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Abstract—Sleep apnea, a serious sleep disorder affecting a
large population, causes disruptions in breathing during sleep.
In this paper, an automatic apnea detection scheme is proposed
using single lead electroencephalography (EEG) signal to discrim-
inate apnea patients and healthy subjects as well as to deal with
the difficult task of classifying apnea and non-apnea events of
an apnea patient. A unique multi-band sub-frame based feature
extraction scheme is developed to capture the feature variation
pattern within a frame of EEG data, which is shown to exhibit
significantly different characteristics in apnea and non-apnea
frames. Such within-frame feature variation can be better repre-
sented by some statistical measures and characteristic probability
density functions. It is found that use of Rician model parameters
along with some statistical measures can offer very robust feature
qualities in terms of standard performance criteria, such as
Bhattacharyya distance and geometric separability index. For the
purpose of classification, proposed features are used in K Nearest
Neighbor (KNN) classifier. From extensive experimentations and
analysis on three different publicly available databases it is
found that the proposed method offers superior classification
performance in terms of sensitivity, specificity and accuracy.

Index Terms—EEG signals, EEG sub-bands, sleep apnea, en-
tropy, sub-framing, model fitting, Rician model, KNN, goodness
of feature, classification.

I. INTRODUCTION

Sleep apnea, a common sleep disorder deteriorating sleep
quality of the patients, affects about 5-20% of adult population
[1], [2]. According to American Academy of Sleep Medicine
(AASM) criteria, apnea is scored where reduction in airflow
is ≥90% and it stays like so for more than 10 seconds.
Hypopnea criterion requires ≥30% reduction in airflow for
more than 10 seconds in association with either ≥3% oxygen
desaturation or an arousal [3]. Sleep apnea patients generally
experience severe headaches, daytime sleepiness and several
cardio-respiratory disorders [4]-[5].

In overnight polysomnography (PSG), the whole night
apnea events are manually scored by an expert, which is
expensive, tedious, time consuming and prone to human error
[6]. As a result, there is a great necessity for an automatic sleep
apnea detection algorithm. Different automatic apnea detection
schemes using various biomedical signals including EEG are
presented in [7]-[13]. For example, in [7], heart rate variability,
nasal pressure, EOG, EMG, oronasal temperature, in [8],
Oxygen saturation, heart rate variability and the respiratory
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signals, in [9] EMG signal, in [10] pupil size, in [11] only
ECG signal, in [12] oximetric signal, in [13] ECG, EMG,
EOG signals are used.

Instead of utilizing several physiological signals, EEG
signal alone is getting special attention by the researches
because of its successful application in analyzing sleep
related problems [14]-[23]. In [14] non-linear behavior of
EEG signal is studied. EEG scaling exponents computed by
detrended fluctuation analysis (DFA) are used as features
to classify apnea and healthy subjects in [14]. In [15],
Hermite decomposition algorithm based on particle swarm
optimization is proposed and [16], [17] employ wavelet
transform of EEG to identify sleep apnea events. Instead
of utilizing the full band EEG signal, an effective way is
to divide the EEG signal into well known EEG sub-bands,
namely delta, theta, alpha, sigma and beta and analyze
the band limited signals. In [18], energy and variance
computed from each sub-band are used as features for
apnea classification. Bispectral characteristics of EEG signal
are studied in [19], where in each sub-band the degree of
quadratic phase coupling (QPC) is analyzed. Sleep apnea is
detected from the variation of Hilbert spectrum frequency
in [20]. Cumulative delta-power ratio of overlapping frames
is used for classification in [21] while in [22], multi-band
entropy values are used as features to exploit the random
characteristics of EEG signal. In [23], statistical features are
extracted from the variation of Beta band energy within an
EEG frame and used for the purpose of classification.

Most of the reported methods consider classification be-
tween apnea and healthy subjects and the difficult task of
discriminating apnea and non-apnea events is rarely attempted.
In this paper, a sub-frame based model fitting approach is
proposed where both these classification scenarios are taken
into consideration. First, a multi-band sub-frame based scheme
is introduced to extract the feature variation pattern within a
frame. Next, the feature variation patterns are processed using
statistical analysis and modeled with characteristic probabil-
ity density function. Resulting model parameters and some
statistical measures are used in K nearest neighbor (KNN)
classifier to classify apnea and non-apnea frames. Detail
experimentations and performance analyses are carried out in
three different publicly available databases. The uniqueness of
the proposed method lies in modeling the within-frame feature
variation pattern and utilizing the fitted model parameters as
potential features in the classification scheme, which offers
very low feature dimension. Unlike using multiple bio-signals,
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this paper focuses on automatic detection of sleep apnea using
single lead EEG signal which makes the system cost effective
and can lead to an auto-diagnostic device favorable for in-
home care.

