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Drug resistance is a common cause of treatment failure in can-
cer therapy, and molecular mechanisms need further explora-
tion. Competing endogenous RNAs (ceRNAs) can influence
drug response by participating in various biological processes,
including regulation of cell cycle, signal transduction, and so
on. In this study, we systematically explored resistance from
the perspective of ceRNA modules. First, we constructed a
general ceRNA network, involving 83 long non-coding
RNAs (lncRNAs) and 379 mRNAs. Next, we identified the
drug resistance-related modules for 138 drugs and 19 cancer
types, totaling 758 drug-cancer conditions. Function analysis
showed that resistance-related biological processes were
enriched in these modules, such as regulation of cell prolifer-
ation, DNA damage repair, and so on. Pan-drug and pan-can-
cer analyses revealed some common and specific modules
across multiple drugs or cancers. In addition, we also found
that drug pairs with common modules have similar structure,
indicating high risk for multidrug resistance (MDR). Finally,
we speculated that ceRNA pair GAS5-RPL8 could regulate
drug resistance because low expression of GAS5 would
enhance microRNA (miRNA)-mediated inhibition of RPL8.
In total, we investigated the drug resistance by using ceRNA
modules and proposed that ceRNA modules may be new
markers for drug resistance that indicated a possible novel
mechanism.
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INTRODUCTION
Resistance to chemotherapy usually exists in the process of treating
cancers.1 The understanding of the mechanism is inadequate, and
the solution is limited. Hitherto, many genes have been proved to
contribute to drug resistance through affecting hallmarks of drug
resistance, such as increased ability to repair DNA damage, altered
proliferation, and so on.2 For example, upregulation of NEK2 was
associated with cisplatin resistance via establishment of the microtu-
bule-based mitotic spindle in the S and G2 phases of the cell cycle in
ovarian cancer.3 FOXM1 directly activated ABCG2 to increase drug
efflux activation and drug resistance of doxorubicin in bladder
cancer cells.4 In addition, long non-coding RNAs (lncRNAs) are
currently a hotspot in biomedical research. They play important
roles in regulation of proliferation, differentiation, apoptosis, cell cy-
cle, and so on,5,6 and have been proved to be associated with drug
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resistance in cancer.7,8 For example, gemcitabine treatment causes
resistance of pancreatic cancer stem-like cells via induction of
lncRNA HOTAIR.9 Overexpression of lncRNA UCA1 correlates
with resistance to cisplatin.10

lncRNAs utilize their functions through multiple mechanisms, such
as affecting chromatin remodeling, controlling transcription and
translation, as well as competing for microRNA (miRNA) binding
with mRNAs.11,12 Thereinto, lncRNAs could act as competing endog-
enous RNAs (ceRNAs) to regulate gene expression through sharing
miRNA recognition elements (MREs) with mRNAs. Many studies
have demonstrated that ceRNAs were involved in the process of
development and treatment of diseases.13–15

Recently, an increasing number of researchers attempted to iden-
tify the drug resistance-related ceRNA interactions in a specific
cancer. For example, lncRNA CASC2 upregulated PTEN as a
ceRNA of miR-21 and played an important role in cervical cancer
sensitivity to cisplatin.16 lncRNA TUG1 mediated methotrexate
resistance as ceRNA in colorectal cancer via the miR-186/CPEB2
axis.17 However, there is no global analysis of ceRNAs in drug
resistance across many cancer types and many drugs. Here, we first
constructed a ceRNA network, from which the significant ceRNA
modules related to drug resistance were identified in 758 condi-
tions (one condition meant that specific cancer type was treated
with specific drug). Then, we analyzed the conserved and specific
significant modules in different conditions (the workflow diagram
was shown in Figure 1). These analyses and validations demon-
strated how ceRNAs could be used as biomarkers and potential
therapeutics.
uthor(s).
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Figure 1. The Workflow Diagram for This Study

www.moleculartherapy.org

Molecular Therapy: Nucleic Acids Vol. 16 June 2019 443

http://www.moleculartherapy.org


Figure 2. Overview and Characteristics of the ceRNA Network and Modules

(A) ceRNA network. Green circular nodes represent lncRNAs, and yellow triangular nodes represent mRNAs. Lines represent lncRNA-mRNA ceRNA interactions.

