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23.1 Introduction

The development of the electronic skin (e-skin) is a very challenging goal that
should be tackled from a system perspective.

The e-skin is usually intended as a hybrid stack-wise arrangement that
incorporates tactile sensing (structural and functional materials, signal condi-
tioning and acquisition, signal processing) and interpretation. Sensory inputs
similar (but not limited) to those possessed by humans are essential to provide the
necessary feedback to explore the environment and interact with objects.

A specific example of this general structure is shown in Figure 23.1 (adapted
from Ref. [1]).

The bottom layer (substrate) is made of a structural material that can be rigid
(e.g., the robot mechanical structure) or soft. Next layer (electronic layer) hosts the
electronic circuits. Conventional electronics is typically integrated on very hard
and flat (brittle) surfaces. Here the need is to conform to curved surfaces,
requiring flexibility but also stretchability, to a certain extent, to follow all
movements and deformations of the parts into which the electronic layer is
integrated. The adoption of a flexible substrate does not necessarily guarantee the
flexibility of the entire electronic circuit, as a too dense or not well-organized
layout may drastically limit the flexibility of the overall structure. Also, system
flexibility does not imply stretchability. In fact, even if the substrate is stretchable,
the routing lines are intrinsically not, unless a dedicated design is adopted. Some
interesting concepts are related to the creation of compliant and stretchable
interconnections [2,3] and a very widespread approach to materials and mechan-
ics for stretchable electronics is contained in a complete overview [4]. Require-
ments on conformability and stretchability put severe constraints on the
reliability of the electronics, as mechanical stress on the electronic circuits can
cause faults on interconnections and circuits. The counteraction can be at a
material level; for what concerns this review, we will focus on increasing

Material-Integrated Intelligent Systems: Technology and Applications, First Edition.
Edited by Stefan Bosse, Dirk Lehmhus, Walter Lang, and Matthias Busse.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.

571



robustness through redundancy at functional and circuit levels: The drawback is
the unavoidable increase of complexity and power consumption.

Next, sensors are embedded in a protective layer. Sensors can be multimodal in
that theycanmeasuredifferent featuresof the input stimuli, forexample,normaland
tangential forces. The geometry of the sensor array (i.e., overall area, sensor size,
sensor pitch, sensor distribution) depends on the transducer technology and on the
givenapplication requirements.Theprotective layer,which isusuallypolymerbased
(e.g., PDMS), protects the whole from damages induced by contact with objects,
environmental chemical agents and water, and so on. Moreover, it implements a
mechanicalfilteringof the input stimulus andconcentrates/distributes themechan-
ical stimulus onto the sensor array below depending on the thickness and the
compliance of the layer. As a consequence, e-skin spatial resolution depends on the
sensor geometrical arrangement as well as on the features of this protective layer.

In this chapter, we first study materials and transducers, focusing on most
promising sensor technologies. Thereafter, the issue of how to distill useful
information from the stream of data produced by tactile sensors is addressed: Raw
sensor measurements are processed and organized, trying to infer relations or
learning patterns from data collected over time or from different settings. Finally,
the tactile information has been interpreted to build a coherent picture of the
environment and its evolution over time.

The need of extracting information from multiple sensor data streams impacts
on the placement and on the type of sensors, and on the processing throughput
and latency. Organizing and fusing sensor data streams so that salient information
is extracted is a critical step in the process of sensor data interpretation. The time
taken for sensing and interpreting limits the response time in closed-loop control
systems. In general, benchmarks andmetrics focus on the speed of processing, the
quantity of data to be processed, the efficiency of data abstraction, and the
associated error rate. As a consequence, efficient real-time embedded implemen-
tation is required.

The chapter is organized as follows: Sections 23.1 and 23.2 report a condensed
assessment of the state of the art of the available transductionmethods andof tactile
data processing, respectively. In order to provide an estimation of the computa-
tional complexity of the hardware implementation of the processing algorithms,
Section 23.3 provides a study of the computational requirements concerning two
existing and sound approaches, that is, the electrical impedance tomography (EIT)
algorithm [5] and amachine learning (ML) algorithm based on tensorial kernel [6].
Conclusions and future perspectives are reported in Section 23.4.