II. PROPOSED METHOD

Different major steps involved in the proposed method are
illustrated in Fig. 1. A given frame of raw EEG data is first pre-
processed, divided into frequency bands, and then proposed
sub-frame based feature extraction scheme is employed in each
band-limited signal. Finally statistical analysis and modeling
are applied to extract the feature vector to be used in the
classifier. In what follows, detailed description of each step
is presented.

Fig. 1: Block diagram representing the major steps involved
in the proposed method

A. Band-limited Signal Extraction

DC offset of a frame of EEG data is removed followed by
frame amplitude normalization. During sleep activity level of
recorded EEG data changes as the mental state and the sleep
stage continuously change with respect to time. As a result,
there is a large change in energy content in different EEG
frames. Energy normalization is carried out in each frame to
counter this phenomena.

EEG signal exhibits significantly different characteristics
in different frequency bands. During apnea, carbon dioxide
builds up in the bloodstream as breathing is paused, which is
identified by the chemoreceptors and brain signals the person
sleeping to wake up and breathe in air [24]. Such changes
in neural activity level from non-apnea to apnea can cause
notable variation in various frequency bands of the EEG
data, namely: delta(0.25-4 Hz), theta(4-8 Hz), alpha(8-12 Hz),
sigma(12-16 Hz) and beta(16-40 Hz). In the proposed method,

five band-pass filters are used to extract the band limited EEG
signals which are expected to preserve local information better
with respect to full band signal.

B. Multi-band Feature Extraction

For a band limited EEG data, among various statistical
features, entropy and log-variance are used in the proposed
method. Entropy of a discrete random variable Y with possible
values {y0, y1, y2, ..., yM} is defined as

H(Y ) = E(I(Y )), (1)

where E(·) denotes the expectation operator and I(Y ) repre-
sents the information content. For a particular value yi of Y ,
the information content can be expressed as

I(Y = yi) = − log2(p(yi)), (2)

Using (2), the entropy in (1) can be re-written as

H(Y ) = −
M∑
i=0

p(yi)× log2(p(yi)) (3)

where p(yi) = ni/N , with ni be the number of occurrence
corresponding to yi value among the N number of values,
i.e.

∑
i ni = N . During apnea, normal breathing is hampered

and patient may make gasping, grunting or snorting sounds
and restless body movements. Since EEG signal contains
information regarding different mental and motor-imagery
states of the brain, it is expected that for a person at sleep,
during apnea events there will be certainly a rapid change
in information content in EEG recordings. As entropy is
a statistical measure of information content, it is proposed
as a potential feature for apnea event detection. For an N
length EEG data s[n] with mean value µ, log-variance (LV)
is expressed as

LV = loge

[
1

N

N∑
n=1

(s[n]− µ)2
]
. (4)

Similarly, it is expected that variance of EEG signal would
be different in both the classes. As variance of EEG is very
small, logarithm of variance is used.

C. Temporal Feature Variation Pattern Extraction

In frame by frame analysis, generally the whole duration
of a test frame is considered for feature extraction. As an
alternate, dividing a frame into overlapping short duration sub-
frames offers an advantage of capturing precisely local signal
characteristics. In an N length signal with sub-frame length
M , shifting by p samples with p<<M<N , there will be a
total N−M

p + 1 number of sub-frames.
If a particular feature is extracted from each sub-frame,

a temporal profile of that feature within a frame can be
obtained and the properties of that sub-frame based feature
sequence can be utilized. A major advantage of using sub-
frame based feature extraction is the reduction of the effect
of random fluctuation in a given test frame. For example, an
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unexpected value in a test frame can significantly affect the
overall feature value. However, in sub-frame based analysis
that unexpected value will affect only a mere portion of the
total sub-frames. Thus overall analysis carried out using sub-
frame based feature values can provide better characteristics
of a test frame in comparison to the case where features are
calculated using whole test frame. Another key factor is that
not the entire N samples of a particular frame correspond to an
apneic zone as frame duration is taken higher than the typical
apnea duration. Apnea may occur only for a limited period
in the whole duration of frame. Sub-framing increases the
probability of correctly identifying the particular apneic event
since sub-frame based extracted features exhibit sharp changes
in its characteristics within an apnea frame, in particular at the
transition between apnea and non-apnea events. Considering
reasonably large frame size, where apnea duration is less than
a frame duration, it is obvious that a transition will exist either
from apnea to non-apnea or from non-apnea to apnea or both.
Feature extracted from the entire frame at a time, may not be
able to characterize such changes.

In order to demonstrate the variation of a feature within a
frame in sub-frame based analysis, in Fig. 2, entropy feature
patterns extracted from each band limited signal are presented.
Here two frames, one apnea and one non-apnea are considered.
It is clearly observed from the figure that in different band
limited signals, characteristics of the extracted feature patterns
differ significantly between apnea to non-apnea cases.

