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A B S T R A C T

While supply chain risk management offers a rich toolset for dealing with risk at the dyadic level, less attention
has been given to the effectiveness of risk management in complex supply networks. We bridge this gap by
building an agent based model to explore the relationship between topological characteristics of complex supply
networks and their ability to recover through inventory mitigation and contingent rerouting. We simulate up-
stream supply networks, where each agent represents a supplier. Suppliers' connectivity patterns are generated
through random and preferential attachment models. Each supplier manages its inventory using an anchor-and-
adjust ordering policy. We then randomly disrupt suppliers and observe how different topologies recover when
risk management strategies are applied. Our results show that topology has a moderating effect on the effec-
tiveness of risk management strategies. Scale-free supply networks generate lower costs, have higher fill-rates,
and need less inventory to recover when exposed to random disruptions than random networks. Random net-
works need significantly more inventory distributed across the network to achieve the same fill rates as scale-free
networks. Inventory mitigation improves fill-rate more than contingent rerouting regardless of network topology.
Contingent rerouting is not effective for scale-free networks due to the low number of alternative suppliers,
particularly for short-lasting disruptions. We also find that applying inventory mitigation to the most disrupted
suppliers is only effective when the network is exposed to frequent disruptions; and not cost effective otherwise.
Our work contributes to the emerging field of research on the relationship between complex supply network
topology and resilience.
1. Introduction

Over the past decades, supply chains have grown longer and became
interconnected as a result of globalisation and rising cost pressures
(Christopher and Holweg, 2011). Interconnectedness implies that a
failure in one supply chain entity can potentially cascade across the
whole network (Schmitt and Singh, 2012), making risk monitoring and
mitigation challenging.

Suppliers of multiple tiers are tied together creating emergent, yet
predictable connection patterns, described as “supply network topology”
(Thadakamalla et al., 2004). Studies on network topology, conducted
under the framework of network science aim to unveil the behavioural
phenomena of interconnected systems, which cannot be well understood
from the perspective of a single entity. Understanding how the
decision-making of multiple interconnected entities influence overall
network resilience is necessary to cope with disruptions effectively
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because failures are more likely to propagate in certain topologies (Watts,
2002).

Supply Chain Risk Management (SCRM) methods rarely consider the
impact of disruptions on the extended supply network, where the term
extended refers to ties beyond a firm's direct suppliers and customers. The
relationship between supply network topology and the effectiveness of
recovery from disruptions using risk management strategies has not yet
been explored.

We aim to address this gap as follows. After reviewing previous work
done in the field of SCRM and complex supply networks, we employ a
modelling approach, where several theoretical network topologies based
on the extant empirical literature are generated. The generated topol-
ogies are used to configure a supply network, after which the networks
are subjected to random disruptions. Two SCRM strategies, namely in-
ventory mitigation and contingent rerouting, are applied and the extent
to which these strategies are able to enhance network recovery is
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observed.
Our results sound a cautionary note. We find that the effectiveness of

the two SCRM strategies is moderated by the topology of the supply
network and that an increased understanding of supply network topology
is necessary to underpin the choice of an effective strategy. First, it is
shown that inventory mitigation outperforms contingent rerouting in a
complex supply network setting regardless of topology. A key lesson is
that random topologies need significantly higher inventory levels to
recover from disruptions than scale-free networks. It is also observed that
contingent rerouting is not effective for scale-free networks due to low
numbers of alternative suppliers, particularly for short-term disruptions.

We then explore targeted risk management, where only suppliers
which suffered the most from disruptions apply a risk management
strategy. Targeting suppliers does not always result in cost reduction. On
the contrary, targeted inventory mitigation might significantly increase
costs when the network is exposed to rare disruptions due to excessive
inventory being kept for long periods of time. Targeted contingent
rerouting creates inventory oscillations when network is exposed to
short-lasting disruptions, resulting in decreased fill-rates and increased
costs. Our work motivates further studies on the relationship between the
functionality and performance of supply networks and their topology.

2. Literature review

2.1. Supply chain risk management

Supply networks are exposed to numerous risks such as natural ca-
tastrophes, epidemics, economic crises (Tang, 2006), IT failures, and
many others. There are a multitude of risk management techniques
aiming at reducing risk exposure in supply chains, gathered under col-
lective term Supply Chain Risk Management (SCRM). SCRM literature
refers to those strategies mainly as risk mitigation; however in this work
risk mitigation is restricted to those proactive strategies performed before
the occurrence of a disruption. Reactive strategies, which are performed
after the occurrence of the disruption, are referred in this paper as con-
tingency strategies (Tomlin, 2006). Examples of risk management strate-
gies are presented in Table 1, including strategies such as safety stock,
multi-sourcing strategies, information sharing, collaboration, and
contingent rerouting. These strategies usually focus on adding redun-
dancy or flexibility (Chopra and Meindl, 2004; Talluri et al., 2013; Yang
and Yang, 2010).