(B) The degree of distribution of the ceRNA network. (C) The 18 modules mined from the ceRNA network. (D) The distribution of the number of all nodes, lncRNAs, and

mRNAs in the module, respectively. The x axis represents the number of nodes in the module. y axis represents the number of modules. Blue, green, and yellow colors

represent all nodes, lncRNAs, and mRNAs, respectively. (E) The number of lncRNAs and mRNAs in each module. (F) The correlation of the module size and the module

p values.
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RESULTS
ceRNA Network and Modules

According to the shared miRNAs and the expression correlation of
lncRNA and mRNA, we identified 605 ceRNA interactions and con-
structed the ceRNA network, including 83 lncRNAs and 379 mRNAs
(Figure 2A). Next, we investigated the topological properties of the
ceRNA network. The degree distribution approximately displayed a
444 Molecular Therapy: Nucleic Acids Vol. 16 June 2019
power law distribution (Figure 2B), which meant that the ceRNA
network satisfied scale-free topology, as similar as most biological
networks. About 71.8% of mRNAs in the ceRNA network had
competitive relationships with only one lncRNA, and 73.5% of
lncRNAs connected with no more than four neighbors (Figures S1
and S2). We also observed that 82.6% of ceRNA pairs were regulated
by no more than 10 miRNAs (Figure S3).



Figure 3. Significant Modules Related to Drug Resistance

(A) The number of significant modules for FDA-approved drugs in different cancers. The gray color represents that the treatment is not performed. The color bar encodes the

number of significant modules. The histogram represents the number of significant modules on average of each row and column, respectively. The examples mentioned in

the manuscript were marked with dots. (B–D) The distribution of the number of (B) cancers, (C) drugs, and (D) conditions related to the significant modules, respectively. (E)

Module 1. The circular nodes represent lncRNAs, and the triangular nodes represent mRNAs. (F) The function annotation of the genes in module 1. (G) The function

annotation of the lncRNAs in module 1. The functions related to hallmark of drug resistance are marked as red stars. DAR, DNA damage repair.
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Moreover, we used ClusterONE to identify networkmodules from the
ceRNA network. The ClusterONE method calculated a p value for
each module, and a lower p value reflected a more cohesive module.
In order to ensure sufficient lncRNAs andmRNAs for further analysis
in each module, we also set the minimum size of module as 5. Thus,
we obtained 18 modules with p < 0.05 and more than five nodes (Fig-
ure 2C). The sizes of the 18 modules ranged from 5 to 71, and the
median value was 9 (Figures 2D and 2E). We also observed that the
bigger the module size was, the more significant the module was
(Figure 2F).

Significant Modules Related to Drug Resistance

The above identified network modules were general instead of condi-
tion specific. So, we performed the differential expression analysis for
all lncRNAs and mRNAs between drug-resistant and drug-sensitive
cell lines for each condition. Then, we calculated the module score
for each module by integrating p values of all nodes in this module
and obtained the significance level of this module by permutation
test (details in Materials and Methods). As a result, we identified
the significant modules in 758 conditions relating to 19 cancers and
138 drugs (including 25 US Food and Drug Administration [FDA]-
approved drugs) (Data S1). Here, we found that the lncRNAs in these
significant modules were significantly enriched (p value < 0.001) in
the experimentally validated drug-resistant-related lncRNAs (Fig-
ure S4), which were obtained from ncDR, a comprehensive resource
of non-coding RNAs involved in drug resistance.18

Next, we showed the number of significant modules in 19 cancers of
25 FDA-approved drugs by heatmap (Figure 3A). Intuitively, more
than one module was significantly identified in most (63%) condi-
tions, which indicated that drug resistance was so complex that there
might be many functions or pathways participating in this process. In
addition, we also found that the number of significant modules of
cancer-specific drugs, which means the drugs used for treatment of
one specific or a few cancers, were larger than that of the broad-spec-
trum anti-cancer drugs. For example, vorinostat, which is one class of
histone deacetylase inhibitors for the treatment of patients with cuta-
neous T cell lymphoma, had the most significant modules (�3.4) on
average. The broad-spectrum anti-cancer drug cisplatin had been
widely used for treatment of breast cancer (BRCA), ovarian cancer,
cervical cancer, and so on, which had only �1.4 significant modules
on average. On the other hand, the cancer types with bad prognosis
were more likely to have more significant modules for FDA-approved
drugs, which might be because of their high degree of malignancies.
For example, pancreas adenocarcinoma (PAAD) is one of the dead-
liest cancers whose median survival period is �3–6 months and
Molecular Therapy: Nucleic Acids Vol. 16 June 2019 445
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Figure 4. Drug Resistance for Pan-Drugs and Pan-Cancers

(A) The numbers and proportions of drugs that were significantly related to each module in LUAD. (B) Significance of modules in LUAD for FDA-approved drugs. lncRNAs in

each module are presented on the right, and the histogram on the left is the number of FDA-approved drugs that were significantly related to this module. (C) MDR analysis in

LUAD. The color bar encodes the Jaccard index of the significant modules related to drug resistance. The box indicates drug structure, and red parts mean similar structure.

