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A B S T R A C T

The efficiency of E-Commerce Logistics (ECL) has become a major success factor for e-commerce companies in
the competitive marketplace nowadays. However, the operation of ECL is complex and vulnerable to many risks,
which would severely threaten its performance. A clear understanding of these risks would benefit a lot for
conducting targeted measures to effectively mitigate their adverse effects. Therefore, this paper proposes a
quantitatively analysis approach for operational risks in ECL based on extensive historical e-commerce trans-
action data. More specifically, the typical operation process of ECL is extracted through sequential analysis of
key activities. After that, taking operation time as the key performance indicator, the performance patterns of
different operation phases are analyzed. Then, considering the diverse distributions of operation time in different
phases, especially the multimodal distribution of transportation time, a Gaussian Mixture Model (GMM) based
risk analysis approach is proposed. Finally, an experimental case study is provided to measure the operational
risks using real-life ECL data, and several managerial implications are also discussed based on the results.

1. Introduction

E-commerce is expanding rapidly worldwide and has been re-
cognized as a major engine that drives the evolution of logistics [1]. On
the one hand, the proliferation of e-commerce is creating enormous
demands for logistic services. Take China for example, the market of
retail e-commerce has reached US$1.05 trillion in 2017, with an annual
increasing rate around 32%. Accordingly, the number of logistics orders
exceeded 40 billion in 2017, increased 28% compared with the number
of 2016 [2]. On the other hand, the increasingly competitive environ-
ment has forced e-commerce companies paying more attention on their
logistic systems [3], whose performance is strongly correlated with
their successes [4,5]. E-commerce also brings many new features to its
logistics, including highly stochastic demands, huge number of orders,
great diversities, and small and irregular items, which stimulate
forming the new logistics paradigm, E-Commerce Logistics (ECL).

Along with the continuous rapid development of e-commerce, ECL
has attracted many attentions from both industries and academics. For
instance, JD.com, one of the largest B2C e-commerce platforms in
China, has invested heavily in building its own logistics system [6].
Alibaba has built Cainiao Logistics to further improve the ECL efficiency

through integrating various and distributed logistics resources [7].
Besides, Hu and Chang [8] developed an Automated Storage/Retrieval
Systems (AS/RSs) using multilevel conveying device with three-di-
mensional movement to fit the small and irregular items or parcels in
ECL, while Chen et al. [9] proposed efficient heuristic routing methods
in e-commerce warehouses with ultra-narrow aisles and access re-
striction. Ruan and Shi [10] designed an Internet of Things (IoT) based
framework to monitor and assess the fruit freshness in ECL. Shao et al.
[11] adopted the concept of sliding time window and developed
heuristics algorithm to synchronize the last mile delivery of mass e-
commerce orders. And Xu et al. [1,12] proposed effective auction-based
strategies to facilitate the matching of shippers (e-commerce platforms)
and carriers (3rd party logistics) in ECL.

As a typical logistics system, ECL is vulnerable and open to many
risks. For instance, the uncertainties on demand and supply, mistakes in
warehousing activities, accidents during delivery would lead to great
performance declining and heavy losses. The occurrence of disasters,
like Typhoon Mangkhut in 2018, may damage ECL infrastructures, and
brings significant delay on delivering goods and severe overstock at
peripheral distribution centers. Thus risk management is essential in
ECL, and becomes an important topic nowadays. Although a couple of
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studies have been conducted [13,14], the research on ECL risk man-
agement is far from enough, leaving many topics remain unfold, in-
cluding quantitative analysis of risks in ECL, optimization models on its
operational risk, risk control strategies, etc.

This paper focuses on quantitative operational risk analysis in ECL.
In literature, operational risks mainly refer to the risks owing to supply/
demand uncertainties, human mistakes, and accidents that would de-
crease the service level or threat the normal operations [15]. Many
efforts have been done on operational risk management in logistics and
supply chain systems [16,17]. Specifically, Chen et al. [18] examined
the effect of supplier, customer, and internal collaboration on miti-
gating operational risks in supply chain. Mo and Cook [19] developed a
quantitative risk analysis approach of designing logistics network
system to further improve the operational cost efficiency of automotive
manufacturing industry. Considering the operation process of port lo-
gistics, Sutrisnowati et al. [20] proposed a bayesian network-based
approach to analyze the lateness probability in container handling.
Besides, Shang et al. [21] analyzed the pattern of transport risks in air
cargo logistics, and developed a method using bayesian nonparametrics
to forecast transport risks based on massive air cargo data.