There is no one-fits-all solution and each strategy aims at reducing
certain risk type(s) (Chopra and Meindl, 2004). In this study, particular
attention will be given to inventory mitigation and contingent rerouting
as these are identified as effective strategies in reducing the impact of
supply network disruptions (Chopra and Meindl, 2004), which is the
Table 1
Supply chain risk management strategies according to various sources.

Reference Risk management strategies

Juttner et al. (2003) avoidance; control; cooperation; flexibility
Chopra and Meindl
(2004)

additional capacity, additional inventory, redundant
suppliers; increase responsiveness; increase flexibility;
aggregate or pool demand; increase capability; multiple
customers

Khan and Burnes (2007) supplier collaboration; purchasing partnerships; risk
sharing/knowledge transfer; strategic alliances;
inventory management; focus on core competence;
proactive supply management; buffers; product
differentiation

Manuj and Mentzer
(2008)

avoidance; postponement; speculation; hedging; control;
transferring/sharing risk; security

Oke and Gopalakrishnan
(2009)

multiple sourcing; managing demand; supplier
collaboration; planning and coordination of supply
demand

Giannakis and Louis
(2011)

Intercoordination with software agents/information
systems
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main scope of the paper. Inventory mitigation is considered as a redun-
dancy based strategy, where additional amounts of inventory is kept to
prevent the focal company from stocking-out in the case of a disruption.
Kurano et al. (2014) noted that the amount of additional inventory
needed is dependent on the risk profile. Tomlin (2006) highlighted that
inventory mitigation is not an attractive strategy in rare and long dis-
ruptions, if other options are available because the costs associated with
excessive inventory kept for long periods of time would not balance the
risk, although it ensures production continuity in case of disruption
(Kamalahmadi and Parast, 2017) and absorbs shocks (Mishra et al.,
2016).

Contingent rerouting is considered as a flexibility based approach,
where the company reorganises its ordering volumes after the disruption
so as to minimize a disruption's impact. Literature highlights the domi-
nance of flexibility based strategies over redundancy based ones (Talluri
et al., 2013). For example, Carvalho et al. (2012) found that flexible
transportation capacity performs better than inventory mitigation and
Dong and Tomlin (2012) advocated that contingent rerouting is more
effective in cost reduction than inventory mitigation for rare and long
disruptions.

The performance of inventory mitigation and contingent rerouting
have been broadly investigated in the literature. Tomlin (2006) and Qi
and Lee (2015) investigated performance of inventory mitigation and
contingent sourcing in a two echelon setting with reliable and unreliable
manufacturers. Qi (2013) evaluated different sourcing strategies under
disruptions at the primary supplier. Chen et al. (2012) evaluated the
performance of contingent rerouting strategy with a backup supplier.
Iakovou et al. (2015) determined the optimal capacity level while using
emergency sourcing. However, SCRM studies focus on the local or dyadic
perspectives giving little attention to how effectiveness of these strategies
can be influenced by the supply chain members' connectivity patterns;
namely supply network topology.
2.2. Supply network topology

Until two decades ago, theoretical studies assumed that the topo-
logical properties of the majority of real world networks were random in
nature (Barabasi, 2009). Mapping large-scale structures of networks such
as the World Wide Web revealed that not only the connectivity patterns
are not random, but also that the way nodes are wired with each other
gives rise to unique system characteristics (Barabasi, 2009). Particular
attention has been given to degree distribution, which defines the proba-
bility of a randomly selected node having a certain number of connec-
tions with its neighbours (Newman, 2010). The degree distribution is the
most commonly used measure determining topological properties of
complex systems (Newman, 2005) and a key feature that determines
their vulnerabilities (Barabasi, 2009; Watts, 2002). Two most charac-
teristically distinct network topologies based on degree distribution are:

1. random networks, which are networks with Poisson degree distribu-
tion, where links between nodes are placed at random. There are two
popular random network generation models: Gðn;mÞ and Gðn; pÞ.
Gðn;mÞ model assumes that m links are placed amongst n nodes at
random; whereas Gðn; pÞ model assumes that connections between n
nodes are chosen according to the probability p (Newman, 2010).
Random networks are often used for benchmarking to verify whether
the topology in question exhibits certain features.

2. scale-free networks, which are networks with a power-law degree
distribution. They consist of large hub nodes that have very large
number of links, and many small nodes, which connect to these hubs.
The degree, to which nodes can obtain links, has an exponential
relationship to the number of a node's existing links. There are
numerous examples of networks that exhibit scale-free properties,
such as physical internet or World Wide Web (Barabasi and Albert,
1999).
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Some of the first studies that challenged the perception of supply
chains being linear and hierarchical include (Choi et al., 2001; Borgatti
and Li, 2009; Lomi and Pattison, 2006; Basole and Bellamy, 2012). These
authors replaced the linear chain idea by the notion of complex supply
networks, which are intricately interconnected systems emerging
without a single entity controlling them.

