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Abstract— Spam continues to inflict increased damage. Varying 
approaches including Support Vector Machine (SVM) based 
techniques have been proposed for spam classification. However, 
SVM training is a computationally intensive process. This paper 
presents a parallel SVM algorithm for scalable spam filtering. By 
distributing, processing and optimizing the subsets of the training 
data across multiple participating nodes, the distributed SVM 
reduces the training time significantly. Ontology based concepts 
are also employed to minimize the impact of accuracy 
degradation when distributing the training data amongst the 
SVM classifiers.  

Index Terms—Machine Learning, Classification, Ontology 
Semantics, Support Vector Machine, Parallel Computing 

I.  INTRODUCTION 
Support Vector Machine (SVM) based approaches have 

persistently gained popularity in terms of their application for 
text classification and machine learning [1], [2].  Classification 
in SVM based approaches is founded on the notion of 
hyperplanes [3]. The hyperplanes act as class segregators in 
common binary classification, such as spam or ham in the 
context of spam filtering. SVM training is a computationally 
intensive process. Numerous SVM formulations, solvers and 
architectures for improving SVM performance have been 
explored and proposed [4], [5] including distributed and 
parallel computing techniques. SVM decomposition is another 
widespread technique for improving the performance in SVM 
training [6], [7]. Decomposition approaches work on the basis 
of identifying a small number of optimization variables and 
tackling a set of fixed size problems. Another widespread and 
effective practice is to split the training data into smaller 
fragments and use a number of SVM’s to process the 
individual data chunks. This in turn reduces overall training 
time. Various forms of summarizations and aggregations are 
then performed to process the final set of global support 
vectors [8]. Numerous forms of decomposition which are 
based on a data splitting strategy approach can suffer from 
issues including convergence and accuracy. Challenges related 
to chunk aliasing as well as outlier accumulation tend to 
intensify problems in a distributed SVM context. Adopting a 
training data set splitting strategy commonly amplifies issues 
related to data imbalance and data distribution instability.  

In this paper, we present an ontology assisted, parallel 
scheme for scalable SVM training. This work supplements 

current approaches by focusing on a number of aspects. We 
prototype a parallel SVM, building on the Sequential Minimal 
Optimization (SMO) algorithm [6]. We utilize a distributed 
computing framework, namely MapReduce [9] using 
Hadoop’s implementation [10]. We also employ ontology 
semantics for improving overall accuracy.  

The rest of the paper is organized as follows. In Section II 
we briefly describe the design of a parallel SVM algorithm. 
This work is then employed as a baseline for extension and 
accuracy improvement through the application of ontology 
assisted techniques, as described in Section III. Section IV 
describes basic experimental observations and results. Section 
V concludes the paper and points out some future work. 

II. DISTRUBUTING SVM WITH MAPREDUCE 
MapReduce is a generic framework and programming 

model intended to abstract large scale computation challenges. 
Popular implementations include Mars [11], Phoenix [12], 
Hadoop [10] and Google’s implementation [13]. MapReduce 
was popularized by the latter and primarily motivated by the 
need to be able to parallelize the processing of Internet scale 
datasets. Programmatically inspired from functional 
programming, at its core are two primary features, namely a 
map and a reduce operation. From a logical perspective, all 
data is treated as a Key (K), Value (V) pair. Multiple mappers 
and reducers can be employed. At an atomic level however a 
map operation takes a {K1, V1} pair and emits an intermediate 
list of {K2, V2} pairs. A reduce operation takes all values 
represented by the same key in the intermediate list and 
processes them accordingly, emitting a final new list. Whilst 
the execution of reduce operations cannot start before the 
respective map counterparts are finished, all map and reduce 
operations run independently in parallel. Each map function 
executes in parallel emitting respective values from associated 
input. Similarly, each reducer processes different keys 
independently and concurrently.  

A simple approach to parallelize and improve SVM 
training performance is thus by splitting training data and 
capitalizing on respective MapReduce functionality. From a 
Hadoop MapReduce [10] perspective, the data splitting 
strategy can be done according to the number of MapReduce 
tasks that will be employed. Each Map task (MAP1…MAPn) 
will process the associated data chunk 
(DataChunk1…DataChunkn) and generate a respective set of 
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Support Vectors (SVset
1 … SVset

n). These can then forwarded 
to a single (or multiple) Reducer (REDUCE1) which will 
contribute the respectively aggregated Support Vector Set 
(SV), weight (w) and bias (b) elements of the global SVM to a 
final learned model. In our prototype, the aggregation of the 
weight (w) and bias (b) elements are performed using a sum 
and average strategy respectively. The final output is used as 
the final classification model including the necessary 
information for the objective function to be able to classify 
unseen data. This process is described pictorially in Fig. 1. 