Fig. 2: Variation profile of entropy feature obtained from
different band limited EEG signals of test frames (One apnea
and one non-apnea frames are considered)

D. Model Fitting of the Extracted Feature Variation Pattern

Characteristic profile of a particular feature obtained from
sub-frame based analysis can directly be used as feature for
classifying a test frame. However, direct use of the feature
sequence involves large feature dimension. As an alternate,
efficient processing schemes can be applied on the feature vari-
ation pattern to extract distinct information for the purpose of
classifying apnea and non-apnea events. One possible way is to
extract various statistical features of feature variation pattern.
Among different statistical features, mean and variance are
considered in the proposed method. In addition to that, with
the purpose of quantifying the variation pattern of sub-frame
based extracted features, characteristics its amplitude variation
can be investigated. In this paper, we propose to fit the sub-
frame based extracted feature sequences with characteristic
probability density functions (PDFs). The idea is to fit sub-
frame based feature variation with a PDF and then use the
fitted model parameters as feature. In this case, most of the
well known PDFs can be taken into consideration, such as
Gaussian, Exponential, Rayleigh... etc. Description of different
popular PDFs is given in Table I [25]. This approach will
provide an opportunity to capture the variations of statistics
of data distributions in apnea and non-apnea. As the number
of characteristic parameters is small (most of the cases one or
two), feature dimension would be drastically reduced in com-
parison to using the whole sub-frame based feature sequence.
Out of several PDFs, in this paper, we propose to use Rician
PDF to fit the feature variation pattern. Detailed analysis using
different PDFs is followed in section III. The histograms of
feature sequences and corresponding Rician fitting of several
apnea and non-apnea frames in different EEG bands are shown
in Fig. 3. Here, examples of both entropy and log-variance
are presented for all the band limited signals. It is observed
from the figure that the histograms of feature variation pattern
corresponding to apnea and non-apnea cases differ widely
from each other and the fitted Rician PDFs are different and
have wide separation. Thus PDF model fitting is expected to
offer better feature quality as well as reduced computational
burden.

TABLE I: Definition of Characteristic PDFs

Distribution PDF Parameters

Normal
f(x|µ, σ2) =

1

σ
√

(2π)
exp−−(x−µ)2

2σ2
µ, σ

Exponential f(x;λ) =

{
λ exp−λx, x ≥ 0;
0 , x < 0

λ

Rayleigh f(x;σ) = x
σ2 exp−−x2

2σ2 , x ≥
0

σ

Rician
f(x|υ, σ) =

x
σ2 e

− x2+υ2

2σ2 Io(
xυ
σ2 )

υ, σ

Gamma f(x;α, β) = βαxα−1 exp−βx

Γ(α)
;

x > 0 and α > 0 β > 0
α, β

Nakagami
2mm

Γ(m)Ωm
x2m−1 exp(−m

Ω
x2),

∀x ≥ 0;m ≥ 0.5; Ω > 0
m, Ω

Weibull
f(x;λ, k) ={

k
λ

( x
λ

)k−1 exp(− x
λ

)k , x ≥ 0;
0 , x < 0

λ, k
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 3: Histogram of Sub-frame based feature variation patterns of each sub-band and corresponding Rician fitting

The statistical features and the model parameters calculated
from each band limited signal of a frame are cascaded as stated
in (5),(6) and (7) to form the final feature vector Fproposed.
Here, Fstat,δ and Fmod,δ are the statistical features and model
parameters, respectively extracted from both the sub-frame
based entropy and log-variance feature variation patterns in
delta band. Fstatistical and Fmodel indicate the features obtained
from statistical analysis and model fitting, respectively.

Fstatistical = [Fstat,δ Fstat,θ Fstat,α Fstat,σ Fstat,β ] (5)

Fmodel = [Fmod,δ Fmod,θ Fmod,α Fmod,σ Fmod,β ] (6)

Fproposed = [Fstatistical Fmodel] (7)

E. Classifier

In the proposed method, K-nearest neighborhood (KNN)
classifier is used where distance function computed between
the features belonging to the EEG pattern in the test set and
K neighboring EEG patterns from both apnea and non-apnea
group in the training set is considered. The test set EEG
pattern is classified based on the K closer class labels of EEG
patterns. For the purpose of performance evaluation, M-fold
cross validation technique is employed.

III. RESULT AND DISCUSSION

The proposed method involves two stage feature extraction-
features mentioned in Section II-B are computed from each
sub-frame and the extracted feature variation pattern is used for
statistical analysis and model fitting to obtain the final feature
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vector. In view of analyzing the performance of various mod-
els, different types of distributions are considered separately
in forming the feature vector proposed in (6) and in particular
Rician model is used in (7) to form the proposed feature vector.
This section presents description of the databases used and the
detailed analysis on the choice of proper PDF, quality of the
extracted features and classification performance.

