
Engineering Science and Technology, an International Journal xxx (xxxx) xxx
Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: www.elsevier .com/ locate / jestch
Full Length Article
Chaotic salp swarm algorithm for SDN multi-controller networks
https://doi.org/10.1016/j.jestch.2018.12.015
2215-0986/� 2018 Karabuk University. Publishing services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: 22 Prospekt Bolshevikov, St. Petersburg, Russia.
E-mail address: a_ashraf@zu.edu.eg (A.A. Ateya).
q The work has been prepared with the support of the ‘‘RUDN University

Program 5-100”.
Peer review under responsibility of Karabuk University.

Please cite this article as: A. A. Ateya, A. Muthanna, A. Vybornova et al., Chaotic salp swarm algorithm for SDN multi-controller networks, Engi
Science and Technology, an International Journal, https://doi.org/10.1016/j.jestch.2018.12.015
Abdelhamied A. Ateya a,b,⇑, Ammar Muthanna b,c, Anastasia Vybornova b, Abeer D. Algarni d,
Abdelrahman Abuarqoub e, Y. Koucheryavy f, Andrey Koucheryavy b

a Electronics and Communications Engineering, Zagazig University, Zagazig, Egypt
b St. Petersburg State University of Telecommunication, 22 Prospekt Bolshevikov, St. Petersburg, Russia
cPeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, Russia
dCollege of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
e Faculty of Information Technology, Middle East University, Amman, Jordan
f Tampere University of Technology, Tampere, Finland
a r t i c l e i n f o

Article history:
Received 12 November 2018
Revised 24 December 2018
Accepted 24 December 2018
Available online xxxx

Keywords:
Controller placement
Latency
Optimization algorithm
SDN
Swarm
Utilization
a b s t r a c t

Software-defined networking (SDN) is a novel network paradigm that enables flexible management for
networks. However, with the increase in network capacity, a single controller of SDN has many limita-
tions on both performance and scalability. Distributed multi-controller deployment is a promising
method to satisfy fault tolerant and scalability. There are still open research issues related to controllers
placement, and the optimal number of deployed controllers. In this paper, a dynamic optimization algo-
rithm that is based on the Salp Swarm Optimization Algorithm (SSOA) is developed with the introduction
of chaotic maps for enhancing the optimizer’s performance. The algorithm dynamically evaluates the
optimum number of controllers and the optimal connections between switches and controllers in large
scale SDN networks. In order to evaluate the proposed algorithm, several experiments were conducted
and implemented in various scenarios. Moreover, the algorithm was compared to the linear and meta-
heuristic algorithms. Simulation results show that the proposed algorithm outperforms meta-heuristic
algorithms and a game theory based algorithm in terms of execution time and reliability.
� 2018 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Software Defined Networking (SDN) is a recent communication
paradigm introduced for cost effective dynamic networks. The
main idea behind SDN is the physical separation of the control
plane and the forwarding plane through programmable software
controllers, which enables dynamic configuration and control of
the whole network [1]. This process differs completely from the
traditional networks, in which the data plane is responsible for
the whole process of data forwarding and thus both planes are
completely integrated in the same device [2]. Data plane includes
all forwarding devices that are responsible for traffic forwarding
through the network, while the control tire contains all devices
used for making traffic handling decisions. SDN approach covers
the interaction and collaboration between the control and data
planes, as the control plane controls and manages all forwarding
devices in the data plane [3]. Control plane is responsible for set-
ting configuration parameters and deciding the forwarding roles
of all forwarding devices that perform traffic forwarding based
on the received instructions. A set of intelligent controllers can
be deployed in the control plane to act as the brain of the SDN net-
work [4]. The command signals between the control and data
planes are accomplished by means of an appropriate standard
interface protocol (e.g. ForCES and OpenFlow) [5,6].

With the recent developments and advances in the industry of
electronics and sensory manufacturing, the number of wireless
devices is dramatically increasing. This puts high constraints on
the design and development of the future systems (e.g. 5G, IoT
and Tactile Internet) that cover the connectivity among these
devices [7]. These design challenges include traffic volume, con-
nectivity and reliability [8]. By 2020, it is expected that the data
traffic will be 200 times higher than that in 2010 and by 2030 it
will be 20,000 times higher than the traffic in 2010 [9]. Another
important issue is the high requirements and demands required
from the future systems [10]. The fifth generation of cellular sys-
tem (5G) is expected to achieve an increased data rate and user
demands up to 1000 fold (i.e. data rate of up to ten Gbps) with ultra
neering
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low latency, high reliability, high mobility, high throughput and
high connectivity [11,12].

This ultra high amount of traffic can’t be handled by current
wireless solutions and thus, new technologies and paradigms
should be involved. In order to achieve the requirements and user
demands and handle the dramatic number of data traffic, 5G and
next generation systems will deploy SDN and other technologies
such as Mobile Edge Computing (MEC) and Network Function Vir-
tualization (NFV) [13,14].

SDN network achieves various benefits through the decoupling
of control plane and data plane. These benefits include [15,16]:

1. Simplicity of network management,
2. Hardware simplicity,
3. Higher network flexibility,
4. Reduction of round trip latency,
5. High reliability,
6. The ability of network innovations, and
7. Increasing over all system efficiency in terms of utilization [17].

Physical SDN controller can practically handle limited number
of flow requests at a given time. Thus, the controller can only serve
for limited number of switches and when the traffic increases
above the upper limit that a controller can handle, there should
be another controller to support. This indicates that the single cen-
tralized SDN controller may be prober, only for small scale net-
works [18].

The most common existing SDN interface is the OpenFlow,
which is practically developed for single centralized controller
[19]. OpenFlow protocol achieves poor efficiency, in terms of scal-
ability, for large scale networks [20]. However, this problem can be
improved by separating OpenFlow network into several fields, with
one controller for each field. This separation and involvement of
multiple controllers achieve the load balancing and scalability ben-
efits to the SDN network [21].