However, to the best of our knowledge, there is still rare research on
operational risks in ECL. In addition, ECL has distinct characteristics
compared with traditional logistics systems, which may result in the
differences of operation processes, risk factors, risk patterns, etc.
Existing risk analysis approaches hence cannot be directly adopted.

Fortunately, with the mature of IoT technologies, extensive and
accurate information about logistics activities can be collected, re-
corded, and shared [22–25], which provides new opportunities for
operational risk analysis. This is pretty true in ECL since e-commerce is
born with the nature of digitalization and has been recognized as an
engine that drives the application of information technologies in in-
dustry. Such information not only makes it possible to provide track
and trace services for e-commerce customers, but also enables in-depth
and comprehensive analysis of ECL, including its operational risks.

Therefore, take the advantages of IoT technologies, this paper aims
at making quantitative analysis of operational risks in ECL based on
real-life e-commerce transaction data. More specifically, the typical
operation process of ECL is extracted through sequential analysis of key
activities. Then taking operation time as the key performance indicator,
the performance patterns of different operation phase are analyzed.
After that, the abnormal detection method using Gaussian Mixture
Model (GMM) is proposed, based on which the risks in different op-
eration phases can be quantitatively analyzed.

The remainder of this paper is organized as follows. Section 2 in-
troduces the data set adopted in this paper. Section 3 discusses the
operational risks in ECL, including the operation process of ECL and the
measurement of operational risks. Section 4 presents the method of
identifying and evaluating the risks using GMM. An experimental case
study is given in Section 5, and Section 6 concludes the whole paper
and points out future research directions.

2. Data set

The data set adopted in this paper is provided by one of our colla-
borators, containing the e-commerce transaction records, warehouse
information, and region information of an e-commerce platform in
China.

In total, there are 905,422 historical e-commerce transaction re-
cords, each with around 120 properties denoting the detailed in-
formation of the transaction, including customer information, product
information, payment information, delivery information, and time
stamps of key activities (or status change). Meanwhile, the detailed
information of 1045 self-owned and collaborative warehouses is pro-
vided, including their types, locations, corresponding distribution cen-
ters, and parent sub-companies. And the region information contains
regional divisions of 520 cities (or districts) in China.

In order to improve the efficiency of data analytics afterwards, data
preprocessing is conducted through three steps: (1) Data reduction.
Besides the ECL operation data, the raw transaction data contains many
other data which are irrelevant to the problem of ECL risks analysis.
This step eliminates these useless data to reduce the overall data size,
and only 46 key properties are kept for further processing. (2) Data
cleaning. The raw transaction data inevitably contains inconsistent
data, or some of the records may have incomplete data. In this research,
these records with inconsistent data and incomplete data will be re-
moved from the experimental data set. During this step, 279,222 re-
cords are filtered from the raw transaction data. (3) Data conversion.
Based on the warehouse and region information, several new properties
are added to denote whether the e-commence order is an inner region/
province/city order (departure warehouse and the deliver address are
in the same region/province/city). Finally, these processed data are
integrated into one data table and stored in a CSV file for further
analysis.

3. Operational risks in E-Commerce Logistics

The operation process of ECL is composed by many inter-dependent
successive phases, which would face diverse risks, present different
performance patterns, and accumulatively affect the overall perfor-
mance of ECL. In this section, the operation process of ECL will be
analyzed first, and then the quantitative measurement method of op-
erational risks will be introduced.

3.1. Operation process of E-Commerce Logistics

ECL operation process is complex that consists of many activities
that are conducted distributively by different stakeholders, including
customers, e-commerce platforms, e-retailers, logistics service provi-
ders, etc. A clear understanding of it is a prerequisite for operational
risks analysis. Therefore, take the advantages of extensive historical e-
commerce transaction data, key activities involved in ECL are extracted
first. Then their sequential relationships are examined through com-
paring their time stamps stored in these records, which help form the
basic operation process of ECL. Besides, field studies with JD.com and
Taobao were conducted to further confine the process and make some
supplements. After that, the general operation process of ECL can be
constructed, as depicted in Fig. 1.

Here, the blocks with hard borders and hard arrows are those
analyzed directed from the e-commerce transaction data, while those
blocks with dashed borders and dashed arrows are derived from field
studies. Besides, the blocks with rounded corner are the activities
conducted by e-commerce customers during their online shopping
processes (e.g. search for items, add them to cart, place the order, etc.).