(D) Significance of modules for bosutinib resistance. The examples mentioned in the manuscript were marked with dots.
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5-year survival rate is less than 5%. We found that 73.3% of the drugs
had two or more significant modules in PAAD. However, for BRCA,
with a 5-year survival rate of more than 90%, 50% of the drugs had no
more than one significant module.

Furthermore, we analyzed the distribution of the significant modules
in cancer types, drugs, and conditions separately (Figures 3B–3D).
We found that several modules were conservatively identified in can-
cers, drugs, and conditions, such as modules 1 and 14, and some other
modules, such as modules 11 and 17, appeared in only a few cancers,
drugs, or conditions. Here, module 1 (Figure 3E) was identified in the
most (31.5%) conditions, including 103 drugs in 13 cancer types. The
hub lncRNA GAS5 in this module had been proved to be related to
drug resistance of many drugs in many cancers.19–21 For example,
GAS5 silencing in LNCaP and 22Rv1 cells (human prostate cancer
cells) decreased the sensitivity to mTOR inhibitors, whereas transfec-
tion ofGAS5 sensitized human prostate cancer cells to agents.22 Stim-
446 Molecular Therapy: Nucleic Acids Vol. 16 June 2019
ulation of expression of GAS5 sensitized much of the cytotoxic and
cytostatic effects of rapalogs in mantle cell lymphoma.23 Finally, we
also performed functional annotation for lncRNAs and mRNAs in
module 1, respectively (Figures 3F and 3G). Amounts of functions
were related to hallmarks of anti-cancer drug resistance, such as regu-
lation of cell cycle and DNA damage response, which illustrated that
module 1might play important roles in drug resistance throughmany
ways.

Pan-Drug Analysis of Significant Modules in LUAD

Taking lung adenocarcinoma (LUAD) as an example, we analyzed the
significant modules across different drugs in a certain cancer (Fig-
ure 4A).We found that module 1 was significantly related to the resis-
tance of the second most (23) drugs, which was similar to the above
observation in all cancer types (Figures 3B–3D). Next, the chi-square
test revealed that some modules were related to resistance of more
drugs in LUAD than in other cancer types (p < 0.01), which indicated
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these modules might play important roles specifically in LUAD. For
example, functional annotation showed that the genes in module 11
enriched in the function of regulation of Rho protein signal transduc-
tion (Data S2), which had been demonstrated to induce the invasion
of human non-small-cell lung cancer (NSCLC) cells.24 Also, the genes
in module 7 enriched in IRE1-mediated unfolded protein response
(Data S2), which enhanced tumor cell survival in LUAD.25 In addi-
tion, we investigated the significant modules related to resistance of
FDA-approved drugs (Figure 4B). Intuitively, we found that some
drugs shared the same modules, indicating that they might have
similar mechanisms of resistance. For example, dasatinib and suniti-
nib shared three common modules (modules 3, 6, and 9). They have
the same mechanism acting as receptor tyrosine kinase inhibitors
(TKIs).

As we know, tumor cells resistant to one drug are usually resistant
to several other drugs.26 The multidrug resistance (MDR) decreases
the drug efficacy and limits cancer therapy. In a previous study, we
predicted MDR by sharing regulated communities related to drug
resistance.18 Here, we used the Jaccard index to systematically mea-
sure the similarity of modules of all FDA-approved drugs (Fig-
ure 4C). The drug pairs with a high Jaccard index meant that
they shared more significant modules and had high possibilities
to form MDR. For example, the Jaccard index of dasatinib and
sunitinib was 1. Recently, they were recognized to form MDR.27

