s data are partially compressed
at the MU and at the edge server in the third model. The results
show that the last model can improve the performance of mobile
applications in terms of end-to-end latency compared with the
other two models. However, advanced wireless communication
techniques, which can improve edge computing performance are
not considered this work.

(3) Minimize energy and latency
An energy-latency task and resource allocation algorithm is

proposed in [28], in which the computation offloading policy and
the network traffic are jointly optimized for the mobile cloud
system using the Lyapunov optimization technique. Furthermore,
the interference problem among the MUs is mitigated. Finally,
the simulation results show that compared with other existing
approaches, the proposed algorithm not only reduces the energy
consumption but also satisfies the delay requirements for dif-
ferent types of application task. Nevertheless, this approach is
an unrealistic system model because only one MU is considered
in the system. In addition, the offloaded data are vulnerable to
cyber-attacks.

Wang et al. [29] design a partial computation offloading ap-
proach that jointly considers communication and computation
resources for single and multiple server scenarios. In addition,
energy consumption and application latency are minimized by
proposing an energy-optimal partial offloading algorithm and a
local optimal algorithm, respectively. The computation offload-
ing and the transmission power are jointly optimized for the
MEC system in [30], in which a tradeoff between mobile en-
ergy consumption and application latency is achieved. Further-
more, a message-passing framework is proposed to decrease the
complexity of computation offloading by leveraging the applica-
tion’s topological structure. However, these studies [29,30] do not
protect the transmitted data from cyber-attacks.

The power-delay tradeoff for the multiuser MEC systems is
also the main objective of [31] and [32]. Mao et al. [31] for-
mulate a power consumption minimization problem with the
application’s task buffer stability constraints. In addition, an on-
line algorithm is presented to determine the manner in which
the transmission power and bandwidth for the MUs’ offloading
will be allocated and find the CPU frequencies for local exe-
cution. Chen et al. [32] jointly optimize a mobile application’s
computation offloading decisions and the communication and
computation resource allocation via an efficient three-step al-
gorithm. However, the interference caused by the transmission
of other users, which greatly affects system performance, is not
considered in [31]. Moreover, the processing deadline for user
computation tasks is not imposed in [31,32].

(4) Maximize revenue or system utility
The maximization of the total revenue of a network is consid-

ered as the main objective of [33], in which resource allocation,
computation offloading decision, and content caching strategy are
jointly formulated as an optimization problem. Furthermore, an
alternating direction algorithm based on the multiplier method
is proposed to solve this problem efficiently. However, this work
does not consider any user deadlines for performing computation
tasks, which can be impractical. In addition, wireless resource
allocation is not involved.

Lyu et al. [34] develop a semi-distributed and heuristic compu-
tation offloading decision algorithm for multiuser MEC system to
maximize system utility in terms of the QoE of MUs. In addition,

534 I.A. Elgendy, W. Zhang, Y.-C. Tian et al. / Future Generation Computer Systems 100 (2019) 531–541

the authors jointly optimize computation and communication
resources, as well as the computation offloading decision. More-
over, the authors in [35] study the cooperation among geograph-
ically distributed service providers to provide the MUs with effi-
cient resources and reduce the computation and communication
delay in comparison with traditional approaches. Furthermore,
the authors aim to maximize system utility, in which the cost
related to resource utilization and VM migration is considered.
Nonetheless, only the resource allocation is considered in [34],
which is less effective on the system. In addition, the resource
cooperation type (i.e., local or remote) is not considered in [35].

(5) Security
Security is considered an important issue that should be ad-

dressed for MUs where most multimedia services and applica-
tions provide private and sensitive information that can be mis-
used by attackers. Therefore, Zhang et al. [36] present a CloudSafe
system, which provides a cloud-based, personal, digital asset-
safe service to keep user data distributed among more than
one cloud provider using erasure coding and cryptography. In
addition, the CloudSafe system uses AES cryptography algorithm
to protect the confidentiality of user data. Nevertheless, this
approach requires more management effort, in which data are
distributed over more than one server. Another work proposes
an efficient confidentiality-based cloud storage framework for
protecting data storage on cloud computing on the basis of its
confidentiality degree [37]. First, the user specifies whether the
confidentiality level of data is basic, confidential or highly confi-
dential. Then, the data are protected using HTTPS and TLS if it
is a basic level or is encrypted using AES-128 or AES-256 if it
is confidential or highly confidential, respectively. However, this
framework adds burden on users to classify data.

Furthermore, a verifiable outsourced multiauthority access
control approach is proposed in [38], where most encryption
and decryption computations are outsourced to fog devices. In
addition, an efficient user and attribute revocation method is de-
signed to address the revocation issue and verify the computation
results. However, the encryption and decryption processes of the
ciphertext-policy, attribute-based encryption system, in which
this approach is based, are time-consuming.

Recently, an efficient and secured framework for the compu-
tation offloading of mobile IoT devices is proposed in [39,40].
In [39], Almajali et al. use edge nodes as a third party for ap-
plying security, in which the framework is divided into three
main steps. First, the mobile device is registered with a cloud
provider by sending a message that contains user ID, password,
and application requirements. Second, the cloud provider com-
municates with one or more edge nodes to find the nearest one
that satisfies the application requirements and initiates the com-
munication between this node and the mobile device. Third, the
application data are encrypted and transmitted to the edge node,
which will send them to the cloud provider for processing. Meng
et al. [40] propose a secure and cost-efficient offloading approach
for mobile cloud computing. This framework optimizes the se-
curity and performance tradeoff of the system by using a hybrid
continuous-time Markov chain and queueing model, respectively.
Nevertheless, in [39,40], management and processing are done
by the cloud provider which require long communication and
cause delay. In addition, users must repeat the second step in [39]
due to its mobility or edge node failure, which is considered
time-consuming when the mobile device mobility is large.

Table 1 summarized the mentioned related works and shown
the main weakness.