Consequently, for large scale networks, employing single con-
troller to manage all network switches isn’t efficient and thus,
the efficient solution is to employ multiple controllers. Fig. 1 illus-
trates the basic architecture of the SDN multi-controller networks
[22]. SDN networks, either single or multiple controllers, consist of
three main layers; the data plane layer, the control plane layer and
the application layer [1,23].

In SDN multi-controller networks, the number of deployed con-
trollers depends on the network scale and the amount of traffic.
The main issues associated with SDN multi-controller networks
are the number of deployed controllers and the allocation of
Fig. 1. General structure of SDN multi-controller networks.
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deployed controllers to distributed switches, which is known as
the controller placement problem [24]. The controller placement
problem seeks to find the best places of the SDN controllers, in a
way that achieves various objectives that include latency reduc-
tion, energy efficiency, load balancing and reliability enhancement
[25]. The capital and operational expenditures (CAPEX and OPEX)
of the network are mainly affected by the number of deployed con-
trollers [26]. Thus, deploying optimal number of controllers and
estimating their best allocations are a great demand for SDN
multi-controller networks. This number and allocations should
be dynamic processes that follow the dynamic changes of network
size and load.

For static networks, the controller placement problem can be
easily solved at the start of the network operation; since the net-
work load is static and the optimum number of controllers can
be calculated readily. Dynamic changing in network traffics results
in dynamic changing in the number of deployed controllers. When
the network load increases, new controllers should be activated;
while the decrease of network load should leads to deactivating a
number of deployed controllers. Frequent changing in network
load results in frequent switching of deployed controllers between
on and off modes. Sleep mode may be deployed as an alternative
mode to switching off [27]. The decision of mode of operation,
for each controller to achieve the best system performance, may
be introduced by a prober optimizer.

In this work, a dynamic optimization algorithm is developed to
get the optimal number of controllers and the best allocations of
switches with the available controllers for large scale SDN enabled
networks. The algorithm is based on the Salp Swarm Optimization
Algorithm (SSOA) with the introduction of chaotic maps for
enhancing optimizer performance. In (Section II), a literature of
the related works is discussed. Moreover, the novelty of the pro-
posed work, compared to existing methods, is illustrated. In (Sec-
tions III and IV), the proposed work is introduced; at first the
mathematical model of the system is presented, then the problem
is defined and modeled and finally, the optimization algorithm for
solving the controller placement and allocation problem is pre-
sented. In (Section V), the proposed algorithm is implemented for
different networks with various scales and the performance is
measured. Different simulation cases are considered to measure
the effect of parameters variation on the network performance.
Finally, the proposed algorithm is compared with other meta-
heuristic algorithms and deterministic algorithms.
2. Background and relatedwork

The controller placement and allocation problem has a great
impact on the performance of the SDN enabled networks. This
attracts a lot of researchers to this field and many studies have
been conducted, to solve the problem and get the optimum solu-
tion. Many literature works have been conducted to review and
categorize the developed methods considering the problem of con-
troller placement and estimating the optimal number of con-
trollers; including the main objective of the work and the
considered mathematical methods. The recent review articles con-
sider this work and survey the recent developed algorithms can be
founded in [24,25].

In SDN multi-controller networks, the number of controllers
and controller allocation problems are considered to be a non-
deterministic polynomial (NP) - hard problem [28]. For large scale
networks, with the increase of network load, the problem become
harder and the solution become more difficult. The developed
methods and existing solutions, for the problem of controller allo-
cation and the problem of optimal number of controllers, can be
classified based on the objectives as illustrated in Fig. 2 [24,25].
tic salp swarm algorithm for SDN multi-controller networks, Engineering
ch.2018.12.015
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The existing methods consider either minimizing or maximizing
one or more objectives.

The proposed work considers minimizing the network latency
and the deployment cost and thus, it can be located in two main
categories, from the introduced categories in Fig. 2; Minimizing
Latency and Minimizing Cost. The proposed work merges both cat-
egories in a single approach by considering both objectives;
latency and cost, and weighting each considered objective. To this
end, we consider the recent related works that consider minimiz-
ing the latency and the cost. Literatures and related approaches
about the other categories can be found in [24,25].
2.1. Minimizing deployment cost

The deployment cost of the network elements includes both
CAPEX and OPEX. Controller placement and number of deployed
controllers mainly affect the deployment cost, thus methods have
been conducted to solve the problem of controller placement and
get the best number of deployed controllers that minimize the
deployed cost of the SDN enabled networks [29].

Main methods, in this context, can be classified into two main
approaches; static methods and dynamic methods. In both
approaches, the optimal number of controllers, optimal types of
controllers and optimum connections of switches and controllers
are investigated for minimum deployment cost [30]. This can be
happened statically (i.e. static approaches) or dynamically at real
time (i.e. dynamic approaches).

In [31], a non-zero-sum game algorithm is introduced to get the
optimal number of controllers and optimal connections of switches
and controllers, for minimizing the deployed cost of SDN multi-
controller networks. The algorithm is a distributed dynamic tech-
nique that can be implemented on each controller as an optimiza-
tion engine and tracks the network load changes in real time. The
algorithm is a low complexity and topology independent solution,
which represent the main advantages of the work. The algorithm is
simulated and tested for a random network and results indicate
that, the algorithm reduces the deployment cost.

In [32], a cost aware controller placement algorithm is devel-
oped to get the optimal number of controllers and optimal place-
ment. Moreover, the optimal types of deployed controllers are
derived by the algorithm to minimize the deployment cost. A
mathematical model is introduced to define the problem with
two main considered constraints; latency of the path set up and
the controller capacity. The algorithm runs with an input data
includes controller capabilities, latency of flow set up and connec-
tion mediums. Simulation results validate the algorithm for small
scale SDN networks; however it fails for large scale networks
because the optimizer takes much time, due to large number of
network elements and connections. An extension to this work is
introduced in [33], to expand the problem and solve both planning
and expansion problems.
Please cite this article as: A. A. Ateya, A. Muthanna, A. Vybornova et al., Chao
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2.2. Minimizing latency

The total latency between forwarding devices and SDN con-
trollers is an important and critical issue for SDN networks. This
time delay should be kept at minimum to enable fasts interaction
between controllers and switches, and also to support the quality
of service (QoS). There are two main times defined by the SDN con-
trollers to complete its role; flow setup time and role installation
time [34]. The time required to analyze the received packet and
calculate the rule in the context of network policies is the flow
setup time. This time mainly affected by the switch rate and num-
ber of connected switches to the controller [35]. The second time is
the rule installation time, which represents the time required by a
controller to install a new rule on a connected switch. Both times
are considered to be the controller processing latency, which
mainly depends on the amount of load on the controller. Another
important delay that may takes place is the queuing delay which
represents the time taken in the queue to the controller and this
time mainly depends on the amount of connected switches and
their rates [36]. Both queuing and processing time are referred as
the response time of the controller. One more important delay is
the propagation delay, which mainly depends on the distance
between the controller and the switch [37].