 
Fig 1: SVM process aggregation 

 
Algorithm 1 presents the proposed parallel SMO based on 

the one described in [6]. The map segment of the algorithm is 
basically the same as the original SMO algorithm except for 
the fact that it is applied for each participating mapper. The 
primary difference lies in the approach that the global b 
threshold (bglobal) and weight vector (wglobal) are computed via 
the reducer, using an average and sum strategy respectively as 
described in the pseudo code.  In Algorithm 1, for each 
datachunk we associate a Map (Mapj) operation. In this context, 
line 4 initializes the necessary structures, primarily the α 
multipliers and the objective function. Lines 5 – 10 portray the 
SMO optimization process. Iterations are based on the 
selection and optimization of two Lagrange multipliers, 
subsequently the objective function. Line 11 checks for the 
respective exit conditions, whilst line 12 updates the bias 
threshold accordingly. For actual implementations multiplier 
selection is frequently based on approaches such as heuristics, 
albeit strategies vary with specific implementations. Lines 13 
and 14 store the Lagrange multipliers and update the local 
weight vector for the specific map (Mapj). In contrast with the 
sequential SMO algorithm presented in [6], we perform two 
additional steps using the reduce phase of the MapReduce 
prototype. Basically, the reducer performs an average 
computation on all respective b outputs emitted by the 
individual Map (Mapj) operations (bglobal - Line 18) as well as 
a sum operation on the weight vectors emitted by the 
respective Map (Mapj) operations (wglobal - Line 19).  

Weka’s SMO [14] implementation is employed as a 
baseline solver. For this work we focused on linear SVMs, 
although the approach can be easily extended and applied to 
non-linear variants as well. The base SMO algorithm is 
decomposed and re-structured to benefit from MapReduce. As 
discussed, each MapReduce map processes an associated data 
chunk in its entirety. The output of each map process is the 
localized (per data chunk) SVM weight vector (Algorithm 1: 
wj) and the bias (Algorithm 1: bj) threshold. Again, the 
primary role of the associated reduce phase is to compute the 
global weight vector (Algorithm 1: wglobal) by summing the 

individual maps weight vectors. The bias thresholds from each 
map output are averaged by the respective reduce phase 
(Algorithm 1: bglobal).  

From a time complexity perspective the original sequential 
representation, i.e. O(m2n) can now be contextualized in a 
MapReduce environment and expressed as: 

 
O (( m2n / S)+ n log(S))  (1) 

where n is the dimension of the input, m are the training 
samples and S the number of MapReduce nodes. 
 

1. MAPj j ∈ {1…datachunk} 
2. input: set of training data xi, corresponding labels yi, i ∈ {1…l } 
3. output: weight vector wj, αj array, bj and SV 
4. initialize: αi ← 0, fi ← -yi i ∈ {1…l } 
5. compute bhigh, Ihigh, blow, Ilow 
6. update αIhigh and αIlow 
7. repeat 
8.  update fi, i ∈ {1…l } 
9.  compute bhigh, Ihigh, blow, Ilow 
10.  update αIhigh and αIlow 
11. until blow ≤ bhigh, + 2Г 
12. update bj bias term 
13. store updated αj1 and aj2 
14. update wj 
15. REDUCE 
16. input: set of Mapj weight vectors wj j ∈ {1… datachunk}, set of Mapj bias bj 

j ∈ {1… datachunk} 
17. output: global weight vector w, average b and SV 
  
18. 

   Mapj  
compute bglobal = ∑b data

chunk / Mapj 

  j=1   
 
19. 

   Mapj 
compute wglobal = ∑b data

chunk 
  j=1   

Algorithm 1: MapReduce based parallel SMO 
 
Where: 

Mapj = MapReduce Map 
Datachunk = training data associated with Mapj 
x = training elements, y = class labels for x 
wj = local (Mapj) weight vector 
bj = local (Mapj) b threshold 
I = training data index set 
αj = Lagrange multiplier(s) 
bglobal = global b threshold 
wglobal = global weight vector 

III. ONTOLOGY FOR ACCURACY AUGMENTATION 
 Training an SVM by splitting the input data set and 

working on the individual sub-sets separately may reduce the 
overall accuracy [15]. In order to improve the overall 
classification accuracy of the parallel SMO algorithm, we 
extend it with an ontology based enhancement process. We 
designed SPONTO, short for SPamONTOlogy, which acts as 
a feedback loop base for the training and classification 
processes. This is in contrast with the work presented in [16] 
where the ontology itself is employed for classification. The 
feedback loop is then employed to re-train the parallel SVM 
with added intelligence to improve overall accuracy. This is 
performed to mitigate the accuracy degradation challenge 
introduced due to the training data file splitting strategy and 
respective separate SVM computation strategy adopted. 
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SPONTO reflects all the basic elements presented in the 
SpamBase [17] dataset as well as additional attribute 
assertions. SPONTO is also employed to carry additional 
intelligence such as mail class (Ham or Spam), whether the 
machine learning based (parallel SVM) classifier outcome for 
instance classification was correct as well as support for 
instance weights. The intelligence conveyed through the 
supplementary instance attributes via end user contribution is 
employed for correcting and influencing training data. The end 
user contributed, ontology based intelligence augmented 
training sets are then employed for the regeneration of the 
classifier by the parallel SVM.  