A. Database

In order to investigate the proposed method in discriminat-
ing apnea patients and healthy subjects as well as apnea and
non- apnea frames of an apnea patient, the proposed method
is evaluated on three large databases, publicly available in the
PhysioNet [26]-[28]. Polysomnograms of healthy subjects are
available in [27] while [26] and [28] contain full overnight
polysomnograms from subjects with previously diagnosed
with sleep apnea. Experienced sleep specialist scored the
polysomnograms as apnea or non-apnea which is available as
ground truth. Apnea and Hypopnea Index (AHI) defines the
severity of apnea and it is measured by the number of occur-
rence per hour. For the purpose of detailed experimentation,
subjects with broad variation in AHI are taken into consid-
eration. In the databases there are different types of apnea
and hypopnea, such as obstructive sleep apnea, central sleep
apnea, mixed sleep apnea, obstructive sleep hypopnea, central
sleep hypoapnea, and mixed sleep hypopnea. The proposed
method is targeted to detect apnea frames irrespective of their
types. All different categories of apnea and hypopnea events
are termed as apnea in this paper. Hence, all types of apnea
and hypopnea frames and equivalent number of non-apnea
frames for subjects with AHI greater than 5 are selected for
experimentation. Depending on the available ground truth, for
the databases available in [26] and [28], frame lengths are
taken 15s and 30s, respectively. In terms of selecting sub-
frame length (M ) and corresponding sample shift (p), two
factors are to be considered. A small sub-frame length with
a moderate sample shift will provide an increased number of
feature variation data but it may result into incorrect estimation
of the features due to not having enough data. Again, a
very small sample shift can be chosen which will provide
a large number of feature variation data but it will increase
computational complexity. Considering both the issues, in
the proposed method, a relatively large sub-frame length of
1280 and 6250 samples are selected for databases- [26] and
[28] and 90% overlap between two successive sub-frames are
chosen to obtain better estimation of the features as well as
considerable amount of data points for model fitting with
moderate computational complexity. The information of the
subjects used in this study and the number of EEG frames
taken are given in Table II.

B. Goodness of Fit

In this sub-section, a comparative analysis on fitting char-
acteristics of different distributions is presented considering
conventionally used statistical tools, such as Log Likelihood
(LogL), Bayesian Information Criterion (BIC) and Akaike
Information Criterion (AIC). The distribution with the largest

TABLE II: Information of the Patients

Database- [26] Database- [28]

S/No Subject
ID AHI No. of

Frames S/No Subject
ID AHI No. of

Frames
1 UCDDB003 51 524 1 slp01a 17 74
2 UCDDB005 13 104 2 slp01b 22.3 130
3 UCDDB006 31 148 3 slp02a 34 180
4 UCDDB007 12 142 4 slp02b 22.2 84
5 UCDDB009 12 120 5 slp03 43 382
6 UCDDB010 34 324 6 slp04 59.8 460
7 UCDDB011 8 58 7 slp16 53.1 282
8 UCDDB020 15 132 8 slp32 22.1 100
9 UCDDB021 13 122 9 slp37 100.8 136

10 UCDDB024 24 260 10 slp48 46.8 500
11 UCDDB026 14 160

Total Frames 2094 Total Frames 2328

Log Likelihood value represents statistically the best fit. BIC
and AIC are defined as

BIC = −2 ∗ ln(likelihood) + [ln(N)](k) (8)

AIC = −2 ∗ ln(likelihood) + 2(k), (9)

where N and k are the number of observations and degree of
freedom of model, respectively. The best model in the group
compared is the one that minimizes these scores.

In order to demonstrate the comparative fitting performance
of various PDFs in multi-band sub-frame based feature vari-
ation patterns of each frame, above statistical parameters are
calculated. The mean values of these statistical parameters for
all the apnea and the non-apnea frames corresponding to a
subject are shown in Table III. It is observed from the table
the best PDF fitting performance is achieved by the Rician
distribution and thus Rician distribution is selected in the
proposed method.