The preceding review of related work shows that computation
offloading has been investigated with different objectives for
MUs. In addition, studies that specifically address the security for
fog computing and MEC are fewer than those that focus on mobile

Fig. 2. System model.

cloud computing. Furthermore, the security issue for multiusers
in MEC is not addressed; in which most MUs and multimedia
services generate substantial data and information that can be
transmitted over mobile cellular networks. This limitation has
motivated our research to address the security issue for multiuser
computation offloading and allocate the radio and computation
resources efficiently.

3. System model

This section introduces the system model adopted in this
study. We consider a multiuser computation offloading for MEC
systems, where M = {1, 2, . . . ,N} is defined as a set of MUs
that is connected with a single wireless base station, and the MEC
server is placed at the wireless base station, as shown in Fig. 2.
In addition, each MU has a different computation and processing
capacity requirement that needs to be completed. Hence, we use
a tuple {βi, δi, Γi} to represent the task requirement for each MU
i, where βi, δi, and Γi are the number of CPU cycles, the data size,
and the completion deadline, respectively. This information can
be obtained using program profilers [41].

Similar to many previous works [42,43], our simulation work
on a quasistatic1 scenario where the number of MUs N remains
unchanged during the offloading period, while it may change
across different periods. Communication, computation, and secu-
rity play a key role in MEC; thus, communication, computation,
and security models are presented in detail, followed by the
formulation of the optimization problem of our model.

The notations used in this study are summarized in Table 2.

3.1. Communication model

We initially introduce the communication model in MEC sys-
tem, in which our environment has N MUs that are associated
with a single base station and the edge server via a wireless
channel. In addition, each MU has a different computation and
processing capacity requirement that must be completed. We
denote αi ∈ {0, 1} as a binary computation offloading decision
for each MU i, where (αi = 0) indicates that user i will decide to
compute the computation task locally on its own MU, and (αi =

1) implies that the MU i will decide to offload the computation
task to the edge server via a wireless channel. Thus, we have α
= {α1, α2, . . . , αN} as the offloading decision profile for all MUs.
Furthermore, we assume that the intracellular interference for the
uplink transmission is well-mitigated using orthogonal frequency

1 The general case where the mobility of mobile users from one base station
to another during the offloading period will be considered in the future work.

I.A. Elgendy, W. Zhang, Y.-C. Tian et al. / Future Generation Computer Systems 100 (2019) 531–541 535

Table 1
Comparison between existing models.
Ref Objective Proposed solution Offloading

nature
No. of MUs. No. of server

nodes
Weakness

[17] Minimize
energy

Energy efficient computation offloading algorithm. Full Multi MUs Single node • Resource consuming where all the
application will be offloaded.

• No security applied.

[18] Minimize
energy

Energy efficient computation and communication
cooperation approach.

Partial Single MU Single node

[19] Minimize
energy

Energy-efficient co-computing policies using
non-causal CPU-state information.

Partial Single MU Single node • QoS and QoE can be hardly guaranteed.
• No security applied.

[20] Minimize
energy

Energy-efficient co-computing using wireless
sensors.

Partial Single MU Multiple
nodes

[21] Minimize
energy

Innovation framework that Integrate the wireless
power transfer and MEC for multi-users system.

Partial Multi MUs Single node • Near-far problem.
• Inconvenient for real-time applications.

[22] Minimize
latency

Polynomial-time approximation approach for
general mobile application’s task dependency.

Partial Multi MUs Single node • Only work on the one offloading request
scenario.
• No security applied.

[23] Minimize
latency

Distributed cloud-aware power control algorithm
for real-time applications.

Full Single MU Multiples
nodes

• Insufficient for large mobility.
• No security applied.

[24] Minimize
latency

Autonomic computation offloading framework for
handling the resource requirements and mobility
issue.

Full Multi MUs Multiple
nodes

• More costly by increasing the number of
nodes and applying machine learning.
• No security applied.

[25] Minimize
latency

One-dimensional search algorithm for finding the
optimal scheduling policy.

Full Single MU Single node • No security applied.

[26] Minimize
latency

A conceptual fog-computing framework for
providing a suitable resource provisioning solution.

Full Multi MUs Multiple
nodes

• QoS and QoE can be hardly guaranteed.

[27] Minimize
latency

A Partial offloading model for allocating the
communication and computation resource.

Partial Multi MUs Single node • Advanced wireless communication
techniques are not handled.
• No security applied.

[28] Minimize
energy and
latency

An energy-latency task and resource allocation
algorithm for deciding the offloading policy.

Partial Single MU Single node • Unrealistic system model where only one
MU is considered.
• No security applied.

[29] Minimize
energy and
latency

Partial computation offloading scheme using
dynamic voltage scaling

Partial Single MU Single &
Multiple
nodes

• No security applied.

[30] Minimize
energy and
latency

Message-passing framework using the structure of
the call graphs for decreasing the complexity of the
computation offloading.

Partial Single MU Single node • No security applied.

[31] Minimize
energy and
latency

A stochastic task arrival model for solving the
energy-latency trade-off problem.

Partial Multi MUs Single node • Interference that is caused by the
transmission of other users is not
considered.

[32] Minimize
energy and
latency

A three-step algorithm for optimizing the
offloading decisions and the resource allocation.

Partial Multi MUs Single node • Processing deadline for the user’s
computation tasks is not imposed

[33] Maximize
Revenue

Optimal approach for considering resource
allocation, computation offloading and content
caching.

Partial Multi MUs Single node • Computation task deadlines are not
considered.
• Wireless resource allocation was not
involved.

[34] Maximize
system utility

Semi-distributed and heuristic computation
offloading decision algorithm for optimizing the
resource allocation and offloading decisions.

Partial Multi MUs Single node • Only the resource allocation is considered
which is less effective.

[35] Maximize
system utility

Game-theoretic algorithm for handling the
cooperation between geographically distributed
service providers.