The operation process of ECL begins with customers placing their
orders on e-commerce platform (Place Order). Then e-retailers could
receive the orders and check the details through the platform, and begin
to process the orders (Process Order). According to the content of or-
dered products, the orders will be sent to different warehouses, where
they would be released to warehousing operators through printing them
out or other channels (Print Order). The operators would then pick the
products from shelves (Order Picking) and package products of the
same order (Package) for delivery (Ship). Once these well packaged
items reach the distribution centers, they will be sorted according to
destinations (Sort) and then deliver to final customers (Ship). Before
receiving the orders, the customers should pay either on-line or off-line
(Pay), and the platform or e-retailer need also check the account (Check
Account) during this process. After the orders are well received by final
customers (Receive Order), the operation process of ECL ends.

According to these transaction data, an interesting phenomenon in
real-life ECL operation process is detected, that around 8% orders are
processed in advance before they are formally placed by customers.
This may be because e-retailers could monitor the ordering process of
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customers before they releasing their orders, such as adding products
into their e-carts (Add to Cart), editing delivery addresses, or selecting
payment methods. Despite it is not clear whether the timing advance
could benefit the efficiency of entire ECL, some e-retailers would like to
process the orders once they get all the necessary order information and
consider the customers are very likely to place the order.

Besides, the operation process shown in Fig. 1 is a general process
without considering the very detailed and specific operation activities.
On the one hand, it may be much complex in reality. Take JD.com for
example, it has several layers of distribution centers and the orders
would pass from the top layer to the bottom layer before reaching final
customers. On the other hand, there would be slightly differences be-
tween different operation modes of ECL. For example, JD.com has self-
built ECL system hence it is responsible for conducting all the activities
in warehouses and distribution centers, while in Taobao, e-retailers
need to manage their own warehouses and outsource the delivery ac-
tivities to 3rd party logistics providers. The different operation pro-
cesses would thus influence the performance of ECL, including their
reliability, service quality, operation time, etc. In the following of this
paper, without loss of generality, the typical operation process shown in
Fig. 1 is adopted for further analysis.

3.2. Measurement of operational risks

During the operation process of ECL, there are many threats that
deteriorate or even disrupt its normal operation activities. In addition,
these activities involved are usually highly inter-dependent with each
other, and the delay of one activity could easily put its successive ac-
tivities off schedule in real-time, leading to undesirable delays of the
entire ECL process.

To minimize and avoid service level reduction during the logistics
operation process, some researchers examined the causes of threats,
their occurrence probabilities, and risk avoidance strategies.
Nevertheless, the scenarios of logistics systems in reality vary from each
other and the causes of threats may also have substantial differences,
which make it challenging to comprehensively analyze the causes based
on specific scenarios. Thus some researchers analyzed operational risks
from the perspective of their adverse effects, such as the earliness or
tardiness in logistics operations [21,26]. Considering the dynamic and
diverse scenarios in ECL, this should also be appropriate for analyzing
the operational risks in ECL. Meanwhile, since on-time delivery is the
most important success factor of ECL [13,27], the tardiness of operation
activities is selected as the indicator to represent the operational risks in
ECL.

According to the above analysis, the operational risks of ECL can be
defined as the expected delay of operation activities in ECL, which can
be formulated as:

R P D= × (1)

where P is the probability of delay and D refers to the amount of delay.
Given n observations of ECL operation data, if m orders are delayed,

its risks can be calculated as follows:
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Here,Ti
a refers to the actual operation time andTi

r refers to the required
operation time.

4. Operational risk analysis using Gaussian mixture model

The entire operation process of ECL consists of several inter-de-
pendent successive phases. In order to measure the operational risks of
every phase using Eq. (2), it is a prerequisite to have the required op-
eration time (Ti

r) of each phase. However, in practice, most e-retailers
and e-commerce platforms only provide the maximum delivery time
guarantee (required operation time for entire ECL), while lacking clear
regulations on the operation time of each phase. Meanwhile, since ECL
scenarios vary from each other, it is difficult to determine the required
operation time for each phase.

Taking these difficulties into consideration, this section analyzes the
distribution of operation time in each phase based on historical trans-
action data, then proposes a Gaussian Mixture Model (GMM) based
approach to detect the maximum time for normal operations (the re-
quired operation time of each phase). After that, the method for op-
erational risks analysis of every phase in ECL is presented.