Empirical studies included: Kim et al. (2011) who mapped Honda
supply network with 70 firms; Lomi and Pattison (2006) who analyzed
Italian automotive supply network with 106 firms; and Keqiang et al.
(2008) who mapped the Guangzhou automotive supply network with 84
firms. More recently, large-scale empirical studies have been conducted
by Brintrup et al. (2011), Kito et al. (2014); and Brintrup et al. (2015).

Gafiychuk et al. (2000), Thadakamalla et al. (2004), Nair and Vidal
(2011), and Hearnshaw and Wilson (2013) suggested that supply net-
works exhibit scale-free topologies. Nair and Vidal (2011) created an
agent based model that simulated production in random and scale-free
supply network topologies showing that a scale-free network is more
robust than a random network. Building on the scale-free network dis-
cussion, Mari et al. (2015) designed a resilient network generation al-
gorithm using a heterogeneous preferential attachment rule,
differentiating between retailer, manufacturer and supplier nodes.
Brintrup et al. (2015) created a framework on how disruptions can be
modelled in complex supply networks, showing that product distribution
on the nodes need to be considered when evaluating possible failure
propagation on the network topology. Kim et al. (2015) highlighted the
need to differentiate between node and link and network level failures on
network topology.

Although the existence of a scale-free property has been widely dis-
cussed in literature, studies by Brintrup et al. (2011), and Kito et al.
(2014) showed that Toyota network's in-degree and out-degree follow
log-normal and stretched exponential distributions, respectively. This
means that the networks have hubs but those hubs are not as big, as they
would be in a scale-free network. Brintrup et al. (2015) further showed
that Airbus supply network topology exhibits a hub structure, with ma-
jority of firms connecting only to these hubs. Yet, the Airbus sample was
too small to determine the patterns in scale; therefore the authors did not
refute nor reinforce the hypothesis of supply networks following
scale-free patterns.

Following these studies, we use random and scale-free networks to
characterise our supply networks because: (1)We concur with theoretical
studies that point out the existence of hubs in supply networks; (2)
multiple sources use these to model supply networks, including Thada-
kamalla et al. (2004), Nair and Vidal (2011), and Zhao et al. (2011); and
(3) these models are well documented in the literature to have various
strengths and weaknesses to different disruption types.

Supply network topology is important because it has been shown that
different topologies exhibit certain robustness properties depending on
how the network is disrupted. Network theory literature distinguishes
two main types of disruptions: random and targeted. Random disruptions
impact all network members with equal probability while in targeted
disruptions nodes that fail are chosen based on some parameter such as
its number of connections or position in the network. Random networks
show vulnerability against random disruptions and robustness against
targeted disruptions. Conversely, scale-free networks are vulnerable
against targeted disruptions when a hub node is the target, and robust
against random disruptions (Barabasi and Albert, 1999; Cohen et al.,
2000). Simulation models built by Thadakamalla et al. (2004); and Nair
and Vidal (2011) have proved the same effect taking place in the context
of supply networks. .

2.3. Knowledge gap

SCRM literature focuses mostly on a given focal company and its
direct business partners rather than the extended supply network.
Nonetheless, there are exceptions where study has been extended to
multi-tiered supply network. Benaicha and Hadj-Alouane (2013)
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assessed how adding a backup supply location in a network increases the
performance in light of disruptions. Silbermayr and Minner (2014)
evaluated performance of single and dual-sourcing strategies in a supply
network subject to disruptions. Talluri et al. (2013) investigated the ef-
ficiency of different risk mitigation strategies in a multi-echelon supply
network. Wang et al. (2010) assessed the performance of dual sourcing
and process improvement strategy. Carvalho et al. (2012) used redun-
dancy and flexibility strategies in an automotive supply network to assess
their performance against disruptions. Although these studies consider
multi-tiered topologies, they have an underlying assumption on linear
chain structures that do not account for complex topologies that empir-
ical studies highlighted.

Regardless of the strategy applied, SCRmanagers often need to decide
on the trade-offs between robustness and efficiency (Christopher and
Peck, 2004). Schmitt and Singh (2012) highlighted that in order to
strengthen the whole system, the performance of the weakest link needs
to be improved. This assumption brings to life the considerations about
targeted mitigation and contingency, where applying these strategies in
the worst performing suppliers might substantially improve performance
of the overall system.

While the extant literature studies the effectiveness of risk manage-
ment strategies for a focal company, the effectiveness of mitigation and
contingency in supply networks with distinct topological features has not
been explored yet. In addition, there is a lack of understanding of
whether and how strengthening the weakest supplier can benefit supply
network performance. In what follows, we address this gap by applying
risk management strategies in complex supply networks with distinct
topological features.