In [38], authors introduce a framework for the global latency
controller placement problem (GLCPP). An algorithm based on Par-
ticle Swarm Optimization (PSO) is developed to solve the problem,
taking into account the latency between controllers and the capac-
ity of each controller. In PSO algorithm, each swarm is considered
to be a set of placements for different controllers and the goal of
the optimizer is to get the best swarm based on the fitness func-
tion. The fitness mainly considers minimizing the distances
between switches and controllers, and between neighboring con-
trollers. The algorithm is implemented for random network, and
compared with three linear programming algorithms. Simulation
results indicate that the GLCPP algorithm introduces better results
in terms of delay and execution time of the algorithm. The main
disadvantage with the work is that it assumes the total number
of deployed controllers, which may not be the optimal number
especially with the dynamic change of network load.

In [34], a latency aware controller placement problem is defined
and a chaotic based gray wolf optimization algorithm is introduced
to solve the problem for optimum solution. The optimizer is mainly
used to get the optimum number of deployed controllers and the
optimal connections of switches and controllers that minimize
the network latency. The algorithm is implemented for small scale
random network with ten switches, and results are compared with
the results of another meta-heuristic algorithm. Simulation results
indicate that the algorithm achieves better performance in terms of
latency. Moreover, the algorithm is compared with static allocation
technique. The main conflict with this work is that the work is
introduced for 5G cellular systems with SDN enabled, however
the algorithm is implemented for small scale network and didn’t
tested for large scale networks and for real topologies.

Our proposed work, considers minimizing the network latency
and the deployment cost. Both objectives are weighted to evaluate
the optimal number of controllers and also the optimum alloca-
tions of switches to controllers. The novelty of our work comes
from the consideration of both objectives and mainly, from the
deployment of SSA that is considered to be one of the most efficient
PSO based algorithm; especially in feature selection [39]. More-
over, the introduction of chaotic maps achieves higher efficiency
for the optimizer. All developed related approaches consider only
one objective and the recent works deploys versions of PSO based
algorithms that has efficiency less than the considered SSA as
introduced in Section V. The proposed algorithm is applicable
and can be implemented to any SDN-multi controller network.
tic salp swarm algorithm for SDN multi-controller networks, Engineering
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3. Mathematical model for SDN multi-controller

In order to formulate the problem and identify the fitness func-
tion for the optimization problem, we will model the system at
first. SDN multiple controllers network employs M switches that
support an appropriate SDN interface, such as OpenFlow. Open-
Flow switches are connected to N controllers that are distributed
over the network. The set of controllers is Ci (i = 1,2,. . .,N), and
the switches set is Sj (j = 1,2,. . .,M).

In order to perform the network operation, each OpenFlow
switch requests the service from the corresponding controller.
The controller responds with the switching rules and forwarding
table. Since the controller‘s resources including storage, bandwidth
and processing are limited; thus, a controller Ci is able to handle
and manage a limited number of OpenFlow switches Ki. Ki is the
number of switches associated with a certain controller Ci at a
time, and can be calculated from the controller-switch matrix by
summing up the number of ones in the controller’s row. An exam-
ple of a controller-switch matrix with N = 5 and M = 7 is repre-
sented in (1), with the K matrix that includes the number of
connected switches with each controller. Rows of the matrix repre-
sent different controllers, while columns maps for switches. Con-
trollers shouldn’t be overloaded; this is because the failure
probability is highly increased with the increase of the controller’s
load, once it reaches a threshold level.

1 0 0 1 0 0 0

0 0 0 0 1 0 0

0 1 1 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

2
6666664

3
7777775 �� K½ � ¼

2

1

2

1

1

2
6666664

3
7777775 ð1Þ

One way to check the performance of the controller is by eval-
uating the time response of the controller that mainly affected by
the queuing delay [40]. Controllers can be modeled using multi-
server queuing model M/M/s [41]. The average response time Ti
of the controller Ci is the sum of the queuing time and the process-
ing time, and can be calculated using Erlang’s C formula as a func-
tion of the arrival rate ki and the service rate m.

Ti kð Þ ¼
C s; kil
� �

sli � ki
þ 1
l

ð2Þ

Where, C (s, k/m) is the probability that all system servers are in
use and any arriving packet will be queued, and can be calculated
as in (3).

C s;
k
l

� �
¼

sqð Þc
s!

� �
1

1�q

� �
Ps�1

k¼0
sqð Þk
k! þ sqð Þc

s!

� �
1

1�q

� � ¼ 1

1þ 1
1�q

� �
s!
sqð Þc

� �Ps�1
k¼0

sqð Þk
k!

ð3Þ

q ¼ ki
s � l ð4Þ

where, q represents the server utilization, which is an indication of
the system stability. The system has a stable distribution, only if the
server utilization q is less than one. This can be interpreted using
the state transition diagram of M/M/s model; when the received
requests in the queue is greater than the controller‘s servers, the
transition will still with sm, no more, and the controller is at maxi-
mum capacity.

The arrival rate ki of a controller Ci can be calculated as the sum
of the average arrival rate of switches connected to the controller.

ki ¼
X
ki

ks ð5Þ
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The average load on a controller Ci can be calculated as the aver-
age requests queued and processed. Using Erlang’s C formula the
average controller load Li can be calculated using (6).