Figure 23.1 General physical structure of the e-skin system.
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23.2 The Skin Mechanical Structure

23.2.1 Transducers and Materials

A sensing element can be seen as a structural unit (e.g., capacitive) that produces a
signal as a response to a mechanical stimulus or as a material (or aggregation of
materials) – for example, piezoelectric [7], piezoresistive [8], and optical [9] –
which intrinsically convert the mechanical stress/strain into an optical or
electrical signal [10]. When constituted by a mix of different materials having
different properties, e-skin shows multimodal sensing capabilities [11], bend-
ability, flexibility, and stretchability, hopefully shrink and wrinkle ability as human
skin has [12]. On the basis on what happens in human skin, transduction
technologies and corresponding sensors should enable such capabilities as
normal and shear force sensing, tensile strain monitoring and vibration detection
(at least up to 800Hz) [13], and e-skin featuring a large frequency bandwidth that
spans from 0 to 1 kHz is desirable. According to the application, the spatial
resolution (defined as the smallest distance between two distinguishable contact
points [14]) should range from a minimum of 1mm to a maximum of 20–30mm.
Detectable force should span in a range of three orders of magnitude (e.g.,
1–1000 g [13]). Even if human skin features high hysteresis, it is preferable that e-
skin presents a low hysteresis, to avoid significant processing and complex
electronics. The requirements outlined above together with some others
(extracted and adapted from literature, in particular from Refs [14–16]) are
summarized in Table 23.1. The requirements in Table 23.1 are general and can

Table 23.1 Design requirements for tactile sensing system.

Design criteria Character guideline

Detectable force range (dynamic range) 0.01–10N (1000 : 1)

Tactile sensing element (Taxel) pitch
(for array only)

�1mm for small sensing areas
�5mm for large less sensing areas

Spatial resolution �1mm for fingertips
5mm÷ 20–30mm (e.g., limbs, torso, etc.)

Sensor frequency bandwidth (sensor
response time)

About 1 kHz (1ms)

Temporal variation Both dynamic and static

Mechanical sensing detection capability Normal and shear forces; vibrations

Sensor system characteristics Mechanical Flexible, stretchable, conformable and soft,
robust, and durable

Electrical Low-power, minimal wiring, and cross talk,
electrically and magnetically minimal sensitivity

Sensor response Monotonic, not necessarily linear, low
hysteresis, stable, and repeatable

Source: Adapted from Refs [14–16].
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be satisfied totally or partially, according to the target application. Many of the
previous requirements are satisfied by many examples reported in the literature,
even if, to our knowledge, no e-skin implementation satisfies all of them.

Transduction technologies and the functional materials are the focus of this
section. The commonly used are capacitive, piezoelectric, optical, and resistive/
piezoresistive (based on conductive polymer films and elastomer composites),
with their advantages and disadvantages [13,14,17,18]. Capacitive technology has
a well-established design and fabrication technique and it is, along with resistive,
the most diffused technology. Capacitive e-skin requires dielectric materials
having high dielectric constant (k) to increase sensitivity, and ferroelectric
polymers are usually preferred [10]. High-k thin elastomer dielectrics can be
developed by an appropriate chemical design, or by addition of high-k fillers or
conductive fillers [13] in the elastomer, to design stretchable and flexible
capacitive tactile sensors [19,20]. Nanostructured materials like carbon nano-
tubes (CNT) can enhance sensitivity, dynamic range, and resolution [10]. Capaci-
tive tactile sensors have been developed for small- [21] and large-area tactile
sensing [22] and 3D pressure/force sensing [23]. Unfortunately, stray capaci-
tances and cross talk between sensor elements, electromagnetic interference
(EMI) sensitivity, and the need of relatively complex electronic circuitry are the
most significant drawbacks.