3. Research design

This section discusses four main components of the research design:
(a) an agent based model of the supply network; (b) a stock-management
model; (c) performance metrics; and (d) the design of experiments used
to extract the relationship between the network topology, risk profile,
and effectiveness of risk management strategies.

3.1. Agent-based model

Literature advocates the use of multi-agent systems to model supply
networks since it enables us to represent supply chain members as
autonomous, interdependent, adaptive, and self-organising entities
(Swaminathan et al., 1998). Agent based modelling methods are espe-
cially valuable since they capture complex phenomena at network-level
(Pathak et al., 2007), which could not be obtained by traditional
analytical approaches (Chatfield et al., 2013). Previous authors have also
modelled complex supply networks with agent based approaches (Nair
and Vidal, 2011; Thadakamalla et al., 2004).

In our work, an agent-based model is an upstream supply network
comprised of interconnected agents. The model comprises of four types of
agents: the Original Equipment Manufacturer (OEM) agent, supplier
agents, logistics provider agents and dummy agents (Fig. 1).

� The OEM agent resides in the downstream part of the upstream supply
network, and follows a simplified version of the anchor-and-adjust
policy as given in Sterman (1989) and Edali and Yasarcan (2014) to
manage its inventory.

� Supplier agents constitute the extended supply network of the OEM,
being OEM's suppliers of the first, second, third, and further tiers.
Similarly to the OEM, they follow a simplified version of the anchor-
and-adjust policy as given in Sterman (1989) and Edali and Yasarcan
(2014). A supplier agent can be a supplier of one company and a
customer of another at the same time.

� Logistics provider agents form the links between nodes, delivering
goods from a supplier to a customer. Each supplier-customer pair has
a unique logistics provider assigned.



Fig. 1. Illustration of agent types.
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� The upstream and downstream ends of the network are represented
by dummy agents, whose purpose is to pull the demand and provide an
infinite supply of raw material.

The functionality scope of the OEM and supplier agents includes:
order receipt, demand forecasting, shipping, and supply ordering. Agents
order from their suppliers and accept orders from their customers
communicating via messages. Simulation runs in a discrete manner,
where agents simultaneously perform ordering decisions each week.
Agents can have multiple customers and suppliers, responding to their
requests on a first-come-first-served basis. We assume that all suppliers of
an agent have perfectly substitutable goods. Agent-based model design is
presented in Figs. 2 and 3. Fig. 2 shows two exemplary supply networks
with random and scale-free topologies and Fig. 3 shows the interactions
Fig. 2. Exemplary supply networks with random and scale free topologie
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between agents and logistics providers.

3.2. Upstream supply network generation

Each topology consists of 103 nodes and 472 links. The number of
nodes and links are chosen based on the size of an existing real supply
network topology from the fast moving consumer goods industry, which
is not discussed further here due to confidentiality issues. Nodes repre-
sent the OEM and supplier agents, and links represent material flow. Each
link is assigned a logistics provider agent to carry out deliveries but these
are not part of the topology. Dummy agents exist only for computational
purposes, to provide raw materials and pull the demand, and hence are
not part of the topology. Random and scale-free topologies are generated
five times creating unique supply network instances. In order to create
network topologies, two generation models are used: random attachment
and preferential attachment. The random attachment model places m links
between n nodes at random, generating random networks. The prefer-
ential attachment model places m links between n nodes, choosing a node
to form a link with a probability proportional to the number of neigh-
bours a node has, generating scale-free networks (Newman, 2010).

While our network generation algorithm follows the same underlying
principles of random and preferential attachment, the generation process
has been slightly modified as the original algorithms generate undirected
networks with no constraints on the number of links. In order to address
these shortcomings, and to make sure that the algorithm is applicable,
the following set of rules is applied:

(1) The first node created is the OEM; (2) the direction of the link is
always from the new node that is created to the existing node. Hence the
next node generated is the first supplier of the OEM; (3) the rest of the
nodes are created and attached using the random attachment and pref-
erential attachment rules respectively (see Newman, 2010); (4) The
network is fully connected, and acyclic; (5) After generation, all nodes
with zero in-degree have a dummy agent attached, which provides
infinite amount of raw material; (6) There is only one dummy customer
with only one incoming link which is the OEM; and (7) Each link is
represented by a logistics provider agent, whose goal it is to deliver goods
between suppliers and customers. The pseudo code for network genera-
tion is given on Fig. 4.

3.3. The stock management model

Supplier agents and the OEM control their own inventory, which we
modelled using a stock management structure (see Fig. 5). This generic
s. Arrows indicate material flow from the supplier to the customer.



Fig. 3. Interaction between supplier agents and logistics providers. Solid arrows indicate material flow from the supplier to the customer, and dashed arrows indicate information flow.