Li kð Þ ¼ sqþ q
1� qC s;

ki
l

� �
ð6Þ
4. Latency-aware, cost-aware controller placement problem

4.1. Problem formulation

The dynamic change of the network load makes the optimal
number and the optimal locations of different controllers change
dynamically in accordance. Consequently, we seek to solve an opti-
mization problem to evaluate the dynamic value of optimal num-
ber of controllers and moreover, the dynamic optimum places of
different controllers deployed in the network.

The network load represents the graphic controller for both, the
number of controllers deployed and their locations. Once the net-
work load increases, new controller or more should be deployed
to handle the added load and compensate for the controller over-
loading problems. In the other side, if the network load is
decreased, some of the deployed controllers should go in a sleep
mode or separated, based on the amount of load reduction.

Allocating new controllers or cutting existing ones can be
processed by the introduced optimizer. Moreover, their optimal
locations are also introduced. The main objective of our frame-
work is to find the minimum number of SDN controllers with
their optimum locations and the optimum assignments of con-
trollers to distributed switches. These optimal solutions should
satisfy the main restrictions associated with the time response
and utilization of each controller. The problem can be modeled
as following:

Min f N;C;Dð Þ ð7Þ
Subjected to:

Ti 6 s ; 8 i 2 A ð8Þ
Ulb 6 Ui 6 Uub; 8 i 2 A ð9Þ

where, f is a non-linear function of the number of deployed con-
trollers N, D is the average delay between controller and connected
switches (i.e. propagation, queuing and processing) and C is the cost
of deployed controllers which represents both CAPEX and OPEX.
This problem represents a multi-objective with multi-constraint
optimization problem.

The first constraint indicates that the average response time
Ti of the controller Ci should be less than a threshold value s,
which is predefined; this takes place for all controllers in the
set of available controllers [A]. s is predefined in a way to pre-
sent a certain quality of service (QoS). The second restriction is
concerned with the utilization index of each controller, which
should be located between the lower bound of a controller uti-
lization index Ulb and the upper bound of a controller utilization
index Uub. Both values of Uub and Ulb are predefined in a way
that supports the QoS of the system. The utilization index of a
controller is used for mapping to power, storage and processing
utilization.
4.2. System utilization

In this section, we define a system utilization function, which
represents the fitness that is used to compare between different
solutions and point to the best solution. The utilization function
tic salp swarm algorithm for SDN multi-controller networks, Engineering
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of a system is generally used to map values of variables or events
into real numbers. It can be generally defined in (10).

u : X ! R ð10Þ
The first utility that should be considered is the time utilization

function, which maps to the time response of each controller; any
form of common loss functions can be used. We introduce the
quadratic function as it is mathematically tractable due to symme-
try [42]. The time utility of a controller Ci is UT

Ci is defined as intro-
duced in (11).

UCi
T ¼

aþ b s� Ti kð Þð Þ2 ; Ti kð Þ 6 s
0 ; Ti kð Þ > s

8 i 2 A

(
ð11Þ

where a and b are constants that their values have no effect on the
decision. The first constant a can be assigned a certain value that
represents the minimum non zero value of the time utilization
UT-thr occurred when the response time equal to the threshold
value. Eqs. (12) and (13) define both constants.

a ¼ UT�thr 8 UT 2 0;1½ � ð12Þ

b ¼ 1� UT�thrð Þ
s2

8 UT 2 0;1½ � ð13Þ

For a threshold time utilization of each controller of 70%, the
time utilization can be recalculated as in (14).

UCi
T ¼

0:7þ 0:3
s2 s� Ti kð Þð Þ2 ; Ti kð Þ 6 s

0 ; Ti kð Þ > s
8 i 2 A

(
ð14Þ

Another important utility that should be considered is the cost
utility function, which maps to the cost of used controllers. The
cost mainly refers to both terms, CAPEX and OPEX, dedicated with
deployed controllers. The quadratic loss function is also represents
a proper function for expressing the cost utilization. The cost uti-
lization of each controller, in the set of available controllers, can
be defined as following:

UCi
C ¼

u Uub � Ucið Þ2 8 Uci 2 Ulb ;Uub½ �
0 8 Uci R Ulb ;Uub½ � 8 i 2 A

(
ð15Þ

where U is a constant that has no effect on the decision; whatever,
what value it is assigned. A proper value forU can be defined in (16)
for a UC between 0 and 1.

£ ¼ 1

Uub � Ulbð Þ2
8 UC 2 0;1½ � ð16Þ

Both utility functions represent the total utility of each con-
troller in the network. In order to add both utilities, each of them
must be weighted. Equation (17) identifies the total utility of each
controller UCi.

Uci ¼ dCU
Ci
C þ dTU

Ci
T 8 i 2 A ð17Þ

where dC is the cost weighting factor and dT is the time weighting
factor. The total system utilization function represents the average
value of the utilization of each controller. Thus, the total utilization
function U can be calculated as following:

U ¼
X
A

Uci= Aj j ð18Þ

Also the total cost utility UCT and the total time utility UTT of all
available controllers can be calculated as the following:

UCT ¼
X
A

UCi
C = Aj j ð19Þ

UTT ¼
X
A

UCi
T = Aj j ð20Þ
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4.3. Salp swarm algorithm (SSA)

SSA is a meta-heuristic population based algorithm, which sim-
ulates the behavior of salps in oceans [43]. Salps are a species of
Salpidae that look like jelly fishes with transparent shape. Salps
navigate and forage in a swarm referred to as salp chain. SSA is a
recent type of PSO that models the salp chain [43]. The salp popu-
lation consists of the leader salp and the follower salps. The leader
salp is the first salp in the salp chain, which leads the swarm. Fol-
lower salps follow the leader salp for reaching the food source.

The position of each salp is a d-dimensional search space with d
represents the number of variables in a certain problem, in the
same way as other swarm based algorithms. The current position
vector of n salps in the search space is Xj = [x1j , x2j , x3j , . . .. . ., xdj ] ,
j = 1,2,. . ..,n. The leader salp updates its position using (21).