Full Multi MUs Multiple
nodes

• Resource cooperation type is not
considered.
• No security applied.

[36] Security CloudSafe system to protect the confidentiality of
user data using AES algorithm.

Full Single MU Multiple
nodes

• More management efforts where the data
are distributed over more than one server.

[37] Security Efficient framework for protecting the data storage
on the cloud computing.

Full Single MU Single node • Add an extra burden on the user to
classify the data.

[38] Security Verifiable outsourced multi-authority access control
approach is proposed

Full Single MU Multiple
nodes

• This approach is time-consuming

[39] Security Efficient and secured framework for mobile IoT
devices.

Full Single MU Single node • Require a long communication and cause
delay where the management and
processing are done by a cloud provider.
• Time-consuming for the large mobility
scale where the mobile users must repeat
the second step for each mobility change.

[40] Security A secure and cost-efficient offloading approach. Full Single MU Single node • Require a long communication and cause
delay where the management and
processing are done by a cloud provider.

536 I.A. Elgendy, W. Zhang, Y.-C. Tian et al. / Future Generation Computer Systems 100 (2019) 531–541

Table 2
Notations.
Notation Description

M The set of MUs
N Total number of MUs
i Refer to the ith MU
βi CPU cycles to accomplish the tasks
δi Data size for computation tasks
Γi Completion deadline for MU i
αi Computation offloading decision of MU i
ri Uplink data rate for MU i
B Total System Bandwidth
pi Transmission power of MU i
τi Channel gain of the base station
θ0 Density of noise power of channel
ζi Energy consumed per CPU cycle

f li Computational capability of MU i

f si Computation resource assigned to MU i
F MEC server computational capability
Si Security decision of MU i
Ci CPU cycles required to encrypt the tasks
Di CPU cycles required to decrypt the tasks

toffi Time for offloading tasks on the edge server

tproci Time for executing tasks on the edge server

eoffi Energy for offloading tasks at the edge server

tsecui Time for applying the security layer

esecui Energy for applying the security layer

T l
i Time for executing tasks on the MU i

E l
i Energy for executing tasks on the MU i

T s
i Time for executing tasks at the edge server

Es
i Energy for executing tasks at the edge server

H l
i Overhead for executing tasks on the MU i

Hs
i Overhead for executing tasks at the edge server

wt
i Local computational time weight of MU i

we
i Local computational energy weight of MU i

for different user transmissions in the same cell [44]. Therefore,
the uplink data rate for each MU i can be obtained as follows [45]:

ri = B . log2(1 +
piτ 2

i

θ0B
) (1)

where B denotes the system bandwidth, pi denotes the transmis-
sion power of MU i, θ0 denotes the density of noise power of
channel and τi denotes the channel gain of the base station.

Consequently, when all MUs offload their computation tasks
via the wireless access channel simultaneously during a compu-
tation offloading period, a constraint is the bandwidth limit, as
shown as follows:

N∑
i=1

αiri ≤ B, ∀i ∈ N (2)

In this study, we assume that the overhead consumption for
the output in terms of energy and time is neglected; this assump-
tion is caused by the data size being smaller after task execution
than it is before execution, and the downlink rate from the server
is higher than the uplink rate [34].

3.2. Computation model

This subsection introduces the computation offloading model.
First, as mentioned previously, our simulation has N MUs that
have a different computation and processing capacity require-
ment that must be completed. For each task, we use a tuple
{βi, δi, Γi} to represent the task requirement for each MU i, where
βi, δi, and Γi represent the number of CPU cycles, the data size,

and the completion deadline, respectively. The computation over-
head in terms of execution time and energy consumption for local
and MEC execution approaches will be discussed later in detail.

3.2.1. Time and energy for local computing
For the local computing approach, each MU i executes all

the computation tasks locally. In addition, each MU has differ-
ent computational capabilities. As a result, the total execution
time and energy consumption for executing the computation task
locally can be respectively expressed as:

T l
i =

βi

f li
(3)

E l
i = ζiβi (4)

where f li denotes the computational capability (CPU cycles per
seconds) of MU i, and ζi is a coefficient, that denotes the con-
sumed energy per CPU cycle. On the basis of the measurement ob-
tained in [46], we set ζi = 10−11(f li)

2, where the energy consump-
tion is a superlinear function of mobile device frequency [42].

3.2.2. Time and energy for edge server computing
For the edge computing approach, each MU i will offload its

computation task to the edge server via a wireless channel de-
pending on the computation offloading decision αi. With regard
to the communication model and the uplink data rate for each
user i, the total execution time for the remote execution of the
computation task on the edge server (i.e., task offloading and task
processing) can be expressed as:

toffi + tproci =
δi

ri
+

βi

f si
(5)

where f si denotes the computational capability of the edge server
assigned to MU i. However, we assume that the computation
resource allocated to each user is proportional to the computation
capability of that user.

Furthermore, the energy consumption for the remote exe-
cution of the computation task on the edge server (i.e., task
offloading only) can be expressed as:

eoffi = pit
off
i (6)

3.3. Security model

Each MU i can transmit the computation task’s data to the
MEC server via a wireless channel in the offloading case. In
addition, these data are vulnerable to different types of threat
and attack while transmitting to the edge server. As a result, an
AES cryptographic technique is introduced as a secured layer to
protect the computation tasks and their related data against the
different types of threat where it is considered the most popular
and standard symmetric cryptography algorithm for encrypting
and decrypting data confidently and also is efficient in terms of
security and performance [47,48].