4.1. Operation time analysis

According to the ECL operation process depicted in Fig. 1, this re-
search divides the whole process into six phases, that consists of order
processing, order releasing, order picking, packaging, sorting, and
transportation. The definitions of these phases are presented in Table 1.
The operation time of each phase can then be calculated through
comparing the time stamps of its end and start activities.

In the following, the patterns of ECL operation time are analyzed
using the data set described in Section 2.

Fig. 2 shows the operation time distribution of the entire ECL pro-
cess. It can be clearly observed that the entire ECL operation time

Fig. 1. General operation process of E-Commerce Logistics (ECL).
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follows a multimodal distribution and most e-commerce orders can be
delivered with 3 days.

Fig. 3 shows the operation time distribution of each phase in ECL.
Generally, transportation and sorting have been identified as the two
most time-consuming phases in ECL, while order processing is the most
efficient one, most of which can be finished within 5min. Besides, it is
also found that the distribution of transportation time is multimodal
while the others are single modal.

Empirically, the transportation time is positively related with
transportation distances. To learn the effect of transportation distance
on the distribution of transportation time, this research divides these e-
commerce orders into three groups according to the distances between
warehouses and receiving addresses, they are inner-city order, inner-
province order, and inner-region order. Fig. 4 shows the distributions of
transportation time and total ECL time for different types of orders.

It can be found that the distributions of transportation time and
total ECL time in different order groups are still multimodal. The phe-
nomenon can be explained from the fixed schedules on the shuttle
services in ECL. Similar with that in air cargo transportation [21], once
the e-commerce orders failed to be loaded on its scheduled truck/train/
flight, it has to be delivered through the next shuttle service on the
same route later. The scheduled gap between shuttle services generates
the gaps between adjacent peaks in the distributions of transport time
and total ECL time.

4.2. Gaussian mixture model based anomaly detection

With the distribution patterns of different phases in ECL, the cor-
responding anomaly detection method can be designed to identify the
threshold that separates the normal operation time and abnormal op-
eration time, which is also treated as the required operation time in this
research. Considering diverse distribution patterns, especially the
multimodal distributions of transportation time and entire ECL time,
Gaussian Mixture Model (GMM) is selected as the anomaly detection

method, which could well fit various distribution patterns [28].
In general, GMM is the weighted sum of several Gaussian prob-

ability distributions N x µ k K( | , ), 1, ,k k = … , and each of them is called
a component. GMM can be denoted as:

p x N x µ( | ) ( | , )
k

K

k k k
1

=
= (3)

where µ{ , , }k k k= are the GMM parameters, K is the number of
components, (0 1)k k< < is the weight of each component, which
satisfies 1k

K
k1 == . GMM is a flexible unsupervised clustering

method, and has been widely adopted as an efficient tool for anomaly
detection, such as in maritime navigation system [29], critical events
detection [30], flight operation [31], building systems [32], health-care
systems [33], etc.

In this research, the inputs of the GMM-based Anomaly Detection
(GMM-AD) method are the operation time of each phase provided by
the data set described in Section 2. Based on the assumption that the
majority of operation time exhibit common patterns under routine ECL
operations and a few outliers that deviate from those common patterns
may be risky on the performance of entire ECL operations, GMM-AD
automatically clusters the massive operation time records into groups
and then the extremely long operation time with low occurrence
probability is identified as the abnormal operation time.

In order to build the GMM for operation time in every phase of ECL,
it is necessary to define the basic attributes of the model. In this re-
search, the parameters among each component of GMM are not shared
to maximize the goodness of fit. Besides, the number of mixture com-
ponents K( ) is determined through observations on the distributions of
operation time.

After a GMM configuration is well defined, the parameters of the
GMM can be obtained using Expectation-Maximization (EM) algorithm
[34], which is the most popular and mature method. The working
process of EM algorithm can be described as follows:

Step 1: Initialize GMM parameters µ{ , , }k k k= .
Step 2 (E Step): For every record of operation time, determine the
posteriori probability for each component k using Eq. (3):

k x
N x µ

N x µ
( | , )

( | , )
( | , )

k k k

i
K

i i i1

=
= (4)

Step 3 (M Step): Update GMM parameters µ{ , , }k k k= using Eqs.
(4)–(6):

N
k x1 ( | , )k

new

t

N

1
=

= (5)

Table 1
Division of ECL operation phases.

Phase ID Phase Description Start Activity End Activity

1 Order Processing Place Order Process Order
2 Order Releasing Process Order Print Order
3 Order Picking Print Order Order Picking
4 Packaging Order Picking Package
5 Sorting Package Sort
6 Transportation Sort Receive Order

– ECL Place Order Receive Order

Fig. 2. Operation time distribution of entire ECL.
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where N refers to the number of records.