Conductive polymer composite films are used for the development of flexible
and compliant large-area resistive-based e-skin, which can be wrapped around
curved surfaces. Elastomer composites also are used to realize stretchable
resistive sensors [24], although their use is limited to pressure sensing/imaging
applications [14] (e.g., electrical impedance tomography by Tawil et al. [25]).
Stassi et al. [17] provides a comprehensive review on the different types of
composite materials used in the development of piezoresistive sensing devices.
According to Stassi et al. [17], e-skin based on resistive solutions and flexible
composite materials could give the possibility to satisfy almost all the general
requirements presented in Table 23.1. Tactile sensors based on piezoelectric
materials – such as PZT, PVDF, PVDF-TrFE, to name but a few – are ideal for
dynamic tactile sensing [26] due to their large frequency bandwidth and reduced
response time (e.g., useful for monitoring dexterous manipulation, sensing fine
surface features and textures). Moreover, piezoelectric materials are mechanically
flexible, robust, and present high sensitivity. Examples of small- [27] and large-
area [28] piezoelectric-based tactile sensing systems are present in literature.
Piezoelectric sensors can exhibit drift in sensor response over time [13] and are
mechanically not stretchable. Examples of piezoelectric tactile sensors for 3D
force sensing [29,30] exist in literature.

When the number of sensing elements increases, optical-based tactile sensors
can be a solution, because of a simplified and cross-talk-free wiring [14] and the
possibility to have any electronic component on the sensing areas [31]. Optical
tactile sensors can be used for dynamic tactile sensing as well [31]. The use of
plastic optical fibers (POFs) allows overcoming sensor limitations related to
fragility and rigidity [14]. Polymer-waveguide-based sensors satisfy requirements
such as thin film architecture, localized force sensing and multipoint recognition,
robustness to bending and fast response times [31], stretchability, stability, low
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hysteresis and high sensitivity (e.g., weight as low as 10mg is detectable), and easy
to fabricate [32]. For more comprehensive and exhaustive overview of materials
and transduction techniques, which is not compatible with the page limits of this
chapter, the readers are referred to other recent reviews, for example,
Refs [10,13–18,33–35].

In Table 23.2, we report a comparison of the tactile sensing technologies
described above and presented in the recent scientific literature (covered years:
2011 to present). In particular, such parameters as hysteresis, bandwidth (or
response time), and spatial resolution have not been included as no complete
information has been found.

23.2.2 An Example of Skin Integration into an Existing Robotic Platform

While in the next section we will deal with sensor signal processing and
interpretation, here we report on how it is possible to practically couple the
skin structure to a robotic platform. We illustrate a literature example, consisting
in integrating capacitive sensor arrays into the iCub robot.

Effective integration of tactile sensors into real robots requires conformable
structures that can be deployed on curved surfaces. Various system-level issues
have to be managed, like wiring, networking, power consumption, maintenance,
and lowering production costs. Figure 23.2 shows a graphical sketch of the
integration of the ROBOSKIN1 capacitive e-skin system into the iCub robot, as
described in Ref. [22]. Similar approaches can be employed for the integration of
different skin concepts into other robots.

A skin system for humanoids that integrates distributed pressure sensors based
on the capacitive technology has been presented in Ref. [49]. It consists of
triangular modules interconnected to form a system of sensors that can be
deployed on nonflat surfaces. The basic functional element is a capacitor in which
the dielectric deforms when pressure is applied. Patterned conductive areas on a
flexible flexible printed circuit board (FPCB) form the first plate of the capacitor.
On top of the FPCB, there is a deformable dielectric (3D air mesh fabric) covered
by a conductive (Lycra) layer that provides the second plate of the capacitor and
works as a common ground plane protecting the sensors from electromagnetic
interferences. The third external layer has special hemlines with holes that host
screws to keep the cover in place (see Figure 23.3a). Therefore, it can be easily
substituted, if damaged, and removed to check the status of the FPCB and
electronics below. The FPCB is shaped as a triangle hosting 12 sensors (i.e., taxels)
and a capacitance to digital converter (CDC, AD7147 from Analog Devices)
performs the AD conversion and transmits the capacitance values to a serial line.
Several triangles can be interconnected to form a flexible mesh of sensors to cover
the desired area. The triangles and the connections among them are flexible: The
resulting mesh can, therefore, be adapted to curved surfaces. The system has been
successfully integrated into different humanoid robots, for example, iCub [50],