For the security model, we denote Si ∈ {0, 1} as a binary
security decision for each MU i, where (Si = 0) indicates that
user i will offload the computation task and their data without
encryption, and (Si = 1) implies that the MU i will encrypt the
computation task and their data using the security layer before
transmitting to the edge server. Subsequently, upon receiving the
data, the edge server will decrypt the data, execute the compu-
tation tasks, and send the result back to the MU. Thus, we have
S = {S1, S2, . . . , SN} as the security decision profile for all MUs.
This decision is manually made by each MU on the basis of the
privacy requirements for the application data. Therefore, in view
of the security layer, the additional overhead in terms of time and

I.A. Elgendy, W. Zhang, Y.-C. Tian et al. / Future Generation Computer Systems 100 (2019) 531–541 537

Table 3
Simulation parameters.
Parameter Value

Total number of MUs N 30
System bandwidth B 20 MHz
Transmission power of MU pi 100 mW
Background noise θ0 −100 dBm
weights wt

i , w
e
i {0, 0.2, 0.5, 0.8, 1.0}

Data size for computation tasks δi 5000 kB
CPU cycles to accomplish tasks βi 1000 Megacycles
Computation capability of MU f li {0.4, 0.5, ..., 1.0} GHz
MEC server capability F 10 GHz

energy for the remote execution of computation tasks on the MEC
server can be respectively expressed as:

tsecui = tenc+dec
i = Siαi(

Ci

f li
+

Di

f si
) (7)

esecui = eenci = Siαi(ζiCi) (8)

where Ci and Di represent the total number of CPU cycles required
to encrypt and decrypt the data of the computation task on the
MU and at the edge server, respectively [49].

In view of the previous subsections, in which communication,
computation, and security models are considered, the total time
and energy for the execution of the computation tasks of MU i
can be respectively expressed as:

T s
i = tsecui + toffi + tproci (9)

Es
i = esecui + eoffi (10)

On the basis of Eqs. (3), (4), (9), and (10), the total overhead
to execute all tasks locally and remotely on the MU and at the
edge server in terms of execution time and energy consumption
can be respectively calculated as:

H l
i = wt

i T
l
i + we

i E
l
i (11)

Hs
i = wt

i T
s
i + we

i E
s
i (12)

where wt
i and we

i ∈ [0, 1] denote the weighting parameters
of execution time and energy consumption for MU i’s decision
making, respectively. For example, we

i = 1 and wt
i = 0 if the

mobile battery of user i is in a low state, whereas we
i = 0 and

wt
i = 1 if the MU i is running a real-time application sensitive

to the delay (e.g., video streaming); different values are set to we
i

and wt
i for different objectives.

The computation capabilities assigned to all MUs must be
quantified to construct the system model. They should be capped
by the available resources (i.e., the computation capacity of the
server CPU) on the edge server denoted by F , as shown as
follows:

N∑
i=1

αif si ≤ F , ∀i ∈ N (13)

Furthermore, from the developed system model, the compu-
tation offloading, resource allocation, and security will be formu-
lated as an optimization problem. This approach aids us develop
resource allocation and computation offloading with a data secu-
rity model for a multiuser MEC system, which will be discussed
in the next subsection.

3.4. Problem formulation

In this subsection, the integration model of resource allocation,
computation offloading, and security for a multiuser MEC system

is formulated as an optimization problem. Here, we aim to min-
imize the energy consumption and execution time of the entire
system is considered. Thus, the problem is formulated as follows:

min
α

[N∑
i=1

αiHs
i +

N∑
i=1

(1 − αi)H l
i

]
s.t

[
αiEs

i + (1 − αi)E l
i

]
≤ E l

i , ∀i ∈ N C1
N∑
i=1

αiri ≤ B, ∀i ∈ N C2

N∑
i=1

αif si ≤ F , ∀i ∈ N C3

Ti ≤ Γi, ∀i ∈ N C4

αi ∈ {0, 1}, ∀i ∈ N C5

(14)

The objective function computes the minimal consumption in
terms of energy and time for the entire system. Constraint C1 en-
sures that the total energy consumption for the remote execution
for all the MUs does not exceed the total energy consumption
for local execution. Constraint C2 controls the channel bandwidth
capacity. Constraint C3 characterizes the upper limit of the CPU
capacity of the edge server. Constraint C4 determines the dead-
line requirement for the task completion. Finally, Constraint C5
guarantees that the computation offloading decision variable is
binary.

Our problem in Eq. (14) is an integer linear optimization
problem, in which the objective function and all the constraints
are linear. Thus, the optimal value of α∗ variable can be obtained
using the branch and bound method.

4. Algorithm design

An algorithm is designed to obtain an optimal solution to
the constrained optimization problem in Eq. (14), as shown in
Algorithm 1, which is self-explanatory. The algorithm provides
detailed processes to derive an optimal computation offloading
decision for multiple users.

The time complexity of this algorithm is represented by O(N),
where N denotes the total number of MUs. Therefore, the algo-
rithm does not consume additional MU resources.

In the designed algorithm, all MUs initialize their computation
offloading decision as αi(0) = 0, which implies local execution.
Then, each MU sends its tasks requirements {βi, δi, Γi, Ci,Di, pi}
and its computational capability f li to the nearest MEC server.
Subsequently, the MEC server obtains the number of users and
then calculates the data rate for each MU on the basis of Eq. (1).
Moreover, the MEC server determines the optimal computation
offloading decision αi values for each MU i, which is achieved
by solving the optimization problem in Eq. (14). Finally, each
MU receives a decision from the server, thereby minimizing the
overall time and energy consumption of the entire system.

5. Simulation results and discussion

This section demonstrates our proposed computation offload-
ing model through simulations. The performance of the model is
evaluated for the following four different scheduling policies.

1. Local Execution: No offloading exists. All tasks are exe-
cuted locally on MUs (αi = 0, ∀i ∈ N).

2. Full Offloading: All MUs offload their tasks to the MEC
server for remote execution (αi = 1, ∀i ∈ N).

538 I.A. Elgendy, W. Zhang, Y.-C. Tian et al. / Future Generation Computer Systems 100 (2019) 531–541

Algorithm 1 Multi-Users Computation Offloading Decision

1: Initialization: Each MU i initializes the offloading decision
with αi = 0, ∀i ∈ N

2: for all each MU i and at given time slot t do
3: Transmit the computation task requirements

{βi, δi, Γi, Ci,Di, pi} as well as the computational capability
of each MU f li to the edge server.