Initialize: 
n= number of nodes
m= number of links
k =(round)M/N, where k is average number of links yet to be allocated
Create OEM node
Create supplier node
Add incoming link from supplier node to OEM
m = m – 1
n = n - 2

While n > 0 do
k = (round)m/n
Create supplier node
Add k outgoing links from a new node to existing nodes according to attachment rules (random or preferential)
m = m – k
n = n – 1

End while

Fig. 4. Network generation process.
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structure encompasses both the physical aspects of the stock manage-
ment task and the decision making processes of human decision makers
(Sterman, 1989; Yasarcan, 2011).

Each agent makes ordering decisions as described in the stock man-
agement model presented in Edali and Yasarcan (2014). The main dif-
ferences between the work of Edali and Yasarcan (2014), and our work
are:

(1) in Edali and Yasarcan (2014), the supply chain members are
connected as a chain, whereas we simulate complex network
structures;

(2) their model describes only four agents, whereas our model in-
cludes more than a hundred;

(3) in their paper, the end-customer demand is around eight units per
week, but in this paper, it is assumed to be equal to 1400 units per
week.

The model was reconstructed in the Java Agent Development
Framework (JADE). The code was validated through comparison of
output across different parameter settings. A further check included
replication of optimum costs reported by Sterman (1989).

3.3.1. Physical sub-structure
The inventory of an agent is updated weekly, where subscript i,t
17
represents the variable associated with an agent i in week t. The acqui-
sition flow (af) is the rate of receiving orders. Net inventory (NI) in-
creases via (af), and decreases via sales (s). Supply line (SL) represents
orders that are placed and have not yet arrived to the ordering agent's
inventory. Supply line increases via orders (o) and decreases via the
acquisition flow (Equations (1) and (2)).

NIi;tþ1 ¼ NIi;t þ afi;t � si;t (1)

SLi;tþ1 ¼ SLi;t þ oi;t � afi;t (2)

On-hand inventory (I) and backlog (B) are obtained from net in-
ventory using Equations (3) and (4); when net inventory is positive, we
have on-hand inventory, and when it is negative, we have backlog.

Ii;t ¼ MAXð0;NIi;tÞ (3)

Bi;t ¼ MAXð0;�1⋅NIi;tÞ (4)

We assume that negative orders cannot be placed (i.e., once placed,
orders cannot be cancelled). Thus, orders are formulated to be equal to
indicated orders if indicated orders (io) are positive. Otherwise, orders
are equal to zero (Equation (5)).

oi;t ¼ MAXð0; ioi;tÞ (5)



Fig. 5. Stock management model.
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Orders that are placed enter supply line and remain there for a time
period that is defined as the acquisition delay time (adt), which is also
known as the lead time. The acquisition delay time can be expressed as
the sum of mailing delay time (mdt) and shipment time (st), where
mailing delay time is the time it takes for the order to be received by the
supplier, and shipment time is the time it takes for goods to be delivered
to the customer (Equation (6)).

adt ¼ mdt þ st (6)

Accordingly, acquisition flow is the delayed version of orders
(Equation (7)).

afi;t ¼ oi;t�adt (7)

3.3.2. Decision-making sub-structure
Indicated orders are formed using a simplified version of the anchor-

and-adjust ordering policy (Sterman, 1989). We present the equations of
the simplified version below (see Sterman (1989) and Edali and Yasarcan
(2016) for an extended version).

In our model, indicated orders is equal to the arithmetic sum of ex-
pected sales (ES), inventory adjustment (ia), and supply line adjustment
(sla) terms (Equation (8)).

ioi;t ¼ ESi;t þ iai;t þ slai;t (8)

Expected sales (ES) is obtained by using simple exponential
smoothing forecasting method (Equations (9) and (10)). Expectation
adjustment fraction (α) is a parameter, which was set to 0.2 in the agent-
based simulation.
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ESi;tþ1 ¼ ESi;t þ eari;t ¼ ESi;t þ α⋅ðsi;t � ESi;tÞ (9)

ESi;tþ1 ¼ ð1� αÞ⋅ESi;t þ α⋅si;t (10)

where ear stands for expectation adjustment rate. Inventory adjustment
(ia) is the discrepancy between desired inventory (I*) and net inventory
(Equation (11)).

iai;t ¼ I*i � NIi;t (11)

Supply line adjustment (sla) is the discrepancy between desired
supply line (SL*) and Supply line (Equation (12)).

slai;t ¼ SL*
i;t � SLi;t (12)

Desired supply line is calculated by multiplying expected sales with
acquisition delay time (Equation (13)). This aims to keep supply line at a
level that satisfies the lead time demand (Sterman, 1989; Yasarcan,
2011).