X1
i ¼

Fi þ C1 ubi � ulið ÞC2 þ lbið Þ; C3 P 0
Fi � C1 ubi � ulið ÞC2 þ lbið Þ; C3 < 0

�
ð21Þ

where Xi
1 indicates the position of the leader salp in ith dimension, Fi

is the food position in the ith dimension, ubi and lbi represent the
upper and lower boundary in ith dimension and C1, C2 and C3 are
the model coefficients. These coefficients are random numbers that
are used for certain objectives. The first coefficient C1 is introduced
to make balance between the exploration and the exploitation,
which represents the most important parameter in the algorithm.
C1 is defined in (22).

C1 ¼ 2e�
4t

Tmaxð Þ2 ð22Þ
where t is the current iteration and Tmax is the maximum number of
iterations. C2 and C3 are random numbers that uniformly generated
with values between 0 and 1. The follower salps update their posi-
tions based on Newton’s law ofmotion using the following equation:

Xk
i ¼

1
2

Xk
i þ Xk�1

i

� �
2 6 k < n ð23Þ

where Xi
k indicates the position of the kth follower salp in ith dimen-

sion and n is the total number of salp particles.

4.4. Chaotic salp swarm algorithm (CSSA)

Population based meta-heuristic algorithms share varies advan-
tages include scalability, simplicity and computational time reduc-
tion. However, these algorithms have two main disadvantages;
recession in local optima and low convergence rate [44]. One
way to overcome these problems and enhance the performance
of meta-heuristic algorithms is to deploy the chaos theory [45].
Chaotic maps are used instead of random numbers in PSO based
algorithms to enhance the convergence.

In this way, authors in [46] introduce a chaotic based SSA
(CSSA), which replaces random variables with chaotic ones. CSSA
uses chaotic maps to adjust the value of the second coefficient C2

[39]. The value of C2 can be replaced by the value of an appropriate
chaotic map at the current iteration, as following:

Ct
2 ¼ x tð Þ ð24Þ

where x(t) is the value of the chaotic map at the tth iteration. Equa-
tion (21) can be rewritten, using the new value of C2, as following:

X1
i ¼

Fi þ C1 ubi � ulið Þx tð Þ þ lbið Þ; C3 P 0
Fi � C1 ubi � ulið Þx tð Þ þ lbið Þ; C3 < 0

�
ð25Þ
4.5. Chaotic maps

Chaos theory is a common mathematical approach used to
analyze the behavior of dynamic systems with critical initial
tic salp swarm algorithm for SDN multi-controller networks, Engineering
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conditions [47]. One way to display this behavior is by using chao-
tic maps that are either discrete or continuous. Chaotic maps can
be deployed only for deterministic systems with a predictable
behavior. Recently, chaos theory becomes more attractive to many
systems in various fields such as computer science, robotics, phy-
sics and microbiology [48].

Chaotic maps become the most powerful solution to enhance
the performance of meta-heuristic algorithms by enhancing their
randomness parameters. These random parameters are extracted
based on a uniform or Gaussian distribution, so they can be bet-
ter controlled by a chaotic map shares the same characteristic
with better performance [49]. Controlling these parameters using
chaotic maps reduces the local optima and increases the
convergence.

Based on the results obtained in [46], the optimum chaotic map
for our optimizer is the logistic map. Logistic map was first intro-
duced by Robert May early in 1976 [50]. The general equation for
logistic chaotic map is:

x t þ 1ð Þ ¼ ax tð Þ 1�x tð Þ½ �; a ¼ 4 ð26Þ
where, x(t) is the value of chaotic map at the tth iteration. The ini-
tial condition of the chaotic map is assumed to be 0.7 (x (0) = 0.7)
[51].

4.6. CSSA for optimal number of controllers and optimal allocations

In SSA, the food position, which is the best salp position, repre-
sents the solution of the optimized problem. For the problem mod-
eled, we aim to fine the optimal number of controllers and the
optimal connection for each switch in the switch set S. This prob-
lem is considered to be an NP-hard problem; one way to solve this
kind of problems is by using meta-heuristic algorithms, as the
deterministic ones fails. We use the SSA, which is a kind of particle
swarm algorithms, to solve this problem. SSA is the recent PSO
based algorithm, which introduces higher performance than other
PSO based algorithms [46].

The main idea behind SSA is, by iteration, multiple salps
search in parallel to get the optimal solution. The optimum
solution is the optimal number of controllers and the optimal
distribution of controllers among switches. Consequently, two
algorithms, in a nested loop, are deployed to get the best solu-
tions; the two algorithms are based on CSSA. Algorithm 1 indi-
cates the pseudo code for the CSSA introduced for the defined
problem, where each salp represents the number of controllers
in the network. The output of this algorithm represents the
optimal number of controllers. Algorithm 2 indicates the pseudo
code for the CSSA deployed for finding the optimum connec-
tions for all switches based on the optimum number of con-
trollers calculated by algorithm 1. Each salp in algorithm 2
represents all available connections for all switches with their
dedicated controllers, and it is an M-dimensional vector with
each dimension represents a switch. The output of the second
algorithm indicates the best distribution of controllers among
switches.

The system starts working by setting the initial parameters of
CSSA includes lower boundary, upper boundary and the maxi-
mum number of iterations, and then initializing n salps ran-
domly with each salp represents the number of available
controllers in the network. The fitness of each salp is calculated
using (18) and the salp with highest fitness is considered to be
the current best solution. The location of highest fitness salp is
considered to be the food position. The parameters of SSA are
updated and in accordance the positions of salps are updated.
The process of updating salps positions and evaluating fitness
of each salp is repeated until the optimum solution is found or
reaching the maximum iteration.
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Algorithm 1 CSSA for optimal number of controllers

1: Initialize ub, lb, tmax, d, n
2: Initialize positions of salps xi (i = 1,2,3,. . .,n)
3: While (t � tmax)
4: Calculate the fitness function of each salp position

using (18)
5: F = The best salp position
6: Update the value of C1 using (22)
7: Get the value of chaotic map (Logistic) w(t)
8: For (i = 1 : i � n) do
9: if (i == 1)
10: Update the position of leading salp using (25)
11: else
12: Update the position of follower salp using (23)
13: end if
14: end for
15: Adjust salps based on the upper and lower bounds
16: Calculate the best connections of switches for the best

salp (call Algorithm 2)
17: Update thebest salpbasedon the resultsofAlgorithm2
18: t t + 1
19: Return F