4: Get the number of users and its computation's require-
ments and then calculate the uplink data rate ri for each
MU using Eq. (1).

5: Find the optimal computation offloading decision values αi
for each MU which minimizes the overall consumption in
terms of energy and time of the entire system using Eq. (14).

6: Send the optimal computation offloading decision values αi
to each MU.

7: end for

3. Unsecured Model: The offloading decision is made on
the basis of the current environment without adding any
security layer for the protection of application data (αi ∈

{0, 1}, ∀i ∈ N).
4. Secured Model: The offloading decision is made on the

basis of the current environment with the addition of a
security layer for the protection of the application data
(αi ∈ {0, 1}, ∀i ∈ N).

Our simulations are run on a MATLAB-based simulator using
a computer equipped with Intel

®
Core(TM) i7-4770 CPU with

3.4 GHz frequency and 16 GB RAM capacity and runs Windows
10 Professional 64-bit platform. We consider an MEC system with
30 MUs. The CPU computational capability of each MU is ran-
domly assigned from the set {0.4, 0.5, . . . , 1.0} GHz to account
for the heterogeneous computing capability of MUs. The CPU
computational capability of the MEC server is set to be 10 GHz.
Accordingly, the computing speed of the MEC server is also set
to be 10 GHz. As an example of a sophisticated application, we
consider the face recognition application in [32], in which the
data size for the computation offloading is 5000 kB. The total
number of CPU cycles required to complete this task is 1000
megacycles. The decision weight of the execution time wt

i for
each MU is assigned randomly from the set {0, 0.2, 0.5, 0.8, 1.0}.
The decision weight for energy consumption is calculated from
we

i = 1−wt
i . For example, if wt

i = 1 (we
i = 0), then a user is only

concerned about the execution time (energy consumption); if
wt

i = 0.5, then MU i concerned about execution time and energy
consumption. Moreover, the number of CPU cycles required to
encrypt and decrypt the transmitted data is assumed to be 100
megacycles. Furthermore, the security decision is set randomly
in our simulation. Other settings on communication and compu-
tation are listed in Table 3. We perform our simulations for 50
runs, from which averaged results can be derived.

In our simulations, the offloading percentages of the MUs
for secured and unsecured models versus the total number of
MUs are shown in Fig. 3. The offloading percentage of the MUs
remains 100% when the number of MUs is less than 15 and begins
to decline as the number of MUs increases from 15. When the
number of MUs becomes sufficiently large, more devices will of-
fload their computation tasks to the MEC server, thereby causing
severe interference among one another. In this case, our model
automatically customizes the offloading requests generated by
MUs to minimize the overall energy consumption and execution
time. As a result, the offloading percentage decreases (Fig. 3).

Fig. 3. Offloading percentage of MUs.

The average execution time of offloading tasks to an MEC
server versus the number of MUs for the four different scenar-
ios is shown in Fig. 4. The figure shows a summation of two
times, that is, the communication time for transferring the task
data through the wireless channel, and the computation time
for running the tasks on the MEC server and encrypting and
decrypting in the secured model case. As shown in Fig. 4, when
the number of MUs is less than 15, full offloading with or without
security is better than local execution. However, as the number of
MUs further increases, the performance of full offloading declines
compared with local execution, whereas our offloading model
remains better than local execution. This result is due to the
fact the time for communication over the shared communication
channels increases with the number of MUs.

Fig. 5 depicts the average energy consumption of offloading
tasks to an MEC server versus the number of MUs. From this
figure, energy consumption increases linearly with the number of
MUs. When the number of users is greater than 15, our proposed
model can reduce the overall energy consumption. This phe-
nomenon is explained as follows. In the full offloading scenario,
all users compete for limited communication and computation
resources. As a result, the energy consumption of offloading tasks
will increase drastically when the number of MUs becomes large.

Fig. 6 shows the total overhead versus the number of MUs.
From the figure, with approximately 15 MUs, the total overhead
of full offloading becomes more than that of local execution. In
comparison, our model with or without security addition can
maintain a lower overhead than local execution. This result is
obtained because our proposed model selects some computation
tasks to offload while rejecting others in an optimal manner,
thereby minimizing the overall overhead in terms of time and
energy of the entire system.

Finally, our model with and without security addition is com-
pared with two related works (i.e., [17] and [21]) which are more
closer to our work. Fig. 7(a) depicts the energy consumption
versus the number of MUs for our model and the two related
works. The energy consumption for our model is less than other
two works. Furthermore, in comparison with the local execution,
Fig. 7(b) shows that the average energy saving of our model with
and without security addition and of [17] and [21] is 17.19%,
14.65%, 14.55%, and 14.62%, respectively. This result is obtained
because our model offloads only the intensive computation tasks
instead of all the application, such as in [17], which is considered

I.A. Elgendy, W. Zhang, Y.-C. Tian et al. / Future Generation Computer Systems 100 (2019) 531–541 539

Fig. 4. Execution time versus number of MUs.

Fig. 5. Energy consumption versus number of MUs.

Fig. 6. Total overhead versus number of MUs.

resource consuming. In addition, our model uses the orthogo-
nal frequency for different user transmissions in the same cell,
thereby mitigating the intracellular interference and allowing the
MUs to offload simultaneously. Moreover, our model selects some
MUs to offloaded their computation tasks while rejecting others
in an optimal manner.

6. Conclusions

In this study, we propose an efficient resource allocation and
computation offloading model for the multiuser MEC system.