1 “Skin-Based Technologies and Capabilities for Safe, Autonomous and Interactive Robots” is a FP7
STREP European project.
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KASPAR [51], and NAO [52], and also the Schunk robotic arm as shown in
Figure 23.4.

The following are the steps that were pursued for the skin integration into the
iCub forearm:

� The mesh of triangles (see Figure 23.4) was glued on the cover of the iCub
forearm using a bicomponent glue and with the help of a vacuum system in
order to improve the adhesion on the 3D surface. In Figure 23.3c, it is possible
to see the final result of this procedure.� For the dielectric layer, different layers of fabric have been glued together, cut,
and shaped to adapt to the robot part. The cover was then mounted and fixed
with screws to the iCub forearm (see Figure 23.3a and b): This allows easy
mounting and substitution. This procedure has been pursued for the integra-
tion of the sensor arrays on other iCub parts (the two arms, palms and torso,
and also on the WAM arm from Barret Technology [22]).

Figure 23.2 Graphical sketch of the integration of the ROBOSKIN e-skin system into iCub. (Image
courtesy of the Italian Institute of Technology – IIT, Genova, Italy).

Figure 23.3 The sole dielectric layer that has been integrated into the sensor array in this version
of the capacitive skin. (a) Front side. (b) Back side. (c) The complete skin patch (dielectric layer
unrolled on the side) as mounted on the Schunk robotic arm. (Image courtesy of the Italian
Institute of Technology – IIT, Genova, Italy).
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23.3 Tactile Information Processing

Approaching tactile sensing at a system level meansmanaging all issues associated
with the integration of data processing and information management into a
sensitive system built on structural and functional host materials. In this chapter,
we limit the overview to what information is relevant and which are available
methods to extract it from sensor data, discarding the wider problem of inter-
preting and reacting on the basis of this available structured and unstructured
tactile information.

What kind of information is being propagated from the sensitized object to the
robot/human? Interesting information about the minimum functional require-
ments for a robotic tactile sensing system mimicking human in-hand manipula-
tion is contained in Ref. [14]. Those requirements shed light on what is needed to
be detected during tactile contact for the complex manipulation process. An
interesting review is contained in Ref. [53], in that HRI (human–robot interac-
tion) context with the scope of summarizing (i) what is detected during tactile
contact of a robot with a human and (ii) how the detected information is used by
the robot. As said above, we only focus on aspect (i). Without pretending to be
exhaustive, Table 23.3 extends what is reported in Ref. [53], including relevant
references from journal publications only, published during 2005–2015.

Figure 23.4 Capacitive e-skin applied to different robots. (Image courtesy of the Italian
Institute of Technology – IIT, Genova, Italy).
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Tactile data processing concerns lower level information as that required for
object grasping andmanipulation and related to an accurate estimation of finger–
object interaction such as contact location, area and duration, contact force
intensity, direction and distribution, together with temperature. Touch also
enables more high-level information for the classification of attributes of the
contacting objects, for example, roughness, textures, patterns, shapes, as well as
data related to object movement on the cutaneous surface, for example, slip
detection, vibration, up to the discrimination of the touch modality.

Except for temperature, which is still a hot topic, which deserves a specific
discussion, and which is beyond the scope of the present study, what is named low-
level information can be faced either using distributed or concentrated approach.