Step 4: Evaluate log likelihood using Eq. (7):

ln p x ln N x µ( ( | )) ( | , )
t

N

k
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k k k
1 1

=
= = (8)

Step 5: If ln p x ln p x( ( | )) ( ( | ))new < , where is the threshold for
termination, the EM algorithm stops and return as the parameter
of GMM. Otherwise, set new= and go to Step 2 for a new iteration.
After the GMM is generated, given the threshold p, the maximum

Fig. 3. Operation time distributions of each phase in ECL.

Fig. 4. Transportation and ECL time distributions for different types of orders.
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operation time whose Probability Density Function (PDF) equals to p
can be identified as the required operation time (Ti

r) for that phase
of ECL. The operation time longer than Ti

r would be recognized as
abnormal operation time.

4.3. Operational risk analysis

In the practice of ECL, it is common that only the required entire
ECL time Tecl

r is provided, which cannot be directly used to analyze the
operational risks in each phase. Therefore, this part proposes an ap-
proach to identify the required operation time Ti

r for each operation
phase using Tecl

r and GMMs generated in previous stage.
The first step is getting the threshold value of entire ECL time based

on GMM using:

p T N T µ( | ) ( | , )ecl
r

k

K

k ecl
r

k k
1

=
= (9)

It means p T( | )ecl
r orders cannot be delivered within Tecl

r . Since the
performance of ECL is an accumulated effect of different phases, it is
reasonable to assume that in every operation phase, the worst p T( | )ecl

r

orders are in risks that their operation time may exceed the required
time and would lead to the delay of final delivery.

With this assumption, the second step is setting the threshold value
for each operation phase as p T( | )ecl

r , and the set of H h h, , n1= … that
satisfies p h p p T( | ) ( ( | ))n op ecl

r= can be obtained, where i is the para-
meters of GMM for ith operation phase. Then T Max H{ }i

r = will be
identified as the required operation time for ith operation phase.

According to the generated Ti
r for each operation phase, the op-

erational risk can be analyzed using Eq. (2).

5. Experimental case study

In this section, an experimental case study is given based on the data
set described in Section 2. The process of operational risk analysis using
the proposed approach will be illustrated, and discussions on the risk
analyzing results will also be provided.

5.1. Required operation time identification

According to the operation time distributions shown in Figs. 2 and
3, the number of GMM components K for different operation phases are
decided by the number of modals they have. In this case, Kecl is set as 7,
K2 is set as 3, K6 is set as 4, and K K K K, , ,1 3 4 5 are set as 2. Besides, the
maximum iteration times for the EM algorithm is set as 100.

The training algorithm is implemented using Python and running on
a personal computer with 3.2 GHz CPU and 16G RAM. In this case, 7
GMMs were trained for ECL time and the operation time of each phase
separately. Using the GMMs, the required operation time for each phase
in ECL can be calculated.

In the practice of e-commerce in China, the maximum delivery time
is frequently set as 3 days. Therefore, in this case, the required opera-
tion time for entire ECL time is set as 3 days (T 4320 minecl

r = ). Using the
GMM of ECL time, the PDF threshold of ECL time is calculated as
p T( | ) 0.097ecl

r = .

With the value of p T( | )ecl
r , the required operation time for each

phase can be calculated using its GMM, and the results are shown in
Table 2.

From Table 2, order processing is the most efficient process (T 1r
1 = )

while transportation is the most time-consuming process
(T 2838 minr

6 = ). This is consistent with the actual situation that order
processing is usually done digitally and automatically through the e-
commerce platform, which can be finished online in real-time. How-
ever, transportation has to move the goods physically for a long dis-
tance, its time is strongly related with the distance and speed (transport
mode). Meanwhile, based on Fig. 1, it is found that although the op-
erations in warehouses are more complex than in distribution centers,
the required operation time in warehouses
(T T T T 434 minw

r r r r
2 3 4= + + = ) is shorter than that in distribution cen-

ters (T T 856 mindc
r r

5= = ).
One thing should be noticed here is that the required operation time

(Ti
r) presented in Table 2 is different with the regulated operation time

given by individual company. Ti
r is based on the observations of ex-

tensive operation practices that refers to the maximum operation time
that could still satisfy the overall service quality of entire ECL, while
companies may set a more strict regulation on operation time to keep
competitive in the ECL market.