SL*
i;t ¼ adt⋅ESi;t (13)

3.4. Experimental setup for the stock management structures in the
network

The agent-based model allows for supplier agents and the OEM to
have more suppliers than in original Sterman (1989) model. Therefore,
we have updated the ordering decision rules. The agent performs the



Table 2
Experimental set-up for performance assessment of mitigation and contingency.

Experiments (A)
Topologies

(B) Risk
profile

(C) Strategy (D) Mit./
Cont. level

rare, short 0%, 5%
14,400a 5 Random rare, long Inventory

mitigation
25%, 50%

5 Scale-free frequent,
short

Contingent
rerouting

75%, 100%

frequent,
long

a Conducted using permutation of values in (A)-(D); includes 30 repetitions of each
scenario.

A. Ledwoch et al. International Journal of Production Economics 197 (2018) 13–26
same ordering decisions as specified by the anchor-and-adjust policy,
although when it has more than one supplier it splits the order volume
equally between its suppliers as specified in Equation (14), where oi,t is
the ordering decision of an agent i in week t; oij,t is the order submitted by
an agent i to an agent j in week t; A is the adjacency matrix of the
network, where Aij is equal to 1 when an agent j supplies to an agent i;
and kini is the number of suppliers of an agent i.

oij;t ¼ Aijoi;t
kini

(14)

The initial set up for the agent-based simulation is as follows:

� The dummy agent at the end of the supply-chain generates a constant
demand of 1400 units per week.

� Each agent's desired inventory is equated to zero which corresponds
to aiming to minimize the net inventory (Equation (15)).

I*i ¼ 0 (15)

� The initial net inventory is equated to zero (Equation (16)).

NIi;t0 ¼ 0 (16)

� In order to ensure that the simulation is in an equilibrium, the initial
order of each agent is equal to the sum of initial orders of this agent's
customers (Equation (17)), where A is the adjacency matrix with Aji
equal to 1 when an agent j is a customer of an agent i, and oji,t0 is the
initial order placed by an agent j to an agent i. The estimation of the
initial order starts from the OEM, whose initial order is known and is
equal to 1400 units per week.

oi;t0 ¼
XN

j¼0;j 6¼i

�
Ajioji;t0

�
(17)

� The initial supply line (SLi,t0) of each agent is equal to initial demand
of that agent multiplied by the acquisition delay time (Equation (18)).

SLi;t0 ¼ ðadtÞ⋅oi;t0 (18)

� The timeframe of the simulation is extended to 500 weeks to prevent
the effect of the short-term transient dynamics from dominating
overall results.

If no disruptions are introduced, the model produces zero backlog and
inventory costs, since the inventory that is acquired is immediately sold.
When there are disruptions, the agent's inventory level can oscillate. In
this case one of the following scenarios occur: 1) The agent ships to
customers all of its inventory and also the newly arrived items to satisfy
its demand. Thus, in that simulated week, no inventory or backlog cost is
created for that agent; 2) The sum of newly arrived items and items in the
inventory is greater than the demand. Thus, the agent must store the
amount that is not shipped creating inventory holding costs for that
week; 3) The agent receives demand more than it can satisfy. All unsat-
isfied demand is backordered, and backlog cost is created. We use first-
come-first-serve rule for orders that arrive in different weeks. However,
if an agent receives multiple orders within the same week, it randomly
prioritizes the orders to be satisfied for that week.

When an agent applies inventory mitigation, the desired inventory
level is equated to the initial order of that agent ðI*i ¼ oi;t0Þ. Contingent
rerouting is performed only when an agent has more than one supplier;
the number of suppliers of a specific agent depends on the network to-
pology in which it is embedded. When an agent reroutes, it stops ordering
from the disrupted supplier and moves the disrupted volume to suppliers
that are still operational. The agent sources equally from its operational
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suppliers at all times.

3.5. Performance metrics

Supply network performance has been evaluated using: total costs
incurred by all agents in the network (CNET); costs incurred by the OEM
(CMAN); average unit fill-rate of agents in the network (FRNET); and unit
fill-rate of the OEM (FRMAN). These four metrics enable us to evaluate
trade-offs between maintaining low costs and keeping high customer
service at the OEM and at the system level. CMAN and FRMAN are calcu-
lated as Ci and FRi, respectively, where i corresponds to the OEM.

The total cost incurred by agent i is represented given by Equation
(19):

Ci ¼
XT

t¼1

ð0:5⋅Ii;t þ 1⋅Bi;tÞ (19)

Ii,t is the on-hand inventory and Bi,t indicates the backlog of an agent i
in week t, T is the duration of a single simulation run that is 500 weeks.
These values are multiplied by the inventory holding cost and backlog
cost, which are 0.5$ and 1$ per unit per week, respectively (Sterman,
1989; Edali and Yasarcan, 2014). Inventory holding costs and backlog
costs generated in each week are summed and show the total cost that
agent i generated during 500 weeks of a single simulation run. The total
cost incurred by the whole network is represented by CNET, which is
equal to the sum of costs generated independently by all agents (Equation
(20)).