In a distributed approach, complete information is attributable to the
reconstruction of the force distribution at a given instant [48,104]. Either
regularization methods (e.g., Tichonov) have been used in specific systems to
deal with the ill-posed problem of retrieving the (continuum) complete force
distribution starting from (finite) sensor data [105] or case-by-case approaches
are used and specific sensor arrangements have been proposed leading to three-
axis contact force distribution [61,62,85]. On the other hand, a general method for
the reconstruction of the spatial distribution of contact forces as well as their
intensities and directions starting from embedded sensor data has been recently
proposed [86]. In this case, continuum mechanics is used as a framework for the

Table 23.3 What information is extracted from sensor data (covered years: 2005–2015,
journal publications only).

Contact Location [5,22,54–60]

Area [5,28,56,60–66]

Static [22,23,40,61–63,65,67–70]

Dynamic [28,30,43,45,54,64,69,71–73]

Force Normal [5,22,23,45,56–58,66,67,72,74–78]

Shear [23,40,45,67,68,74–77]

Magnitude (intensity) [23,45,56–60,66,67,70,72]

Orientation (direction) [23,40,45,59,60,67,70,72,74–76]

Moment [72,79–81]

Pressure distribution (only normal
force)

[22,24,32,54,63–65,82–84]

Whole force distribution [61,62,85,86]

High-Level
Info

Texture/roughness [71,87–94]

Stiffness (contact object) [24,54]

Slip detection [18,30,71,95–98]

Vibration [71,72]

Touch modality [5,6,66,99–103]
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direct problem of mechanical stimuli transmission to the sensor array and the
problem is inverted using an optimization procedure and accounting for the
physics of the problem. The importance of this method resides in its generality, as
it is independent of the specific employed transducer and tactile application,
provided that stress information comes from embedded sensor in an elastic layer.

More frequently, the distribution of the sole normal component of the force
(pressure) is reconstructed, which allows for punctual information that is
however far from being complete [22,24,32,54,63–65,82–84].

In a concentrated approach, either force resultants and moments are available
and the contact location (centroid position at each instant) can be retrieved [79]
or contact location(s), the force resultant(s), and point(s) of application are known
and moments can be calculated [80].

While treating object movement on the cutaneous surface, dynamic sensors are
involved (see Table 23.3). In this context, sliding systems have to be cited as they
are relevant from the point of view of applications. For interesting literature about
sliding and slip prevention, whose in-depth analysis is not at the core of this
discussion, the reader is referred to Refs [18,30,95,96] and references therein.

Slip detection can be either inferred directly from vibration sig-
nals [30,71,106–108] or indirectly by characterizing and identifying the dynamic
force variations associated with slip [97,98]. A widespread method (also used in
prosthetic commercial systems2) to avoid sliding is to monitor the normal and
shear force from a grasped object [23,45,67,74–77], while keeping the normal-to-
tangential force ratio above a certain value [109]. Measurement of 3D contact
forces is also critical for determining the full grasp force/torque and for handling
fragile and irregular objects.

Other topics that are related to moving touches are the discrimination of
textures and the interpretation of touchmodalities [99], although in the context of
social robotics information other than tactile (e.g., vision) probably needs to be
involved – like for humans – to properly discriminate the modality of touch. To
deepen these concepts, the reader is referred to Ref. [100] and references therein.
If the tactile-sensing framework has to face such challenging assignments such as
texture and touch modality recognition, machine learning techniques [110] may
prove to be useful as explicit formalization of the input–output relationship is
difficult to attain. In this case, the actual problem is to discriminate between a set
of stimuli that the system is expected to recognize and empirical induction is used
by learning-from-examples approach. Machine learning paradigms represent a
powerful technology for tackling clustering, classification, and regression prob-
lems in complex domains and they have been widely used in robotics to retrieve
partial contact information on specific systems [66,87–89,100,111]. Nevertheless,
ML has its own limitations and the quality of results depends on the quality of
training data and also generality is not warranted.