Algorithm 2 CSSA for optimal switches to controllers connections

1: Initialize ub, lb, tmax, d, n
2: Initialize positions of salps xi (i = 1,2,3,. . .,n)
3: While (t � tmax)
4: Calculate the fitness function of each salp position

using (18)
5: F = The best salp position
6: Update the value of C1 using (22)
7: Get the value of chaotic map (Logistic) w(t)
8: For (i = 1 : i � n) do
9: if (i == 1)
10: Update the position of leading salp using (25)
11: else
12: Update the position of follower salp using (23)
13: end if
14: end for
15: Adjust salps based on the upper and lower bounds
16: t t + 1
17: Return F
5. Performance evaluation

For the performance evaluation of the proposed model, a simu-
lation environment is conducted. The proposed algorithm is imple-
mented, for different topologies, using Matlab. In this part, the
simulation set up is provided at first. Then, simulation results
and results analysis are carried out.

5.1. 1. Simulation setup

The proposed algorithm is implemented and tested using Mat-
lab over a machine equipped with Intel Core i5 processor and 8 GB
RAM. Ten approximated topologies, from the Internet Topology
Zoo, are considered [52]. The ten topologies are divided into two
main categories; the first category includes topologies with a small
number of forwarding devices and the other category contains
topologies with a heavy number of forwarding devices. Table 1
illustrates the selected topologies, with the total number of for-
warding devices deployed in each topology. The Internet Topology
tic salp swarm algorithm for SDN multi-controller networks, Engineering
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Table 1
Considered topologies.

Ref. Number Topology Quantity

Category (I)
1 ARPANET 1969_12 4
2 MREN 6
3 GetNet 7
4 Sprint 11
5 NSF 13

Category (II)
6 Claranet 15
7 IBM 18
8 Oxford 20
9 FCCN 23
10 AGIS 25
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Zoo is considered, because its areal situations for different wide
area networks topologies. Every Point-of-Presence (PoP) in the net-
work topology is considered to be a network switch (i.e. forward-
ing device) [53]. The flow is assumed to be a random variable
that follows Poisson distribution. Simulation parameters, included
in the evaluation process, are introduced in Table 2. For the first
developed SDN controller NOX, the average flow requests handled
per second is in order of 30000[54,55]. Thus, the average service
rate of controller is set to 30000.

5.2. 2. Simulation results

For the considered ten topologies, two main scenarios are con-
sidered for each topology. In the first scenario, we aim to analyze
the effect of changing threshold time s on the decision (i.e. optimal
number of controllers). In this situation, the upper bound utiliza-
tion index of each controller Uub is assumed to be constant and
equal to the value in the simulation parameters table (i.e.
Uub = 0.9). The proposed algorithm is implemented multiple times
for each topology; each time represents a case and in each case a
certain value of time response threshold s is considered. Table 3
indicates different values of s for scenario (I).

In the second scenario, the effect of variation of upper utiliza-
tion index of each controller is checked, at constant value of
threshold delay s. The upper utilization index is mainly considered,
for each available controller, to compensate for any sudden
increase in network traffic and to avoid controller working at max-
imum capacity [31,56].

The proposed algorithm is implemented for each network
topology multiple times; in each time a new value of Uub is consid-
ered. For all cases in scenario (II), the threshold time response s is
Table 2
Simulation parameters.

Parameter Description Quantity

kS Average request rate of switch [1500, 3000]
m Service rate of controller 30,000 req/sec
s Latency threshold 2 ms
Uub Upper bound of controller utilization index 0.9
tmax (1) Maximum iterations for Algorithm 1 50
tmax (2) Maximum iterations for Algorithm 2 30
dC Cost weighting factor 18
dT Time weighting factor 25

Table 3
Parameters variation for the two considered scenarios.

Ref. Number Scenario (I) Uub = 0.9 [Const.] Scenario (II) s = 2 ms [Const.]

Case (1) s1 = 1 ms Uub1 = 0.80
Case (2) s2 = 2 ms Uub2 = 0.85
Case (3) s3 = 3 ms Uub3 = 0.90
Case (4) s4 = 4 ms Uub4 = 0.95
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set to the value defined in the simulation parameters table (i.e.
s = 2 ms). Different values considered for Uub are included in
Table 3.

Fig. 3 illustrates results for different cases in the first considered
scenario. Fig. 3(a) indicates the optimal number of controllers in
each case of scenario (I) for the first category of topologies, while
Fig. 3(b) indicates the same for the second category of topologies.
For each case, the optimum number of controllers to be deployed
for the network is mainly decreased, with the increase of the con-
straint threshold time s. Moving from case to case, for the same
number of network switches (i.e. the same topology), the best
number of required controllers either maintains or decreases. This
can be interpreted as the increase of the threshold time s allows
the increase of the response time of each deployed controller; thus,
the controller can handle more number of forwarding devices. This
comes on the account of the latency, which should support the
required QoS of the system.

Results for different cases of the second scenario are presented
in Fig. 4. Fig. 4(a) illustrates the optimal number of controllers for
each case in scenario (II) for the category (I) topologies, and the
results for the category (II) topologies are presented in Fig. 4(b).
Results indicate that, with the increase of the upper bound of con-
troller utilization index, the optimal number of controller required
to support the network decreases.

For each topology, either first or second category, as the upper
utilization index of each deployed controller Uub increases, the
required number of controllers decreases. Moving from case to
case, for each topology, the number of available controllers either
maintains or decreases. Increasing upper utilization index of con-
troller allows the controller to offer more resources and thus, han-
dles more tasks. This is the main reason for the reduction of
deployed controllers with the growing of Uub. The best value for
upper utilization index is associated with the nature of the net-
work and the probability of rapid flow changing. The most com-
mon used value of Uub is o.9, which indicates that 90 percent of
the controller resources are in use and ten percent of the resources
are separated for abrupt changes.