5.2. Operation risk analysis

With the required operation time for each phase presented in
Table 2, the operational risk of each phase in ECL can be quantitatively
calculated using Eq. (2), and the results are shown in Table 3.

Pi refers to the proportion of orders that cannot be finished within
required operation time. Since the generated GMM in previous step is
difficult to perfectly fit the real distributions of operation time, there is
slightly difference between the threshold value p T( | )ecl

r and Pi, which is
calculated using real-life data. For example, only 6.3% orders in the
experimental data set cannot be processed within the required opera-
tion time, rather than 9.7%.

Generally, from the view of entire ECL, the delivery of e-commerce
order is expected to be delayed over seven hours, while for those de-
layed orders, they are expected to be delayed more than three days.
Focusing on each operation phase, transportation is identified as the
most risky phase in ECL (R 363.3686 = ). Although over 90% orders can
be transported within 2838min, every order is expected to be delayed
over six hours. Moreover, for these delayed orders, they are expected to
be delayed more than two and a half days (D 3747.1776 = ). Order re-
leasing and sorting are the other two phases with high risks that are
expected to be delayed around one to three hours
(R R73.013, 173.8345 2= = ). It is also identified that order processing,
order picking, and packaging are with lower risks. All of their expected
delay is within ten minutes (R R R1.010, 8.306, 2.8231 3 4= = = ).

5.3. Discussions

According to the risk analyzing results given above, several im-
plications can be concluded as follows.

Firstly, transportation is identified as the most time-consuming and

Table 2
Required operation time for each phase of ECL.

Phase Required Operation Time

Order Processing 1 (min)
Order Releasing 330 (min)
Order Picking 81 (min)
Packaging 23 (min)
Sorting 856 (min)
Transportation 2838 (min)

Table 3
Operational risks in ECL.

Phase Pi Di Ri

Order Processing 0.063 16.005 1.010
Order Releasing 0.097 1790.844 173.834
Order Picking 0.098 84.880 8.306
Packaging 0.101 27.810 2.823
Sorting 0.097 754.526 73.013
Transportation 0.097 3747.177 363.368

ECL 0.097 4433.623 428.683

G. Xu, et al. Advanced Engineering Informatics 40 (2019) 29–35

34



risky process in ECL. Its performance directly determines the perfor-
mance of entire ECL. Therefore, to further decrease the risks of ECL,
more reliable and resilient transportation systems should be designed.
Meanwhile, more flexible and efficient transport services should be
provided to further improve the efficiency of ECL.

Secondly, order releasing has the second highest risks. More efforts
should be paid on analyzing its detailed working logics, the types of
risks it faces, and the causes of risks. Then targeted measures should be
implemented to mitigate the adverse effects of these risks.

Thirdly, sorting is the second most time-consuming process in ECL
and its efficiency improvements may have a great impact on the effi-
ciency of entire ECL. Therefore, more investment can be made on the
sorting processes to further improve its efficiency, including adding
more labors, adopting automation tools, optimizing its activities, etc.

6. Conclusions

Along with the rapid development of e-commerce, the importance
of ECL has been widely recognized by both industries and academics.
Nevertheless, ECL is vulnerable that its service quality is frequently
threatened by various risks. In order to facilitate the understanding of
operational risks in ECL, this paper proposed a data-driven approach to
analyze the operation process of ECL, and then developed GMM-based
approach to qualitatively analyze the operational risk in ECL.

The contributions of this paper can be concluded as follows. Firstly,
this is a pioneer work on quantitatively analyzing the operational risks
of ECL using real-life data. It enables a clear understanding of ECL
operational risks and facilitates conducting targeted risk mitigation
strategies. Secondly, the operational risk measurement method is in-
troduced from the aspect of their adverse effects on operation time. It
can adapt to dynamic scenarios with varied threats, and could be ex-
tended to many other fields. Thirdly, the GMM based operational risk
analysis method is proposed, which could cope with diverse operation
time distributions and automatically derive the required operation time
of each phase for risk analysis.

In the future, this work can be extended from the following three
aspects. Firstly, the causal factors of operational risks in different
phases of ECL should be investigated to facilitate the design of effective
risk mitigation strategies. Secondly, using the massive e-commerce
transaction data, the operational risk prediction approaches could be
studied, so that measures can be made in advance to eliminate adverse
effects. Thirdly, efforts can be made on building resilient ECL systems to
cope with the threats during its execution.