TABLE III: Comparison of fitting of different distributions
evaluated in [26]

Apnea Non-apnea
Distribution LogL BIC AIC LogL BIC AIC

Gamma 36.60 -66.21 -69.20 35.56 -64.12 -67.12
Weibull 35.89 -64.78 -67.78 34.51 -62.02 -65.02

Exponential -60.95 125.39 123.89 -61.33 126.17 124.67
Rayleigh -38.16 79.81 78.31 -38.54 80.58 79.09
Rician 36.64 -66.29 -69.28 35.59 -64.18 -67.18

C. Goodness of Feature

The quality of the proposed feature is investigated in terms
of class separability by the standard goodness of feature mea-
sures, namely Bhattacharyya Distance (BD) and Geometrical
Separability Index (GSI). For data clusters, BD is computed
as [29]

BD = 1
8 (µ2 − µ1)

T [ 12 (δ)1 + δ)2]
−1(µ2 − µ1) +

1
2 ln(

det(
δ1+δ2

2 )√
det(δ1))∗

√
det(δ2))

) (10)

Here δi and µi represent covariance matrix and mean vector
of i-th cluster. Bhattacharyya coefficient (BC) is computed as

BC = exp−BD (11)
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TABLE IV: Feature Quality in terms of BC evaluated in [26]

S/No. Gamma Weibull Exp. Ray. Rician Proposed
1 0.69 0.53 0.35 0.40 0.08 0.06
2 0.62 0.46 0.22 0.25 0.05 0.02
3 0.78 0.63 0.31 0.42 0.14 0.01
4 0.72 0.52 0.33 0.38 0.09 0.04
5 0.77 0.61 0.53 0.46 0.10 0.03
6 0.42 0.33 0.14 0.13 0.07 0.03
7 0.2 0.13 0.04 0.06 0.01 0.003
8 0.46 0.35 0.19 0.20 0.03 0.01
9 0.49 0.33 0.19 0.19 0.07 0.01

10 0.65 0.46 0.23 0.25 0.07 0.00
11 0.44 0.29 0.16 0.14 0.04 0.01

Mean 0.57 0.42 0.24 0.26 0.07 0.02

The GSI provides the measure of the separability of two
classes in the nearest neighbor sense and is defined as [30]

GSI =

∑N
i=1(f(xi)) + f(x′i) + 1) mod 2

N
(12)

where x′ is the nearest neighbor of x and N denotes the
number of points. Higher value of GSI and lower value of
BC represent better the feature quality.

TABLE V: Feature Quality in terms of GSI evaluated in [26]

S/No. Gamma Weibull Exp. Ray. Rician Proposed
1 0.53 0.56 0.84 0.84 0.87 0.88
2 0.49 0.56 0.77 0.77 0.79 0.87
3 0.58 0.54 0.70 0.70 0.80 0.86
4 0.50 0.59 0.75 0.75 0.79 0.83
5 0.50 0.47 0.61 0.62 0.81 0.88
6 0.53 0.54 0.90 0.90 0.89 0.92
7 0.52 0.62 0.84 0.84 0.95 0.95
8 0.42 0.61 0.88 0.88 0.91 0.94
9 0.47 0.57 0.73 0.73 0.84 0.89

10 0.62 0.72 0.93 0.92 0.93 0.95
11 0.54 0.69 0.87 0.88 0.96 0.98

Mean 0.52 0.59 0.80 0.80 0.87 0.90

In Table IV and II, BC and GSI values are shown, respec-
tively for subjects mentioned in Table II for database [26].
It can be observed from the table that out of several PDFs,
the best feature quality, the lowest BC and the highest GSI. is
achieved by the Rician distribution and thus Rician distribution
is selected to fit the sub-frame based feature sequence in the
proposed method. Moreover, it is to be observed that the
proposed feature combination of statistical analysis and Rician
model parameters, as it is mentioned in (7) offers the best
feature quality result.

For the data used in Table II, box plots corresponding to
Rician parameters (υ, σ) are shown in Fig. 4 considering
entropy variation of Beta band. Here significant separation
between the two classes (apnea and non-apnea) are observed.

D. Classification Result

For the purpose of classification, two different cases, (i)
classification of apnea and non-apnea frames in the data of
apnea patients and (ii) classification of apnea patients and
healthy subjects are considered. The KNN classifier is used
for classification where cosine distance function and K=9 are
chosen. Standard performance measures, namely sensitivity,

(a) Rician Model Parameter υ (b) Rician Model Parameter σ

Fig. 4: Box plot of model parameters

TABLE VI: Definition of Accuracy Measures

Apnea Non-Apnea
Apnea True Positive (TP) False Negative (FN)

Non-apnea False Positive (FP) True Negative (TN)

specificity and accuracy, those are described in (13)-(15), and
Table VI, are used.