For better evaluation of the introduced algorithm and for check-
ing the effect of parameters variations, the proposed algorithm is
Fig. 3. Simulation results for scenario I (a) Simulation results for Category I
topologies, (b) Simulation results for Category II topologies.
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Fig. 4. Simulation results for scenario II (a) Simulation results for Category I
topologies, (b) Simulation results for Category II topologies.

Fig. 5. The effect of variation of threshold time s on the optimal number of
deployed controllers, at different values of Uub.
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implemented for a random network of a 30 switches. The system is
checked for the variation of the threshold time s as well as the
upper utilization index Uub at a larger scale than that considered
in the previous simulations. This is because of the importance of
these parameters and their effects, especially for large scale net-
works. Therefore, algorithms should be conducted for dense net-
works to validate the proposed work.

Two main cases are considered; in the first case the algorithm is
implemented for different values of threshold time s with four dif-
ferent values of maximum controller utilization index Uub. The sec-
ond case checks the system for wide range of values of Uub with
four different values of threshold time s. Table 4 indicates both val-
ues of s and Uub in both cases.

Fig. 5 illustrates the effect of variations of the threshold
response of the controller (s) on the optimal number of controllers
required for the network, in four cases. Each case represents a cer-
tain value of the maximum utilization index of controller Uub. The
four values are chosen such that they cover the possible range of
Uub and thus, give a reliable presence. The first curve represents
the variation at a utilization index of 80 percent, which is consid-
ered to be a minimum utilization. Thus, the curve represents the
worst case between the four curves as it is dedicated with the
worst value of Uub. In the other side, the fourth curve represents
the variation at the maximum utilization index of 95 percent,
which is the best case between the four graphs. For the four curves,
with the increase of threshold time (i.e. moving from left to right)
Table 4
Parameters variation for random network.

Maximum utilization index (Uub) Threshold time (s)

Uub1 = 0.80 s1 = 1 ms
Uub2 = 0.85 s2 = 5 ms
Uub3 = 0.90 s3 = 10 ms
Uub4 = 0.95 s4 = 15 ms
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the required number of controllers decreases. The worst values of
the number of controllers needed are dedicated with the first
region of curves, at which the threshold time s is small and thus,
controllers are not able to handle much tasks. The best values of
number of controllers are located at the last parts of all curves,
at which the value of s is high enough to handle much tasks and
serves for much switches.

Fig. 6 indicates the variation of optimal number of controllers
with the change of maximum utilization index of each controller,
for four different values of the threshold time s. The first curve rep-
resents the worst one as it indicates the highest values of number
of controllers required. This is because the small value of the
threshold time prevents the controller from handling much tasks
and thus, the controller can only serve for a minimum number of
forwarding devices.

Unlike the first curve, the fourth curve indicates best results in
terms of number of required controllers. This can be interpreted as
Fig. 6. The effect of variation of maximum utilization index (Uub) on the optimal
number of deployed controllers, at different values of s.
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Fig. 7. Variation of flow requests at different values of threshold time s.

Fig. 8. Variation of flow requests at different values of maximum utilization index
Uub.

Table 7
Numerical results for threshold time variation.

Threshold Time
(s)

Number of
Controllers

[K]T Total
Utilization (U)
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the high value of the threshold time s allows the controller to sup-
port more switches.

Another important parameter that should be considered is the
flow request variation. Changing the rate of flow request of
switches leads to a change in the situations of the deployed con-
trollers. The number of deployed controllers should be increased
if the flow rate increases. Thus, more network load should be faced
by activating more controllers, while the reduction of the network
load should produces less number of active controllers. Conse-
quently, the network starts with certain number of active con-
trollers and by the time, the number of active controllers rises
and falls based on the network load. Dynamic variation of network
load introduces a dynamic change of number of active controllers.

In order to check the effect of dynamic changes of flow requests
on the number of active controllers, four cases with different
ranges of flow rates of each forwarding device are considered.
For each case, three values of the threshold time s and maximum
utilization of each controller Uub are considered. Table 5 indicates
the considered cases and the values of s and Uub, considered in
each case, are included in Table 6.

Figs. 7 and 8 indicate the simulation results for the five cases. In
Fig. 7, the variation of flow requests is checked in three situations;
each of which represents a value of threshold time s. This takes
place at a constant maximum utilization index of each controller
Uub of 90 percent. Moving from case to case, the optimal number
of active controllers increases. This is because, the increase of flow
requests increases the load on active controllers and thus, more
controllers should be activated. Fig. 8 illustrates the optimal num-
ber of controllers in each case, for three values of maximum uti-
lization index of controller Uub. This is at constant threshold time
s of 10 ms.

Table 7 indicates the numerical results of the system imple-
mentation for different values of threshold time s; for the first
two cases of kS. Other simulation parameters are conducted from
the simulation parameters table (i.e. Table 2). Results include the
total system utilization U at the corresponding value of s and the
K-matrix that includes the number of connected switches associ-
ated with each controller. Table 8 indicates the numerical results
for different values of Uub; for the first two cases of kS. The total uti-
lization increases with the increase of the value of the threshold
time s. This is because the small value of s requires the deployment
Table 5
Different cases of flow requests of
switches.

Case Range of kS

Case (1) kS 2 [1500, 3000]
Case (2) kS 2 [3000, 4500]
Case (3) kS 2 [4500, 6000]
Case (4) kS 2 [6000, 7500]
Case (5) kS 2 [7500, 9000]

Table 6
Values of three should time
and maximum utilization
index for flow requests
variation cases.