In addition, the bioactivity of a drug directly depends on its molec-
ular structure.28 We further calculated the structural similarity
between dasatinib and sunitinib by Tanimoto coefficient.29 Interest-
ingly, they have a similar structure whose similarity score is up to
�0.76. Moreover, we calculated the correlation between the number
of common modules and the structure similarity of all drug pairs.
The result showed that there was a significantly positive correlation
(Pearson correlation coefficient was 0.512, p value was 1.33 �
10�11). Finally, functional annotation of the common modules
(modules 3, 6, and 9) revealed that the cellular nitrogen compound
metabolic process and regulation of cell proliferation might be the
causes of drug resistance and MDR, which had been validated in
previous studies.30,31

Pan-Cancer Analysis of Significant Modules for Bosutinib

We also analyzed the significant modules for a certain drug bosutinib
across 19 cancer types (Figure 4D).We found that eight modules were
cancer type specific, whereas modules 1, 8, and 14 were identified in
multiple cancers. From another axis, we found that some cancers had
similar significant modules, indicating that they might have a similar
pathologic process. For example, PAAD and BRCA had two signifi-
cant modules, modules 1 and 14. In clinical, there were many cases
reported in which BRCA and PAAD co-occurred.32,33 LUAD and
large intestine cancer (LICA) shared the significant module 8. For
LICA patients, one of the most common positions of metastasis is
the lung.34 The analysis indicated that the cancers sharing similar
significant modules might have relevant clinical features because of
their similar mechanism of drug response, which could help us to
guide cancer therapy better.
Case Study of Potential Mechanism of ceRNA in Drug

Resistance

lncRNA can compete for miRNAs with targeted genes, which creates
an indirect interaction among miRNA targets, eventually influencing
expression level.35 Drug resistance is a complex process, so we cannot
blame it on one model or one factor. We suggested that dysregulation
of ceRNA interaction might be one of the mechanisms leading to drug
resistance.

In a previous study, low expression of GAS5 was demonstrated to be
related to drug resistance in multiple cancers,36 and low-expression
RPL8 were reported to be involved in poor response to the chemo-
therapy.37 In this study, GAS5 and RPL8 were identified to form a
ceRNA interaction in module 1. The mechanism of drug resistance
might be that low-expression GAS5 was targeted by less miRNAs,
and more free miRNAs repressed RPL8 expression to form resistance
(Figure 5). Furthermore, some other nodes in module 1 were also re-
ported to be associated to drug resistance. For example, SNRPE was
found to enhance hsp70 promoter activation, which was associated
with cell survival and drug resistance,38 and SNHG1 was also pre-
dicted to be related to doxorubicin resistance in colon adenocarci-
noma (COAD).18 So we suggested that the ceRNA interactions should
participate in the regulation of drug resistance.

DISCUSSION
Drug resistance is one of causes of cancer treatment failure. Previ-
ous studies suggested that ceRNA took part in the regulation of
drug resistance. However, these studies just focused on individual
ceRNA interaction in a specific cancer or drug, lacking a global
view of properties across drugs in pan-cancer. In this study, we
dissected drug resistance from a ceRNA module perspective and
performed a systematic analysis across 19 major cancer types and
138 drugs. First, we constructed a general ceRNA network. The
network approximately displayed a power law distribution. In addi-
tion, most of mRNAs in the ceRNA network connected with only
one lncRNA. About three-quarters of lncRNAs had no more than
four neighbors. Also, we observed that more than 80% of ceRNA
pairs were regulated by less than 10 miRNAs. We considered that
this phenotype was consistent with the energy-conservation princi-
ple of living organisms. The amount of sharing miRNAs should not
be too large because the process of driving miRNAs to combine with
ceRNA consumes energy.

Then, we mined 18 modules and identified significant ceRNA mod-
ules related to 758 conditions. We got a systematic view of ceRNA
modules across 19 cancers and 138 drugs. Herein, we found that
the number of significant modules might be associated with drug
spectrum and tumor malignant degree. In general, fewer modules
were identified for broad-spectrum drugs and in low-degree malig-
nant tumors, respectively. The reasons might be that the broad-spec-
trum drugs had good responses for many cancers, and it was relatively
easy to treat the low-degree malignant tumors. Also, we analyzed the
distribution of the significant modules and found several conserved
and specific modules for cancer types, drugs, and conditions.
Molecular Therapy: Nucleic Acids Vol. 16 June 2019 447
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Figure 5. Case Study of Potential Mechanism of ceRNA in Drug Resistance
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Next, we specifically analyzed the significant modules for pan-drugs,
especially FDA-approved drugs. Taking LUAD as an example, we
found that some modules were related to resistance of more drugs
in LUAD than in other cancers such as module 11 (showing function
related to lung cancer invasion) and module 7 (showing function of
enhancing tumor cell survival in LUAD). In addition, we investigated
the significant modules related to resistance of FDA-approved drugs
and found that some drugs shared the same modules, such as dasati-
nib and sunitinib, which indicate that they might have similar mech-
anisms of resistance. As we know, MDR, which meant that tumor
cells were resistant to many drugs at the same time, could decrease
the drug efficacy and limit cancer therapy. To go a step further, we
used the Jaccard index of all FDA-approved drugs to measure the
possibility of MDR. We found that some drug pairs with a high
Jaccard index had similar structures. It meant that drugs with similar
structures might have similar drug responses and were more likely to
form MDR. This result could help to give a better choice of treatment
for drug-resistant tumors.