In addition, an AES cryptographic technique is introduced as a
security layer to protect sensitive information from cyber-attacks.
Furthermore, an optimization problem, which can jointly con-
sider resource allocation, computation offloading decision, and
data security issues, is formulated to minimize the overall con-
sumption in terms of energy and task execution delay for MUs.
To address this problem efficiently, an optimal computation of-
floading algorithm is then developed with detailed processes
to determine the optimal offloading decision for the MUs. Fur-
thermore, simulation experiments of the proposed model are
presented in comparison with the local execution and the full

540 I.A. Elgendy, W. Zhang, Y.-C. Tian et al. / Future Generation Computer Systems 100 (2019) 531–541

Fig. 7. Comparison with two of related works.

offloading model with or without security addition. Finally, the
experimental results demonstrate that our proposed model with
or without security layer addition can minimize the total over-
head in terms of time and energy with approximately 15 MUs.
These results are obtained because our proposed model selects
some computation tasks to offload while rejecting others in an
optimal manner, thereby minimizing the overall overhead of the
entire system.

For future work, we will use an effective compression layer
to reduce the size of the offloading computation task’s data in
the low bandwidth state, thereby improving the performance of
the entire system. Another direction is to consider a more general
case where MUs may depart and leave dynamically within a
computation offloading period, which will be interesting and
technically challenging.

Acknowledgments

This work is supported by the National Key Research and
Development Plan, China under grant (No. 2016YFB0800801),
the National Natural Science Foundation of China (NSFC) under
grant (No. 61672186 and 61872110), and the Australian Research
Council (ARC) under grant (No. DP170103305). Professor Zhang is
the corresponding author.

Conflict of interest

None.

Declaration of competing interest

The authors declared that they had no conflicts of interest with
respect to their authorship or the publication of this article.

References

[1] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot): A
vision, architectural elements, and future directions, Future Gener. Comput.
Syst. 29 (7) (2013) 1645–1660.

[2] G. Fortino, R. Gravina, A. Guerrieri, G.D. Fatta, Engineering large-scale body
area networks applications, in: International Conference on Body Area
Networks, 2013, pp. 363–369.

[3] N. Vallina-Rodriguez, J. Crowcroft, Energy management techniques in
modern mobile handsets, Ieee Commun. Surv. Tutor. 15 (1) (2013)
179–198.

[4] R. Yadav, W. Zhang, O. Kaiwartya, P.R. Singh, I.A. Elgendy, Y. Tian, Adaptive
energy-aware algorithms for minimizing energy consumption and SLA
violation in cloud computing, IEEE Access 6 (2018) 55923–55936.

[5] C. Savaglio, G. Fortino, M. Zhou, Towards interoperable, cognitive and
autonomic iot systems: An agent-based approach, in: Internet of Things,
2017, pp. 58–63.

[6] N. Fernando, S.W. Loke, W. Rahayu, Mobile cloud computing: A survey,
Future Gener. Comput. Syst. 29 (1) (2013) 84–106.

[7] I.A. Elgendy, M. El-kawkagy, A. Keshk, An efficient framework to improve
the performance of mobile applications, Int. J. Digit. Content Technol. Appl.
(JDCTA) 9 (5) (2015) 43–54.

[8] A.A. Ateya, A. Muthanna, A. Vybornova, P. Darya, A. Koucheryavy, Energy-
aware offloading algorithm for multi-level cloud based 5g system, in:
Internet of Things, Smart Spaces, and Next Generation Networks and
Systems, Springer, 2018, pp. 355–370.

[9] M.A. Elgendy, A. Shawish, M.I. Moussa, MCACC: New approach for
augmenting the computing capabilities of mobile devices with cloud
computing, in: 2014 Science and Information Conference, IEEE, 2014, pp.
79–86.

[10] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, E. Benkhelifa,
The future of mobile cloud computing: integrating cloudlets and mobile
edge computing, in: International Conference on Telecommunications,
IEEE, 2016, pp. 1–5.

[11] Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge
computing: The communication perspective, IEEE Commun. Surv. Tutor. 19
(4) (2017) 2322–2358.

[12] N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: A
survey, IEEE Internet Things J. 5 (1) (2018) 450–465.

[13] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture
and computation offloading, IEEE Commun. Surv. Tutor. 19 (3) (2017)
1628–1656.

[14] A.N. Khan, M.M. Kiah, S.U. Khan, S.A. Madani, Towards secure mobile
cloud computing: A survey, Future Gener. Comput. Syst. 29 (5) (2013)
1278–1299.

[15] R. Roman, J. Lopez, M. Mambo, Mobile edge computing, fog et al.: A survey
and analysis of security threats and challenges, Future Gener. Comput. Syst.
78 (2018) 680–698.

[16] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, P. Mohapatra, Edge Cloud
Offloading Algorithms: Issues, Methods, and Perspectives, arXiv preprint
arXiv:1806.06191, 2018.

[17] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan,
Y. Zhang, Energy-efficient offloading for mobile edge computing in 5g
heterogeneous networks, IEEE Access 4 (2016) 5896–5907.

[18] X. Cao, F. Wang, J. Xu, R. Zhang, S. Cui, Joint Computation and Commu-
nication Cooperation for Mobile Edge Computing, arXiv preprint arXiv:
1704.06777, 2018.

[19] C. You, K. Huang, Exploiting non-Causal CPU-state information for energy-
efficient mobile cooperative computing, IEEE Trans. Wirel. Commun. 17 (6)
(2018) 4104–4117.

[20] Z. Sheng, C. Mahapatra, V.C.M. Leung, M. Chen, P.K. Sahu, Energy efficient
cooperative computing in mobile wireless sensor networks, IEEE Trans.
Cloud Comput. 6 (1) (2018) 114–126.

[21] F. Wang, J. Xu, X. Wang, S. Cui, Joint offloading and computing optimization
in wireless powered mobile-edge computing systems, IEEE Trans. Wirel.
Commun. 17 (3) (2018) 1784–1797.