All these processing aspects can be integrated into overall systems that closely
resembles to the human skin. Very interesting examples are reported in a recent
review [13], which includes all existing research on multimodal systems that
retrieve both structured and unstructured tactile information. To cite an example,

2 www.ottobock.com.
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multimodal HEX-O-SKIN [1,71] measures normal and shear forces together with
the hardness of the contact object and vibrations, enabling slip detection, impact
sensation, and contact roughness sensing.

23.4 Computational Requirements

Besides the huge amount of tactile data to be processed in real time, the
computation complexity poses a tough challenge in the development of the
embedded electronic system. Computational requirements depend on the overall
number of operations (mainly arithmetic) that the algorithm must perform and
on the real-time operation.

This section presents an assessment of the computational requirements taking
into account two sound and completed approaches: (i) electrical impedance
tomography to classify social touch [5]; (ii) tensorial kernel approach to classify
touch modality [101]. Figure 23.5 shows the algorithmic steps needed to classify
the input touch: In the EIT approach, the complexity of the computation mainly
lies in the first step (EIT inverse solution); while in the tensorial kernel approach,
it lies in the singular value decomposition.

23.4.1 Electrical Impedance Tomography

Electrical impedance tomography is an imaging technique used to estimate the
internal conductivity distribution of an electrically conductive body based on

Figure 23.5 Algorithmic steps: (a) EIT and (b) tensorial kernel approaches.
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electrical (i.e., voltages and/or currents) measurements made only at the bound-
ary. In tactile systems, a conductive patch is used as sensitive skin; when a contact
on the sensitive skin happens, the conductivity distribution changes as a conse-
quence and the EIT reconstruction problem consists in finding the distribution of
conductivity due to the contact; the result is an image displaying the distribution
of conductivity and consequently the contact force/pression distribution. The
EIT reconstruction problem is a nonlinear inverse problem where a unique
solution does not exist (ill-conditioned problem). The starting point for EIT is
Maxwell’s equations for electromagnetics. A commonly used approach to solve
the mathematical model represented by the Maxwell differential equations is the
finite element method (FEM) [112]. At each iteration, the multiplication of a
sparse M×M matrix by 1×M vector (where M is the number of potential
measurements on the boundary) is implemented. In Ref. [5], the ill-conditioned
problem has been solved by using the generalized Tikhonov regulariza-
tion [113–115]. The solution figures out a matrix δσK�L containing the difference
between the conductivity of the input contact and a conductivity σ0 taken as
reference. K is the number of elements in the FEM mesh and L is the number of
injection current patterns [25].

The classification of touch modalities is done using “LogitBoost” classifier.
Table 23.4 shows the operations needed to implement the EIT method.

23.4.2 Tensorial Kernel

Machine learning approaches have not been developed to handle data that are
represented in the form of tensors, that is, n-dimension input vectors; hence, the
implementation of some feature extraction process is needed to map tensor
signals into multidimensional vectors, with the risk of compromising the original
structural and topological information [116,117]. The ML-based approach in
Ref. [101] proposes a tensor-based morphology of tactile signals, in a marked
analogy with image tensor constructed from face images for face recognition
application [36].

Tensorial kernel approach consists of first computing the singular value
decomposition (SVD) [37] of the input tactile N´ ×N´ matrix. The study of the
computational requirements for the SVD is based on the one-sided Jacobi

Table 23.4 The computational requirements [5]; Nt is the number of training data.

Operation FEM Tikhonov regularization Classification

Addition/
subtraction

M2�M � 1� � M
6 �20M2

�3M � 5�
K
6 �20K2 � 5 � 6KM � 3K �
�KM�L � K � 1� � KL

M× (2M+ 3)× 3Nt

Multiplication M3 KM (2K+ L) M× (M+ 6)× 3Nt

Division 0 MK 2×M× 3Nt

Square root 0 K2 0
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algorithm that provides high accuracy and convergence in about K∗= 5–10
iterations [38]. Following step is the computation of the kernel function for a
couple of SVDs, the first corresponds to the tensor input and the second to the
tensor representing a predefined class extracted from the training data. Table 23.5
shows the operations needed to implement the tensorial kernel approach.