Acknowledgment

This work is supported by National Natural Science Foundation of
China under Grant 71804034, New Faculty Start-up Fund of Harbin
Institute of Technology, Shenzhen under Grant FB45001022.

References

[1] S.X. Xu, G.Q. Huang, Efficient multi-attribute multi-unit auctions for B2B e-com-
merce logistics, Prod. Oper. Manage. 26 (2) (2017) 292–304.

[2] F. Qian, S. Jia, e-commerce in China – 2017, Tech. rep., Department of Electronic
Commerce and Informatization, Ministry of Commerce of the People’s Republic of
China, 2018.

[3] M. Zhang, G.Q. Huang, S.X. Xu, Z. Zhao, Optimization based transportation service
trading in B2B e-commerce logistics, J. Intell. Manuf. (2016) 1–17.

[4] Q. Lu, N. Liu, Effects of e-commerce channel entry in a two-echelon supply chain: a

comparative analysis of single-and dual-channel distribution systems, Int. J. Prod.
Econ. 165 (2015) 100–111.

[5] P.-J. Wu, K.-C. Lin, Unstructured big data analytics for retrieving e-commerce lo-
gistics knowledge, Telematics Inf. 35 (1) (2018) 237–244.

[6] Q. Yang, X. Zhao, H.Y.J. Yeung, Y. Liu, Improving logistics outsourcing perfor-
mance through transactional and relational mechanisms under transaction un-
certainties: evidence from China, Int. J. Prod. Econ. 175 (2016) 12–23.

[7] J. Acimovic, M.K. Lim, H.-Y. Mak, Beyond the speed-price trade-off, MIT Sloan
Manage. Rev. 59 (4) (2018) 12–15.

[8] K.-Y. Hu, T.-S. Chang, An innovative automated storage and retrieval system for
B2C e-commerce logistics, Int. J. Adv. Manuf. Technol. 48 (1–4) (2010) 297–305.

[9] F. Chen, G. Xu, Y. Wei, Heuristic routing methods in multiple-block warehouses
with ultra-narrow aisles and access restriction, Int. J. Prod. Res. (2018) 1–22.

[10] J. Ruan, Y. Shi, Monitoring and assessing fruit freshness in IOT-based e-commerce
delivery using scenario analysis and interval number approaches, Inf. Sci. 373
(2016) 557–570.

[11] S. Shao, G. Xu, M. Li, G.Q. Huang, Synchronizing e-commerce city logistics with
sliding time windows, Transp. Res. Part E: Logist. Transp. Rev. (2019) 1–12.

[12] S.X. Xu, M. Cheng, G.Q. Huang, Efficient intermodal transportation auctions for B2B
e-commerce logistics with transaction costs, Transp. Res. Part B: Methodol. 80
(2015) 322–337.

[13] R. Ramanathan, The moderating roles of risk and efficiency on the relationship
between logistics performance and customer loyalty in e-commerce, Transp. Res.
Part E: Logist. Transp. Rev. 46 (6) (2010) 950–962.

[14] P. Xiao, D. Wang, Research on logistics outsourcing risk management in e-com-
merce enterprise based on agency theory, The Conference on Web Based Business
Management, Scientific Research Publishing, 2010, pp. 345–348.

[15] T. Choi, C. Chiu, H. Chan, Risk management of logistics systems, Transp. Res. Part
E: Logist. Transp. Rev. (2016) 1–6.

[16] I. Heckmann, T. Comes, S. Nickel, A critical review on supply chain risk–definition,
measure and modeling, Omega 52 (2015) 119–132.

[17] C.S. Tang, Perspectives in supply chain risk management, Int. J. Prod. Econ. 103 (2)
(2006) 451–488.

[18] J. Chen, A.S. Sohal, D.I. Prajogo, Supply chain operational risk mitigation: a col-
laborative approach, Int. J. Prod. Res. 51 (7) (2013) 2186–2199.

[19] J.P. Mo, M. Cook, Quantitative lifecycle risk analysis of the development of a just-
in-time transportation network system, Adv. Eng. Inf. 36 (2018) 76–85.

[20] R.A. Sutrisnowati, H. Bae, M. Song, Bayesian network construction from event log
for lateness analysis in port logistics, Comput. Industr. Eng. 89 (2015) 53–66.

[21] Y. Shang, D. Dunson, J.-S. Song, Exploiting big data in logistics risk assessment via
bayesian nonparametrics, Oper. Res. 65 (6) (2017) 1574–1588.