Meanwhile, we specifically analyzed the significant modules for pan-
cancers. Taking bosutinib as an example, we found cancer-specific
and conserved modules. Herein, eight modules were cancer type
specific, and modules 1, 8, and 14 were identified in multiple cancers.
Moreover, we found that some cancers had similar significant mod-
ules, indicating that they might have a similar pathologic process.
448 Molecular Therapy: Nucleic Acids Vol. 16 June 2019
For example, PAAD-BRCA and LUAD-LICA shared common signif-
icant modules, respectively, and they had been reported to co-occur in
clinical.

Last, we explored the mechanism of drug resistance. GAS5 and
RPL8 had both been reported to be involved in anticancer drug
resistance. In this study, GAS5 and RPL8 were predicted to form
ceRNA in module 1. So we suggested that the ceRNA interaction
might participate in the regulation of drug resistance. Here, we pro-
posed a general hierarchical model to systematically understand the
ceRNA interactions in anticancer drug resistance (Figure S5). When
cancer patients were treated by anticancer drugs, resistance usually
occurred. In this process, ceRNA interactions might be dysregu-
lated. Consequently, the ceRNA subnetworks or modules were
perturbed and further influencing some hallmark functions of anti-
cancer drug resistance. Therefore, not only direct regulation but also
indirect stimuli, such as ceRNA, could change individual response
to chemotherapy in cancers.

This study provided candidate biomarkers of drug resistance in
different conditions, but it still needed further experimental valida-
tion. Also, the unbalance of miRNA regulation tomRNA and lncRNA
led to a small number of lncRNAs in the modules. Meanwhile,
because of data limitation, we did not integrate miRNA expression
profiles to construct the ceRNA network. In the following studies,



Table 1. Summary of miRNA-Target Information

Database
No. of
miRNAs

No. of
lncRNAs

No. of
mRNAs

No. of
Regulations

LncBase 960 6,580 – 59,947

miRTarBase 2,599 – 14,843 410,365

Table 2. Number of Cell Lines in 19 Cancers

Cancer Short Name Cancer Full Name No. of Cell Lines

LUAD lung adenocarcinoma 36

BRCA breast cancer 29

MM malignant melanoma 23

GM glioma 23

SCLC small cell lung carcinoma 16

ESCA esophageal carcinoma 15

LICA large intestine cancer 15

PAAD pancreas adenocarcinoma 14

BLCA bladder carcinoma 12

AML acute myeloid leukemia 12

OV ovary cancer 11

GC gastric cancer 9

UADC upper aerodigestive tract cancer 8

NB neuroblastoma 8

OSTC other soft tissue cancer 7

OLN other lymphoid neoplasm 7

LTCL lymphoblastic T cell leukemia 7

LCLC large cell lung carcinoma 7

ENCA endometrium carcinoma 7
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we will combine the related multi-omics data to strengthen our
approach and prediction.

Above all, resistance limits clinical drug use for cancer therapy.
Here, we performed a systemic analysis of drug response from the
new perspective of ceRNA modules. We proposed that the signifi-
cant ceRNA modules may be regarded as new markers for drug
resistance, which indicated a possible novel mechanism. Taken
together, the construction of the ceRNA networks and identification
of significant modules will provide more chances for development
of cancer therapeutics and clinical drug use, and enrich the drug
resistance mechanisms.

MATERIALS AND METHODS
Data Collection and Preprocessing

We collected lncRNA expression data of cell lines from The Atlas of
non-coding RNA in cancer (TANRIC)39 and mRNA expression data
of cell lines from Cancer Cell Line Encyclopedia (CCLE).40 The
regulations of miRNA to lncRNA and miRNA to gene were collected
from DIANA-LncBase41 and miRTarBase,42 respectively (details in
Table 1). We converted lncRNA and mRNA symbols to Ensembl ID.
Finally, we got 1,946 lncRNAs (common in LncBase and TANRIC),
13,563 mRNAs (common in CCLE and miRTarBase), and 2,588
miRNAs for further analysis.