CNET ¼
XN

i¼1

Ci (20)

where N is the total number of agents in the network excluding dummy
agents. The unit fill-rate can be described as a measure of customer
service, number of units (e.g. cases) filled as a fraction of units ordered
(Closs et al., 2010). We refer later to this measure as fill-rate. Fill-rate of
agent i (FRi) is a percentage of net demand in 500 simulated weeks
(Equation (21)).

FRi ¼
PT

t¼1Di;t �
PT

t¼1UDi;tPT
t¼1Di;t

(21)

Di,t and UDi,t are the demand and unmet demand of agent i in week t,
respectively. FRNET, , is the average of fill-rates of individual supplier
agents (Equation (22)).

FRNET ¼
PN

i¼1FRi

N
(22)

3.6. Design of experiments

We opt out of modelling specific root causes of disruptions in our
simulation and instead generalize disruptions under the collective char-
acteristics of disruption frequency and duration by generating risk
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profiles (Table 2).
A risk profile is composed of risk frequency and duration, where

frequency is categorised into rare and frequent disruptions, and duration
into short and long. The probability of a disruption to occur is given by
the risk frequency while the duration of the disruption is given by risk
duration. An example of a rare and long disruption might be a fire; while
an example of short and frequent disruption might be a logistics issue
such as a truck arriving late.

A rare disruption is defined as one having 0.5% chance of occurrence
per week, meaning that disruption happens approximately once per four
years per agent. A frequent disruption is defined as the one having 10%
chance of occurrence and indicate that it happens once per 10 weeks.
Short and long disruptions last for 1 and 5 weeks, respectively. The
combination of frequent and long disruptions is considered as a high risk
environment, and the combination of rare and short disruption as a low
risk environment. Thus all supplier agents or a subset of them might be
disrupted simultaneously in a single simulation run. Disruptions cause
the agent to become unresponsive which halts their delivery to customers
and demand to its own suppliers. We focus on random disruptions
because literature shows numerous examples that highlight how dis-
ruptions in small, peripheral firms cascade in the network impacting
hubs.

The final experimental variable consists of two strategies: inventory
mitigation and contingent rerouting. At any given run, only one strategy
is available to all agents. The amount of agents applying a strategy is
moderated by the mitigation level, which indicates the percentage of
agents within the supply network that are chosen at random to apply the
strategy. These consist of: 0%, 5%, 25%, 50%, 75%, and 100%, where 0%
indicates that none of the agents apply mitigation or contingency and
100% indicates that all agents apply the given strategy.

Thus, a single experimental run consists of a given topology, risk
profile, strategy, and the level at which that strategy is pursued. Each
experimental run is repeated 30 times, giving a total of 14,400 experi-
ments. Scenarios are summarized in Table 2.

The next set of experiments focuses on targeted risk management so
as to investigate whether strengthening the worst performing agents
influences overall network performance. The weakest agents are chosen
based on their performances obtained in the scenarios with neither in-
ventory mitigation nor contingent rerouting (0%mitigation/contingency
level scenarios shown in Table 2). Then, for every topology and each risk
profile, 5% of agents that obtained the highest cost Ci and 5% of agents
that obtained the lowest fill-rate FRi are chosen. The improvements in
targeted and random risk management performances are then compared
with each other. There are 240 experiments summarized in Table 3.

4. Results and discussion

In this section, we assess the performance of supply networks using
costs and fill-rates at individual and system levels. The individual level
corresponds to OEM's performance whereas the system level corresponds
to overall network performance. We first expose the networks to random
disruptions without applying either inventory mitigation or contingent
rerouting to investigate how topology affects failure propagation in
Table 3
Experimental set-up for targeted mitigation and contingency.

Experiments (A)
Topologies

(B) Risk
profile

(C) Strategy (E) Targeting
strategy

rare, short 5% random
240a 5 Random rare, long Inventory

mitigation
5% highest
costs

5 Scale-free frequent,
short

Contingent
rerouting

5% lowest fill-
rate

frequent,
long

a Conducted using permutation of values in (A)-(C) and (E).
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random and scale-free networks. Then, we apply mitigation and contin-
gency strategies in randomly chosen firms to assess effectiveness of these
strategies in networks with different topologies; we compare the effec-
tiveness of strategies to conclude which one enables better recovery.
Finally, we target the weakest firms to apply risk management strategies
and compare the outcome with random selection.

4.1. Disruption impact

In a perfect just-in-time system, when demand is constant and there
are no disruptions, CNET is equal to 0 and FRNET is equal to 100% for all
scale-free and random topologies. This is because there are no inventory
oscillations; everything that is ordered is immediately sold.