[22] Y. Kao, B. Krishnamachari, M. Ra, F. Bai, Hermes: Latency optimal task
assignment for resource-constrained mobile computing, IEEE Trans. Mob.
Comput. 16 (11) (2017) 3056–3069.

[23] P. Mach, Z. Becvar, Cloud-aware power control for real-time application
offloading in mobile edge computing, Trans. Emerg. Telecommun. Technol.
27 (5) (2016) 648–661.

[24] M.G.R. Alam, M.M. Hassan, M.Z. Uddin, A. Almogren, G. Fortino, Autonomic
computation offloading in mobile edge for iot applications, Future Gener.
Comput. Syst. 90 (2019) 149–157.

[25] J. Liu, Y. Mao, J. Zhang, K.B. Letaief, Delay-optimal computation task
scheduling for mobile-edge computing systems, in: 2016 IEEE International
Symposium on Information Theory (ISIT), 2016, pp. 1451–1455.

[26] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, P. Leitner, Optimized iot
service placement in the fog, Service Oriented Comput. Appl. 11 (4) (2017)
427–443.

http://refhub.elsevier.com/S0167-739X(18)32834-6/sb1
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb1
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb1
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb1
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb1
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb2
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb2
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb2
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb2
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb2
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb3
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb3
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb3
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb3
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb3
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb4
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb4
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb4
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb4
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb4
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb5
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb5
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb5
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb5
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb5
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb6
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb6
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb6
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb7
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb7
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb7
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb7
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb7
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb8
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb8
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb8
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb8
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb8
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb8
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb8
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb9
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb9
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb9
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb9
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb9
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb9
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb9
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb10
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb10
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb10
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb10
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb10
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb10
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb10
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb11
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb11
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb11
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb11
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb11
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb12
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb12
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb12
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb13
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb13
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb13
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb13
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb13
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb14
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb14
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb14
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb14
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb14
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb15
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb15
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb15
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb15
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb15
http://arxiv.org/abs/1806.06191
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb17
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb17
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb17
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb17
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb17
http://arxiv.org/abs/1704.06777
http://arxiv.org/abs/1704.06777
http://arxiv.org/abs/1704.06777
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb19
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb19
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb19
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb19
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb19
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb20
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb20
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb20
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb20
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb20
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb21
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb21
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb21
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb21
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb21
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb22
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb22
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb22
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb22
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb22
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb23
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb23
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb23
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb23
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb23
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb24
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb24
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb24
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb24
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb24
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb25
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb25
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb25
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb25
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb25
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb26
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb26
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb26
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb26
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb26

I.A. Elgendy, W. Zhang, Y.-C. Tian et al. / Future Generation Computer Systems 100 (2019) 531–541 541

[27] J. Ren, G. Yu, Y. Cai, Y. He, Latency optimization for resource allocation in
mobile-edge computation offloading, IEEE Trans. Wirel. Commun. 17 (8)
(2018) 5506–5519.

[28] J. Kwak, Y. Kim, J. Lee, S. Chong, DREAM: Dynamic resource and task
allocation for energy minimization in mobile cloud systems, IEEE J. Sel.
Areas Commun. 33 (12) (2015) 2510–2523.

[29] Y. Wang, M. Sheng, X. Wang, L. Wang, J. Li, Mobile-edge computing:
Partial computation offloading using dynamic voltage scaling, IEEE Trans.
Commun. 64 (10) (2016) 4268–4282.

[30] S. Khalili, O. Simeone, Inter-layer per-mobile optimization of cloud mo-
bile computing: A message-passing approach, Trans. Emerg. Telecommun.
Technol. 27 (6) (2016) 814–827.

[31] Y. Mao, J. Zhang, S.H. Song, K.B. Letaief, Power-delay tradeoff in multi-user
mobile-edge computing systems, in: 2016 IEEE Global Communications
Conference (GLOBECOM), 2016, pp. 1–6.

[32] M. Chen, B. Liang, M. Dong, Joint offloading and resource allocation for
computation and communication in mobile cloud with computing access
point, in: IEEE Conference on Computer Communications(INFOCOM), 2017,
pp. 1–9.

[33] C. Wang, C. Liang, F.R. Yu, Q. Chen, L. Tang, Computation offloading
and resource allocation in wireless cellular networks with mobile edge
computing, IEEE Trans. Wirel. Commun. 16 (8) (2017) 4924–4938.

[34] X. Lyu, H. Tian, C. Sengul, P. Zhang, Multiuser joint task offloading and
resource optimization in proximate clouds, IEEE Trans. Veh. Technol. 66
(4) (2017) 3435–3447.

[35] R. Yu, J. Ding, S. Maharjan, S. Gjessing, Y. Zhang, D.H.K. Tsang, Decen-
tralized and optimal resource cooperation in geo-distributed mobile cloud
computing, IEEE Trans. Emerg. Top. Comput. 6 (1) (2018) 72–84.

[36] Q. Zhang, B. Luo, W. Shi, A.M. Almoharib, Cloudsafe: Storing your digital
asset in the cloud-based safe, Wayne State University, Detroit, USA, Tech.
Rep, 2013.

[37] L. Tawalbeh, R.S. Al-Qassas, N.S. Darwazeh, Y. Jararweh, F. AlDosari,
Secure and efficient cloud computing framework, in: Cloud and Autonomic
Computing (ICCAC), 2015 International Conference on, IEEE, 2015, pp.
291–295.

[38] K. Fan, J. Wang, X. Wang, H. Li, Y. Yang, A secure and verifiable outsourced
access control scheme in fog-cloud computing, Sensors 17 (7) (2017)
1695–1709.

[39] S. Almajali, H.B. Salameh, M. Ayyash, H. Elgala, A framework for efficient
and secured mobility of iot devices in mobile edge computing, in: Fog and
Mobile Edge Computing (FMEC), 2018 Third International Conference on,
IEEE, 2018, pp. 58–62.