[22] G. Xu, M. Li, L. Luo, C.-H. Chen, G.Q. Huang, Cloud-based fleet management for
prefabrication transportation, Enterprise Inf. Syst. (2018) 1–20.

[23] Z. Li, G. Liu, L. Liu, X. Lai, G. Xu, IOT-based tracking and tracing platform for
prepackaged food supply chain, Industr. Manage. Data Syst. 117 (9) (2017)
1906–1916.

[24] X. Qiu, H. Luo, G. Xu, R. Zhong, G.Q. Huang, Physical assets and service sharing for
IOT-enabled supply hub in industrial park (ship), Int. J. Prod. Econ. 159 (2015)
4–15.

[25] G. Xu, J. Wang, G.Q. Huang, C.-H. Chen, Data-driven resilient fleet management for
cloud asset-enabled urban flood control, IEEE Trans. Intell. Transp. Syst. 19 (6)
(2018) 1827–1838.

[26] S. Wang, Z. Liu, X. Qu, Collaborative mechanisms for berth allocation, Adv. Eng.
Inf. 29 (3) (2015) 332–338.

[27] A. Azadeh, V. Salehi, R. Salehi, S. Hassani, Performance optimization of an online
retailer by a unique online resilience engineering algorithm, Enterprise Inf. Syst. 12
(3) (2018) 319–340.

[28] D. Reynolds, Gaussian mixture models, Encyclopedia Biometr. (2015) 827–832.
[29] E. Tu, G. Zhang, L. Rachmawati, E. Rajabally, G.-B. Huang, Exploiting AIS data for

intelligent maritime navigation: a comprehensive survey from data to methodology,
IEEE Trans. Intell. Transp. Syst. 19 (5) (2018) 1559–1582.

[30] F. Attal, A. Boubezoul, A. Samé, L. Oukhellou, S. Espié, Powered two-wheelers
critical events detection and recognition using data-driven approaches, IEEE
Transact. Intell. Transport. Syst. 19 (12) (2018) 4011–4022.

[31] L. Li, R.J. Hansman, R. Palacios, R. Welsch, Anomaly detection via a gaussian
mixture model for flight operation and safety monitoring, Transp. Res. Part C:
Emerg. Technol. 64 (2016) 45–57.

[32] A.J. Sonta, P.E. Simmons, R.K. Jain, Understanding building occupant activities at
scale: an integrated knowledge-based and data-driven approach, Adv. Eng. Inf. 37
(2018) 1–13.

[33] B. Kang, G. Chhipi-Shrestha, Y. Deng, J. Mori, K. Hewage, R. Sadiq, Development of
a predictive model for Clostridium difficile infection incidence in hospitals using
gaussian mixture model and Dempster–Shafer theory, Stoch. Env. Res. Risk Assess.
32 (6) (2018) 1743–1758.

[34] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data
via the em algorithm, J. Royal Stat. Soc. Ser. B (Methodol.) (1977) 1–38.

G. Xu, et al. Advanced Engineering Informatics 40 (2019) 29–35

35

http://refhub.elsevier.com/S1474-0346(18)30500-7/h0005
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0005
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0015
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0015
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0020
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0020
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0020
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0025
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0025
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0030
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0030
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0030
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0035
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0035
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0040
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0040
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0045
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0045
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0050
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0050
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0050
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0055
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0055
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0060
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0060
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0060
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0065
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0065
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0065
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0070
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0070
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0070
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0075
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0075
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0080
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0080
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0085
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0085
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0090
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0090
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0095
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0095
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0100
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0100
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0105
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0105
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0110
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0110
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0115
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0115
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0115
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0120
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0120
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0120
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0125
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0125
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0125
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0130
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0130
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0135
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0135
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0135
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0140
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0145
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0145
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0145
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0150
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0150
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0150
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0155
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0155
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0155
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0160
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0160
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0160
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0165
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0165
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0165
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0165
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0170
http://refhub.elsevier.com/S1474-0346(18)30500-7/h0170

	Data-driven operational risk analysis in E-Commerce Logistics
	Introduction
	Data set
	Operational risks in E-Commerce Logistics
	Operation process of E-Commerce Logistics
	Measurement of operational risks

	Operational risk analysis using Gaussian mixture model
	Operation time analysis
	Gaussian mixture model based anomaly detection
	Operational risk analysis

	Experimental case study
	Required operation time identification
	Operation risk analysis
	Discussions

	Conclusions
	Acknowledgment
	References