In order to assess the computational burden, a case study with the setups used
in Refs [5,101] has been considered. The task is to classify an input touch with
duration of τ � 1 s into three touch modalities; the number of training data is set
to Nt= 100. In Ref. [5], a total of M= 224V measurements were needed at each
acquisition step. A total of K= 2240 elements in the FEMmesh were used for the
forward solution. The number of iterations of the LogitBoost classifier needed to
converge is M´ = 25. In Ref. [101], the input matrix has size 8× 8 sensors; for the
duration of touch τ � 1 s, three different matrix sizes (N´ = 8, N´ = 8, and N´ = 64)
have to be decomposed by the SVD. The number of SVD iterations using the one-
sided Jacobi algorithm is K∗= 8; the number of support vectors has been set to
Nsv= 50. Table 23.6 shows the results of the case study in terms of number of
operations.

Following Table 23.6 results, about 42 Giga-operations/s [5] and about 31
Giga-operations/s [101] are needed for a real-time single-touch classification
(three classes). The requirements for the processing unit are very challenging; for
instance, let us consider the very well-known ARM Cortex processor family [39].
The ARM Cortex-R are high-performance processors, meeting challenging real-
time constraints: they offer high-performance computing solutions for real-time

Table 23.6 Number of operations needed for a single-input touch classification [5,101].

Operation EIT Tensorial kernel

Addition/subtraction 3.97× 1010 1.56× 1010

Multiplication 2.28× 109 1.58× 1010

Division 6.36× 105 6.48× 105

Square root 5.01× 106 4.32× 105

Table 23.5 The computational requirements [101]; N is the dimension of the matrix, K∗ is the
number of SVD iterations, and Nsv is the number of support vectors.

Operation SVD Kernel function Classification

Addition/
subtraction

3
2 N ´�N ´ � 1� 2N ´2�N ´ � 1� � 4

� �
K∗ 3N ´�2N ´2 � 1� �1 � 3Nt� � Nsv

Multiplication 3
2 N ´�N ´ � 1��2N ´3 � 3�K∗ 3N ´2�2N ´ � 1� � 5 3Nt � Nsv

Division 9
2 N ´�N ´ � 1�K∗ 0 0

Square-root 3N ´�N ´ � 1�K∗ 0 0
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embedded systems. The Cortex-R7 processor architecture reduces latency and
enables symmetric multiprocessing in a dual-core configuration. Cortex-R7 can
achieve 3 GIPS/core: The dual-core architecture is not able to achieve the target
requirements as highlighted in Table 23.6.

One possible approach to tackle this issue could be to design a multiprocessor
Cortex-R7 architecture on FPGA. Alternative solution is to design a dedicated
ASIC either on FPGA or on a standard cell technology; although this solution is
expensive, it allows the optimization of the parallel implementation and to fulfill
target requirements.

23.5 Conclusions

The chapter reviews and assesses current trends in the development of an
electronic skin. We addressed such an issue from a system perspective, starting
from basic building components (materials, electronics) and approaching toward
the complete skin system, taking into the due course embedded tactile data
processing. We first focused our discussion and literature review on capacitive,
piezoelectric, optical, and resistive/piezoresistive sensors, which are well-estab-
lished and most relevant and promising tactile transduction techniques. As a next
step, while the most demanding applications require capabilities of both perceiv-
ing the environment, interpreting it, and of basing decisions and actions on
perception, we focused on the step before, consisting in analyzing data processing
methods that provide useful tactile information while leaving the human brain the
responsibility of deciding on how to proceed.

The embedded electronic system raises a number of issues: It must be
compliant with the e-skin structure, that is, flexible, it must consume low power
(heat dissipation is another cumbersome issue to be tackled), it must be
implemented in the real-time complex processing tasks with a huge amount
of tactile data to manage, it must be robust against electrical noise andmechanical
damages, and must be resilient. All such demanding requirements are very
difficult to achieve with currently available approaches; relevant research and
engineering efforts must be devoted to this scope.
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