Accuracy(Acc) =
TP + TN

TP + FP + TN + FN
∗ 100 (13)

Sensitivity(Se) =
TP

TP + FN
∗ 100 (14)

Specificity(Sp) =
TN

TN + FP
∗ 100 (15)

1) Classification of Apnea and Non-apnea Frames in the
data of Apnea Patients: In this case, test and train, both data,
are collected from the same subject.

a) Effect of Use of Different PDFs: All three perfor-
mance criteria obtained for each subject mentioned in Table II
by using different PDFs are reported in Tables VII and VIII for
two databases using leave-one-out cross validation scheme. In
these tables, ’Stat’ represents a method that utilizes statistical
features (Fstatistical) as described in section II-D. It is found

Fig. 5: Performance criteria with different PDFs

JBHI-00742-2017.R1



2168-2194 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2018.2845303, IEEE Journal of
Biomedical and Health Informatics

7

TABLE VII: Classification result of leave-one-out cross validation evaluated in [26]

Sensitivity(%) Specificity(%) Accuracy(%)
S/No. Exp. Ray. Stat. Rician Proposed Exp. Ray. Stat. Rician Proposed Exp. Ray. Stat. Rician Proposed
1 82.44 82.44 82.06 90.46 95.80 90.46 90.46 91.22 85.50 87.79 86.45 86.45 86.64 87.98 91.79
2 71.15 71.15 69.23 98.08 100 86.54 86.54 88.46 75 75 78.85 78.85 78.85 86.54 87.5
3 72.97 74.32 72.97 91.78 91.89 75.68 75.68 75.68 67.12 68.92 74.32 75 74.32 79.45 80.41
4 74.65 74.65 71.83 84.51 91.55 73.24 74.65 77.46 73.24 81.69 73.94 74.65 74.65 78.87 86.62
5 68.33 68.33 68.33 86.67 91.67 58.33 58.33 58.33 66.67 75 63.33 63.33 63.33 76.67 83.33
6 96.30 96.91 95.68 96.91 98.15 88.27 87.65 87.65 85.80 89.51 92.28 92.28 91.67 91.36 93.83
7 82.76 82.76 82.76 96.55 100 79.31 79.31 79.31 79.31 89.66 81.03 81.03 81.03 87.93 94.83
8 92.42 92.42 92.42 95.38 95.46 80.30 80.30 80.30 76.92 81.82 86.36 86.36 86.36 86.15 88.64
9 77.05 77.05 77.05 91.80 88.53 91.80 91.80 91.80 85.25 85.25 84.43 84.43 84.43 88.52 86.89
10 91.54 91.54 91.54 93.85 99.23 93.08 93.08 93.08 89.23 91.54 92.31 92.31 92.31 91.54 95.38
11 83.75 83.75 85 93.75 95 92.50 92.50 92.50 91.25 91.25 88.13 88.13 88.75 92.50 93.13
Mean 81.22 81.39 80.81 92.70 95.21 82.68 82.75 83.25 79.57 83.40 81.95 82.07 82.03 86.14 89.30

TABLE VIII: Classification result of leave-one-out cross validation evaluated in [28]

Sensitivity(%) Specificity(%) Accuracy(%)
S/No. Exp. Ray. Stat. Rician Proposed Exp. Ray. Stat. Rician Proposed Exp. Ray. Stat. Rician Proposed
1 91.89 91.89 91.89 89.19 94.60 86.49 86.49 86.49 78.38 81.08 89.19 89.19 89.19 83.78 87.84
2 80 80 80 89.23 86.15 83.08 83.08 83.08 73.85 81.54 81.54 81.54 81.54 81.54 83.85
3 77.78 77.78 78.89 86.67 84.44 87.78 87.78 87.78 75.56 85.56 82.78 82.78 83.33 81.11 85
4 73.81 73.81 73.81 78.60 78.57 92.86 92.86 92.86 72 85.71 83.33 83.33 83.33 76.80 82.14
5 68.06 68.06 68.06 92.50 94.24 74.87 74.87 74.87 73.80 75.92 71.47 71.47 71.47 83.15 85.08
6 84.35 84.35 83.48 93.04 96.96 72.61 72.61 72.61 76.97 76.96 78.48 78.48 78.04 85 86.96
7 92.91 92.91 92.91 96.45 95.04 68.09 68.09 68.09 75.18 73.76 80.50 80.50 80.50 85.82 84.40
8 76 76 76 96 94 90 90 90 68 82 83 83 83 82 88
9 100 100 100 100 100 89.71 89.71 89.71 83.82 89.71 94.85 94.85 94.85 92.80 94.12
10 80 80 80 88 92 76 76 76 74 76 78 78 78 81 84
Mean 82.48 82.76 82.78 91.30 91.60 82.15 82.83 82.83 75.28 80.82 82.31 82.79 82.81 83.56 86.14

TABLE IX: Classification result of different cross-validation schemes evaluated in [26]

Sensitivity (%) Specificity (%) Accuracy (%)
Cross-
validation Exp. Ray. Stat. Rician Prop. Exp. Ray. Stat. Rician Prop. Exp. Ray. Stat. Rician Prop.