A base RDF graph is generated from the SpamBase ARFF 
and based on the SPONTO ontology structure. We transform 
the Weka ARFF format to an equivalent RDF representation. 
We then apply the learned model from the parallel SVM on 
the instances which require classification. For each test 
instance, we generate a new ontology instance based on 
SPONTO. Ontology generation is performed via the extraction 
of instance data and automated generation of a respective 
SPARQL query, applied on the base RDF graph to identify 
respective misclassified elements. Misclassified nodes are 
identified as a set of final ontology instances that are used for 
user contribution. End users contribute preference and 
intelligence by increasing individual instance weights, 
removing instances or modifying instance classification 
outcomes for example. For the prototype, we employ Protégé, 
the Ontology Editor and Knowledge Acquisition System [18] 
for Ontology interaction and end user contribution.  

The final process involves the re-generation of the Weka 
ARFF input files from the final ontology for subsequent 
processing by the parallel SVM.  We increase correctly 
classified instance weights, correspondingly decrease the 
instance weights of incorrectly classified ones and merge these 
instances with the original input. This closes the ontology 
assisted feedback loop – described pictorially in Fig. 2. 

  

 
Fig 2: Ontology assisted feedback loop 

IV. EXPERIMENTAL RESULTS 
A number of experiments were carried out to identify the 

accuracy and performance of the parallel SMO, comparing it 
with the Sequential counterpart. For all classification 
experiments carried out, the SpamBase [17] dataset was 
employed. There are 4601 instances in the original SpamBase 
dataset. A baseline experiment intended to identify typical 

sequential SMO performance using the SpamBase dataset on a 
typical desktop computer was performed. Weka’s SMO 
classification scheme was employed [19], using a number of 
unlabeled instances and varying the number of training 
instances.  The time required to train the SMO sequentially 
using 128,000 instances on a single computer node was ≈ 563 
seconds. A sequential SMO test with 327,750 instances failed. 
The same numbers of instances were processed in ≈ 134 
seconds using a simple Hadoop MapReduce cluster with 4 
computing nodes of similar processing capabilities as the 
desktop machine employed for the sequential tests. Fig. 3 
shows a comparison of the sequential and parallel SMO 
efficiency in training, using a varying number of nodes. It is 
also believed, as shown in Table I that the baseline parallel 
SMO classifier accuracy compares favorably with the figures 
identified when the model was trained using the sequential 
approach. Given an appropriate number of processing nodes 
and map tasks, training the SVM using the proposed 
MapReduce approach reduces training time considerably. This 
also provides increased scope for possible re-training.  

 

 
Fig 3: Efficiency of the Parallel SMO 

TABLE I.  TRAINING TIME AND ACCURACY COMPARISON 

 Sequential 4 Node MapReduce Avg. 
Correctly Classified ≈ 94.03 % ≈ 92.04 % 
Incorrectly Classified ≈ 5.97 % ≈ 7.96 % 
Training time 128,000 
instances 

≈ 563.70 s ≈ 134.50 s 

 
As indicated earlier, the baseline SMO is inherently 

sequential making use of singular global data structures. On 
the other hand the parallel version employs numerous separate 
support vector machines based on the specific file splits and 
training sets. This specific approach is the primary influencer 
of the accuracy difference between the sequential and the 
parallel versions. Evaluating the accuracy of the parallel SVM 
computed classifier using a random set of 267 instances yields 
226 correct and 41 incorrectly classified instances 
respectively. To further improve the accuracy of the parallel 
SMO, we augment the base training sets with additional 
intelligence through ontology based end user contribution as 
described in Section III. This is performed by influencing 
individual misclassified elements as well as attributing 
increased weighting to user identified and selected instances. 
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With this approach, we identified an average of ≈ 5 % 
accuracy improvement. The rate of accuracy degradation over 
the number of file splits is significantly slower as shown in 
Fig. 4. The slower rate of accuracy degradation is attributed to 
the ontology based intelligence augmentation. This is achieved 
by merging end user optimized instances to the respective 
training split files which are also weighted to influence overall 
relevancy. The minimum accuracy increases by 1.7% which 
reflects a scenario where the number of file splits is minimal, 4 
chunks in this case, whilst the maximum of 7.5 % occurs when 
there is the largest number of splits, namely 48 in this case. 
Based on an average accuracy improvement of 4.6 % over the 
baseline parallel SMO, Fig. 5 shows that using the ontology 
intelligence augmented approach, the MapReduce based SMO 
achieves an accuracy of 96% on average, which is better than 
the original sequential SMO.  

 

 
Fig 4: Accuracy degradation rate comparison. 

 

 
Fig 5: The accuracy of the ontology augmented parallel SMO. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper we presented a parallel SVM algorithm for 

scalable spam filtering. By splitting the training set and 
applying distributed computing techniques such as 
MapReduce we can improve the training time considerably. 
However, this has varying yet noticeable degrees of accuracy 
degradation. In our work, we employ ontology based 
semantics to improve the accuracy of the parallel SVM. For 
future work, we intend to research appropriate schemes to 
extract additional intelligence from annotated instances and 
employ this within the machine learning, Parallel SVM 
feedback loop process. We believe that accuracy can be also 
further improved via automated annotation similar to [20].  
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