Parameter Value

s1 5 ms
s2 10 ms
s3 15 ms
Uub1 0.85
Uub2 0.90
Uub3 0.95

Uub = 0.9, kS e [1500, 3000]
4 ms 9 [4 3 3 4 2 4 5 3 2] 0.855
6 ms 5 [7 6 6 5 6] 0.863
8 ms 4 [9 7 8 6] 0.872
10 ms 4 [8 8 7 7] 0.884
12 ms 3 [11 12 7] 0.889

Uub = 0.9, kS e [3000, 4500]
4 ms 10 [3 4 3 4 2 4 4 2 2 2] 0.845
6 ms 7 [5 4 4 5 5 4 3] 0.852
8 ms 5 [6 5 5 7 7] 0.868
10 ms 4 [6 8 8 8] 0.881
12 ms 3 [12 12 6] 0.886
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of more controllers, which decreases the overall utilization. Also,
the total utilization decreases with increase of flow requests.

5.3. 3. System comparison

In this part, the proposed CSSA for SDN controller placement is
compared with other proposed algorithms developed for the same
problem, to evaluate the performance and advantages of the intro-
duced algorithm. Three main algorithms are considered for the
comparison; Non-Zero-Sum game algorithm introduced in [31]
and two efficient swarm intelligence algorithms. The two
tic salp swarm algorithm for SDN multi-controller networks, Engineering
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Fig. 10. Computation time of each algorithm with the variation of maximum
utilization index.

Table 8
Numerical results for maximum utilization index variation.

Maximum Utilization
Index (Uub)

Number of
Controllers

[K]T Total
Utilization (U)

s = 10 ms, kS e [1500, 3000]
0.82 9 [3 3 2 4 4 4 3 4 3] 0.864
0.84 7 [ 4 5 4 3 6 4 4] 0.867
0.86 5 [ 6 6 7 7 4] 0.874
0.88 4 [ 8 7 7 8] 0.882
0.90 4 [ 8 8 7 7] 0.884

s = 10 ms, kS e [3000, 4500]
0.82 10 [2 3 3 4 2 4 3 4 3 2] 0.857
0.84 7 [ 6 5 5 4 3 4 3] 0.864
0.86 6 [ 6 4 6 5 4 5] 0.871
0.88 5 [ 7 6 6 5 6 ] 0.878
0.90 4 [ 6 8 8 8] 0.881
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considered swarm intelligence techniques are Particle Swarm algo-
rithm (PSO) and Grey Wolf algorithm (GWO).

Particle Swarm Optimization (PSO) is the most common swarm
intelligence technique that simulates the behavior of birds, while
navigating and hunting [57]. Gray Wolf Optimization (GWO) is a
swarm based technique that mimics the behavior of grey wolves
while hunting [58]. The GWO divides the crow of gray wolfs into
four types; alpha, beta, delta, and omega. The alpha wolf is the lea-
der of the group and it represents the best solution. Beta and delta
wolfs represent the second and third leader, and it give the second
and third best solutions of the problem. Equations used to model
and describe both PSO and GWO are considered in Appendix A.

The performance metric considered for comparison process,
between the proposed algorithm and the three considered algo-
rithms, is the execution time of algorithm. This time represents
the delay taken by the algorithm to get the optimal solution, and
is considered to be an important metric when evaluating the opti-
mization algorithms. Moreover, this time is critical for SDN net-
works as if it takes long to activate controllers in case of the
network load changes up, current deployed controllers may be
over loaded and go into failure.

Fig. 9 illustrates the execution time of each algorithm with the
variation of threshold time s. CSSA achieves better performance, in
terms of computing time for all values of s. Then the GWO algo-
rithm comes, it takes less time than PSO to get the optimum solu-
tion. The worst algorithm, in terms of computing time, is the Non-
Zero-Sum game algorithm. The execution time represents a very
important metric as the fast execution achieves better network
performance and supports the QoS, beside it decreases the proba-
bility of controller failure.
Fig. 9. Computation time of each algorithm with the variation of threshold time.

Please cite this article as: A. A. Ateya, A. Muthanna, A. Vybornova et al., Chao
Science and Technology, an International Journal, https://doi.org/10.1016/j.jest
Moreover, the execution time is recorded with the variation of
maximum utilization index of the controller Uub, for proposed
CSSA and the other three considered algorithms. Fig. 10 indicates
the results for the four algorithms. CSSA achieves the best perfor-
mance in terms of computing time, for all considered values of
Uub. Another main important issue is that the three considered
algorithms, in some considered cases, couldn’t reach the optimum
solution due to local optima, which solved in the proposed algo-
rithm by involving chaotic maps.

6. Conclusion

This work introduces the latency and cost aware controller
placement problem. The problem is defined and a meta-
heuristic algorithm is presented to solve the problem for the
optimum solution. The algorithm is a chaotic SSA that is devel-
oped to get the optimal number of controllers and also the opti-
mum allocations of switches to controllers, that minimize the
latency and the deployment cost. The introduction of chaotic
maps improves the optimizer performance and prevents the
local optima. The algorithm is tested for various real topologies
extracted from the zoo topology. The effect of variation of differ-
ent network parameters on the performance is checked. Simula-
tion results validate the proposed work and a comparison with
other meta-heuristic algorithms and a game theory based algo-
rithm is presented.

Appendix A

In this appendix, the mathematical analysis and description of
PSO and GWO is introduced. In PSO, each particle is described as
a d-dimensional vector in the search space. The current position
and velocity vectors of each particle are Xi = [Xi

1, Xi
2, Xi

3,. . .., Xi
d]

and Vi = [Vi
1, Vi

2, Vi
3,. . .., Vi

d], i = 1,2,3,. . .,n. The velocity and position
update equations of particles are defined as following [57]:

Viðt þ 1Þ ¼ xVi tð Þ þ C1r1ðPbest � XiðtÞÞ þ C2r2ðPgbest � XiðtÞÞ ð27Þ

Xiðt þ 1Þ ¼ Xi tð Þ þ Viðt þ 1Þ ð28Þ

x ¼ xmax �xmax �xmin

tmax
� t ð29Þ

where Pbest and pgbest are the individual best position of particle i
and the global best position of particles, respectively. Coefficients
r1 and r2 are random sequences in the range of (0, 1), C1 and C2

are the algorithm coefficients and x is the inertia weight that can
be calculated based on (29). For GWO, the three best wolfs (i.e.
alpha, beta and delta) update their positions using the following
equations [58]:
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