leave-one-out 81.22 81.39 80.81 92.70 95.21 82.68 82.75 83.25 79.57 83.40 81.95 82.07 82.03 86.14 89.30
10-fold 83.82 85.55 82.85 91.39 97.10 79.57 81.79 83.20 76.05 84.11 81.80 83.19 83.02 83.00 90.60
5-fold 83.19 82.96 83.71 91.66 95.27 81.06 82.01 82.63 76.89 80.93 82.16 82.08 82.75 83.90 87.56
2-fold 82.88 81.97 83.43 90.27 93.13 80.55 79.87 79.47 71.12 78.07 81.65 80.40 81.21 80.13 85.37

that for both datasets, the specificity values obtained by using
the proposed feature vector (Rician and statistical parameters)
are comparable to those obtained by other methods. However,
the sensitivity and accuracy values are found far superior to all
other cases, which is the greatest advantage of the proposed
scheme. For better understanding, the average of all three
performance criteria for various PDFs is shown in Fig. 5.
It is clearly observed from the figure that among different
PDFs, Rician PDF offers the best sensitivity and accuracy,
competitive specificity than that is obtained by other PDFs.
At the same time, the proposed method gives the best result
in terms of all three performance criteria. For the purpose of
evaluating the consistency of the classification due to variation
of amount of training data, results obtained by the proposed
method by using the leave-one-out, 2-fold, 5-fold and 10-fold
cross validation schemes are reported in Table IX. In all cases,
similar to previous analyses, the best performance is obtained
by the proposed scheme.

b) Comparison of Proposed Method with Other Ap-
proaches: One major contribution of the proposed method
is the use of two stage feature extraction: sub-frame based
feature extraction and fitting the extracted feature variation
using Rician PDF to use the model parameters as the feature.
The proposed sub-frame based feature variation modeling is

compared with the conventional frame based feature extraction
method [18], [14], where features are calculated using the
entire frame length. In the conventional approach, features
mentioned in II-B are extracted from the entire band limited
signals and directly used for classification. Instead of modeling
the feature variation, another interesting comparison would
be to consider the modeling of the data variation of the
band limited signals. The proposed method is compared with
data modeling where the modeling and statistical analysis are
carried out on the pre-processed band limited frame data. The
comparison of the proposed method with the conventional
approach and data modeling is presented in Table X. It is
evident from the table that proposed method offers significant
improvement than the other two approaches in each perfor-
mance criteria. Performance comparison is also carried out
in terms of feature quality measure GSI. It is observed from
the table that in terms of GSI, the proposed method offers
superior feature quality compared to others. This is expected
as the proposed sub-frame based feature extraction approach
captures local feature information, which offers better local
feature variation pattern than the other approaches.

The proposed method is also compared with some
existing methods and results are reported in Table XI. In
the implementation of the methods, for maintaining a fair
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comparison, frame length, sub-frame length, frequency limits
for sub-bands, band pass filter, classifier parameters are
kept same as the proposed method. It is observed from the
table that the proposed method outperforms other methods
significantly with respect to each performance criterion.

As an alternate, instead of analyzing proposed method
individually for each subject, one may consider all frames from
11 subjects in Table II and cross-validation schemes can be
applied to evaluate the performance. The result obtained in this
case is reported in Table XII. For each of 2-fold, 5-fold and 10-
fold cross validation schemes ten independent trials are taken
and average result is reported. It is clearly observable from
the table that the proposed method offers very high sensitivity,
good specificity and high accuracy in this case for all three
evaluation schemes.

The proposed method detects all types of apnea and hy-
popnea as apnea. The sensitivity of the proposed method to
different types of apnea and hypopnea are shown in Table XIII.
Here, it is evident that proposed method gives very satisfactory
classification performances regardless of the type of apnea.
The sensitivity of the proposed method is also investigated
in terms of the severity of apnea, i.e. the AHI value of the
subjects. It is known that AHI below 5 indicates healthy, from
5 to 15 is mild, above 15 to 30 is moderate and higher than
30 is severe [31]. The detailed result is given in Table XIV.
It is observed from the table that the method offers very high
sensitivity irrespective of the high, low or medium AHI values.

The proposed method is also compared using different
classification techniques as shown in Table XV. It is observed
from the table that KNN classifier gives the best performance,
hence it is selected in the proposed method.

2) Classifying Apnea Patients and Healthy Subjects: Most
of the methods available in literature deal with classification of
EEG data collected from apnea patients and healthy persons. In
this case, for the purpose of testing, EEG signals correspond-
ing to non-apnea events are generally collected from healthy
subjects. On the contrary, it is always very challenging when
frames of both classes come from a same subject, i.e., the task

TABLE X: Comparison of the Proposed Method with Other
Approaches

Measure Database- [26] Database- [28]
Data Conv. Prop. Data Conv. Prop.