We collected drug response data from Genomics of Drug Sensitivity
in Cancer (GDSC),43 including 138 drugs and 707 cell lines that were
classified into 45 cancer types according to tissue descriptor. Half
maximal inhibitory concentration (IC50) values were used to distin-
guish drug-resistant and -sensitive cell lines. Finally, 348 common
cell lines in GDSC (707 cell lines) and CCLE (504 cell lines) were
used for further analysis.

Construction of the ceRNA Network

According to the hypothesis presented in a previous study,44 we
first identified lncRNA-mRNA pairs sharing more than three
miRNAs and then computed the significance of shared miRNAs
using a hypergeometric test. Here, the lncRNA-mRNA pairs with
p < 0.05 were considered as candidate ceRNA pairs. Next, for
each candidate ceRNA pair, the Pearson correlation coefficient
(R) of expression of lncRNA and mRNA in all cell lines was calcu-
lated. Only candidate ceRNA pairs with R > 0.5 and p < 0.01 were
retained and were used to construct a ceRNA network, where a
node represented a lncRNA or mRNA, and an edge represented
a competing interaction. The obtained ceRNA network was visual-
ized by Cytoscape 3.4.0.45
Identification of Modules in the ceRNA Network

Network modules are subgraphs that are more important parts of
larger complete network. They should contain many interactions
inside the module and be well separated from the rest of the
network. We used ClusterONE46 to identify ceRNA modules.
ClusterONE is a user-friendly plugin in Cytoscape for locating
and visualizing modules, and performed a greedy growth process
to bring together the cohesive nodes in the level of topological
structure.

Identification of Drug-Resistant and -Sensitive Cell Lines

We first defined drug treatment condition as the cell lines of one can-
cer type treated with one drug. For each condition, a cell line was
considered as a resistant cell line of the specific drug if its IC50 value
was greater than the mean value plus 0.8 times of the SD of all cell
lines of the specific cancer type. Otherwise, a cell line with IC50 less
than the mean value minus 0.8 times of the SD was defined as a
drug-sensitive cell line. Moreover, the numbers of both resistant
and sensitive cell lines should be not less than three for each condi-
tion. Thus, 758 conditions satisfied the above criteria, which included
19 cancer types and 138 drugs (details in Data S3). The total numbers
of resistant and sensitive cell lines of the 19 cancer types were shown
in Table 2.

Identification of SignificantModules Related to DrugResistance

We defined the significant modules related to drug resistance as the
modules having more differentially expressed genes (lncRNA and
mRNA) between drug-resistant and -sensitive cell lines. For each
Molecular Therapy: Nucleic Acids Vol. 16 June 2019 449
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condition, differential expression analysis was performed for lncRNA
and mRNA by t test. Based on the t test p value, the node score was
calculated by Equation 1,47

Ni=4�1
�
1� pi

�
; (Equation 1)

where pi represents the significance of differential expression deter-
mined by t test, and 4�1 is the inverse normal cumulative distribution
function. Then, the module score was defined as the weighted sum of
node scores.47 The detailed formula was displayed as follows:

S=
Xk

i= 1

Ni

, ffiffiffi
k

p
; (Equation 2)

where k is the number of nodes in the module.

Next, we performed the permutation analysis to estimate the sig-
nificance of the module score. For each module, we first randomly
selected the same number of lncRNAs and mRNAs in the module
to construct a random module. This process was repeated 1,000
times. Then, we calculated the module score for each random
module according to the above equations and generated the null
distribution of module scores. The empirical p value was defined
as the proportion of random module scores (Srandom) larger
than the real module score (S): p value = (NSrandom > S)/Np, where
NSrandom > S was the number of random modules that had larger
scores than the real module, and Np was the number of permuta-
tions (here, Np was 1,000). The modules with p < 0.05 were
considered as significant modules related to drug resistance for
one condition (Data S1).

Functional Analysis of Significant Modules

For each module, functional enrichment analysis of genes was
performed based on gene ontology (GO) by DAVID (Database for
Annotation, Visualization, and Integrated Discovery) online tools.48

The lncRNA functions were obtained from the knowledgebase of
inferred functions of non-coding RNA transcripts (FARNA).49
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