[40] T. Meng, K. Wolter, H. Wu, Q. Wang, A secure and cost-efficient offloading
policy for mobile cloud computing against timing attacks, Pervasive Mob.
Comput. 45 (2018) 4–18.

[41] L. Yang, J. Cao, H. Cheng, Y. Ji, Multi-user computation partitioning for
latency sensitive mobile cloud applications, IEEE Trans. Comput. 64 (8)
(2015) 2253–2266.

[42] X. Chen, Decentralized computation offloading game for mobile cloud
computing, IEEE Trans. Parallel Distrib. Syst. 26 (4) (2015) 974–983.

[43] G. Iosifidis, L. Gao, J. Huang, L. Tassiulas, A double-auction mechanism
for mobile data-offloading markets, IEEE/ACM Trans. Netw. 23 (5) (2015)
1634–1647.

[44] S. Deb, P. Monogioudis, Learning-based uplink interference management
in 4g LTE cellular systems, IEEE/ACM Trans. Netw. 23 (2) (2015) 398–411.

[45] T.S. Rappaport, Wireless Communications: Principles and Practice,
Horwood Publishing Limited Chichester, 2009, pp. 33–38.

[46] X. Lin, Y. Wang, Q. Xie, M. Pedram, Task scheduling with dynamic
voltage and frequency scaling for energy minimization in the mobile cloud
computing environment, IEEE Trans. Serv. Comput. 8 (2) (2015) 175–186.

[47] I. Elgendy, W. Zhang, C. Liu, C. Hsu, An efficient and secured framework
for mobile cloud computing, IEEE Trans. Cloud Comput. (2018).

[48] J. Daemen, V. Rijmen (Eds.), The Design of Rijndael: AES - The Advanced
Encryption Standard, Springer-Verlag, Berlin, Heidelberg, 2002.

[49] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, first ed., Springer Publishing Company, Incorporated, 2009.

Ibrahim Elgendy received his M.Sc. degree from Com-
puter Science Department, Faculty of Computers and
Information, Menoufia University, Egypt, in 2016. He
worked as a demonstrator and assistant lecturer in
Faculty of Computers and Information, Menoufia Uni-
versity, Egypt since April 2012 till now. He is currently
pursuing the Ph.D. degree from the School of Computer
Science and Technology, Harbin Institute of Technology,
Harbin, China. His research interests include Cloud
Computing, Mobile Edge Computing and distributed
computing.

Weizhe Zhang is currently a professor in the School of
Computer Science and Technology at Harbin Institute of
Technology, China. His research interests are primarily
in parallel computing, distributed computing, cloud
and grid computing, and computer network. He has
published more than 100 academic papers in journals,
books, and conference proceedings. He is a senior
member of the IEEE.

Yu-Chu Tian received the Ph.D. degree in computer
and software engineering in 2009 from the University
of Sydney, Sydney NSW, Australia, and the Ph.D. degree
in industrial automation in 1993 from Zhejiang Uni-
versity, Hangzhou, China. He is currently a professor
at the School of Electrical Engineering and Computer
Science, Queensland University of Technology, Brisbane
QLD, Australia. His research interests include big data
computing, distributed computing, cloud computing,
real-time computing, computer networks, and control
systems.

Keqin Li is a SUNY Distinguished Professor of com-
puter science in the State University of New York.
He is also a Distinguished Professor of Chinese Na-
tional Recruitment Program of Global Experts (1000
Plan) at Hunan University, China. He was an Intel-
lectual Ventures endowed visiting chair professor at
the National Laboratory for Information Science and
Technology, Tsinghua University, Beijing, China, dur-
ing 2011–2014. His current research interests include
parallel computing and high-performance computing,
distributed computing, energy-efficient computing and

communication, heterogeneous computing systems, cloud computing, big data
computing, CPU–GPU hybrid and cooperative computing, multicore computing,
storage and le systems, wireless communication networks, sensor networks,
peer-to-peer le sharing systems, mobile computing, service computing, Internet
of things and cyber–physical systems. He has published over 520 journal articles,
book chapters, and refereed conference papers, and has received several best
paper awards. He is currently or has served on the editorial boards of IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on Computers,
IEEE Transactions on Cloud Computing, IEEE Transactions on Services Computing,
and IEEE Transactions on Sustainable Computing. He is an IEEE Fellow.

http://refhub.elsevier.com/S0167-739X(18)32834-6/sb27
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb27
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb27
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb27
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb27
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb28
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb28
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb28
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb28
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb28
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb29
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb29
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb29
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb29
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb29
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb30
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb30
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb30
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb30
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb30
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb31
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb31
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb31
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb31
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb31
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb32
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb32
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb32
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb32
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb32
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb32
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb32
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb33
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb33
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb33
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb33
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb33
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb34
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb34
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb34
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb34
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb34
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb35
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb35
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb35
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb35
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb35
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb37
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb37
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb37
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb37
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb37
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb37
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb37
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb38
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb38
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb38
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb38
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb38
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb39
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb39
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb39
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb39
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb39
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb39
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb39
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb40
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb40
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb40
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb40
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb40
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb41
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb41
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb41
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb41
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb41
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb42
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb42
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb42
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb43
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb43
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb43
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb43
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb43
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb44
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb44
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb44
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb45
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb45
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb45
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb46
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb46
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb46
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb46
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb46
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb47
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb47
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb47
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb48
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb48
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb48
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb49
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb49
http://refhub.elsevier.com/S0167-739X(18)32834-6/sb49

	Resource allocation and computation offloading with data security for mobile edge computing
	Introduction
	Related work
	System model
	Communication model
	Computation model
	Time and energy for local computing
	Time and energy for edge server computing

	Security model
	Problem formulation

	Algorithm design
	Simulation results and discussion
	Conclusions
	Acknowledgments
	Conflict of interest
	Declaration of competing interest
	References