Sensitivity 73.21 81.03 95.21 71.06 81.96 91.60
Specificity 69.87 81.92 83.23 73.04 79.11 80.82
Accuracy 71.54 81.48 89.22 72.05 80.54 86.14

GSI 0.67 0.81 0.90 0.66 0.77 0.87

TABLE XI: Comparison of the Proposed Method with the
Existing Methods

Database- [26] Database- [28]
Method Se.(%) Sp.(%) Acc.(%) Se.(%) Sp.(%) Acc.(%)

[18] 77.69 79.96 78.83 72.143 66.46 69.302
[14] 65.74 59.15 62.45 60.30 56.50 58.40
[22] 81.47 83.28 82.38 80.084 80.647 80.366
[21] 72.40 70.31 71.36 71.62 69.88 70.75
[23] 78.4 76.3 77.35 76.62 74.88 75.75

Proposed 95.21 83.23 89.22 91.60 80.82 86.14

TABLE XII: Classification result with all subjects combined

Cross-Validation Sensitivity (%) Specificity (%) Accuracy (%)
Leave-one-out 98.28 83.76 91.02

10-fold 95.86 82.90 89.37
5-fold 95.80 82.90 89.35
2-fold 94.96 80.70 87.83

TABLE XIII: Sensitivity of the Proposed Method to Different
Types of Apnea evaluated in [26]

Types Total Frames Detected as Apnea Sensitivity
Obstructive Apnea 323 321 99.38

Central Apnea 83 83 100
Mixed Apnea 51 51 100
Total Apnea 457 455 99.56

Obstructive Hypopnea 234 228 97.43
Central Hypopnea 277 270 97.47
Mixed Hypopnea 79 76 96.20
Total Hypopnea 590 574 97.29

TABLE XIV: Sensitivity of the Proposed Method to Various
AHI

Database- [26] Database- [28]
S/No. AHI Sensitivity S/No. AHI Sensitivity

1 51 95.80 1 17 94.60
2 13 100 2 22.3 86.15
3 31 91.89 3 34 84.44
4 12 91.55 4 22.2 78.57
5 12 91.67 5 43 94.24
6 34 98.15 6 59.8 96.96
7 8 100 7 53.1 95.04
8 15 95.46 8 22.1 94
9 13 88.53 9 100.8 100

10 24 99.23 10 46.8 92
11 14 95

TABLE XV: Performance Comparison Using Different Clas-
sifiers

Classifier Sensitivity(%) Specificity (%) Accuracy (%)
SVM(Linear) 67 70 68.40

SVM (Polynomial) 87.32 91.28 89.30
SVM(RBF) 63.61 91.79 77.70

ANN 97.90 83.57 90.74
LDA 80.04 100 90.02
KNN 98.28 83.76 91.02

of discriminating apnea and non-apnea frames of an apnea
patient which is already discussed in previous subsection.
In this sub-section, results on classifying apnea patients and
healthy subjects are reported in Table XVI. Healthy EEG data,
used in this simulation are available in [27] and apnea frames
of subjects of [26] mentioned in Table II are considered. In
Table XVI, leave-one-out, 2-fold, 5-fold, and 10-fold cross-
validation results are reported. For each of the 2-fold, 5-fold
and 10-fold cross validation schemes ten independent trials
are considered and average result is reported. The result shows
that the proposed method offers very satisfactory performances

TABLE XVI: Classification result of Apnea and Healthy Data

Cross-Validation Sensitivity (%) Specificity (%) Accuracy (%)
Leave-one-out 98.83 97.21 98.02

10-fold 98.68 96.51 97.61
5-fold 98.64 96.30 97.47
2-fold 98.33 96.24 97.28
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with respect to all the standard measures of performance
criteria in classifying apnea and healthy EEG data.

IV. CONCLUSION

In conventional frame-by-frame EEG data analysis only
the global characteristics of a frame can be obtained as in
that case, features are extracted considering the entire frame
at a time. On the contrary, in this paper, two-stage feature
extraction method is proposed. First, the feature is computed
from small duration overlapping sub-frames within a frame,
which can precisely capture sharp changes with respect to time
and provide temporal variation of the extracted feature within
that frame. Next, statistical analysis and modeling are carried
out on the resulting feature variation pattern, which gives an
opportunity to utilize both local and global characteristics of
a frame. Apart from ensuring such time resolution in feature
extraction, use of multi-band signals also ensures frequency
resolution. Among various PDF models, it is found that the
Rician PDF is offering the best feature quality in terms
of Bhattacharyya distance and GSI. Irrespective of the type
of apnea, the proposed method can not only classify apnea
patient and healthy subject but also classify apnea and non-
apnea frames of an apnea patient, which has a great demand
in the overnight polysomnography (PSG) to reduce human
error, labor and cost. The proposed method is evaluated on
three different and large EEG databases and it offers superior
classification performance in comparison to some existing
methods in terms of sensitivity, specificity and accuracy. It
makes the proposed method to be widely applicable in a
greater domain of diagnosis.
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