When the network is exposed to disruptions, some agents experience
problems in fulfilling the demand of their customers due to delayed de-
liveries of their suppliers. Inventory levels oscillate, and these oscillations
travel upstream and downstream, causing lower fill-rates and higher
costs (Table 4).

We found that random networks generate higher costs than scale-free
for all risk profiles. For example, for low risk profile, costs are $1,180,476
and $82,835 for random and scale-free networks, respectively; for high
risk profiles, costs are $13,615,534 and $2,469,877. The higher the risk
profile is, the higher is the cost difference. Random networks incur on
average 14 times higher costs than scale-free networks for low risk pro-
files and more than 50 times higher for high risk profiles.

Random networks have lower fill-rates than scale-free, which are
75.40% and 95.99% in random and scale-free networks, respectively, for
low risk. When risk is high, random network fill-rates drop to 25.81%,
which is half of the fill-rate obtained for scale-free networks under the
same conditions.

Our work further validates conclusions of Nair and Vidal (2011); and
Thadakamalla et al. (2004) who posed that scale-free supply networks
are more robust to random disruptions. Beyond this, our work shows that
when Sterman (1989)’s model is extended to complex supply network
topologies, scale-free supply networks generate lower costs and have
higher fill-rates.

4.2. Effectiveness of inventory mitigation

The inventory mitigation strategy proves to be effective for scale-free
and random topologies because it always increases fill-rates and might
decrease costs. However, the amount of cost reduction depends on the
network's risk profile and topology. Results are presented in Figs. 6 and 7.
For frequent and long disruptions, CNET was decreased by 31.81% and
32.66%, and CMAN by 53.78% and 64.31% for random and scale-free
topologies, respectively. Cost reductions are caused by the fact that the
increase in inventory holding costs resulting from the additional in-
ventory is less than the decrease in the backlog costs.

When disruptions are rare, topology has a strong impact on the
effectiveness of the inventory mitigation strategy. A decrease in cost is
observed only for random topologies, when 25% of firms keep additional
Table 4
Performance of supply networks exposed to disruptions, where inventory mitigation and
contingent rerouting are not applied. σFRNET and σCNET are standard deviations of fill-rates
and costs respectively.

Topology Risk profile FRNET
a σFRNET CNET

a σCNET

Random rare, short 75.40% 4.36% 1,180,476$ 292,447$
rare, long 46.39% 4.43% 3,479,350$ 538,256$
frequent, short 38.38% 2.17% 4,947,205$ 370,403$
frequent, long 25.81% 1.14% 13,615,534$ 817,470$

Scale-free rare, short 95.99% 1.15% 82,835$ 24,860$
rare, long 89.83% 2.67% 281,940$ 86,666$
frequent, short 75.96% 1.67% 707,977$ 44,638$
frequent, long 55.00% 1.85% 2,469,877$ 130,704$

a Average over 5 topologies and 30 trials.



Fig. 6. (a, b) Network and (c, d) manufacturer's costs for inventory mitigation strategy for random and scale-free topologies.
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inventory. Cost reduction does not occur for rare disruptions in scale-free
topologies because they are robust by design, thus, they do not require as
much inventory as random topologies. This is expressed by an increase in
CNET by 836.54% for rare and short disruptions, and by 182.64% for rare
and long disruptions (Table 5).

The inventory mitigation strategy always improves fill-rates, regard-
less of topology (Fig. 7). The FRNET improvement for frequent and long
disruptions is 13.43% and 17.44% for random and scale-free topologies,
respectively. Scale-free topologies recover better because they reach
higher FRNET than random topologies for all risk profiles. For example,
under frequent and short disruptions, in order to reach 75% FRNET in
random topology, almost all agents need to keep additional inventory.
For scale-free networks, the same result can be obtained with only 5% of
agents applying inventory mitigation. It is also interesting that the OEM
recovers better than the overall network for the majority of the risk
profiles for both topology types. This is because additional inventory
prevents failures to propagate across the network, stopping inventory
oscillations from reaching the OEM. When risk is high, the amount of
inventory is not enough to stop the failures and the impact of the
disruption reaches the OEM.

On average, scale-free networks are more robust to random disrup-
tions, they recover better using inventory mitigation, generate lower
CNET and CMAN, and have higher FRNET and FRMAN. They have higher
disruption tolerance and need less inventory than random topologies for
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the same risk profile. Keeping additional inventory is an effective risk
mitigation strategy in a complex supply network environment as it al-
ways increases FRNET and FRMAN, and might decrease CNET and CMAN

depending on the risk profile and topology.

4.3. Effectiveness of contingent rerouting

Contingent rerouting is not effective for short disruptions because of
order processing time (effectively acting as the mailing delay time
parameter in Sterman, 1989). If the disruption duration is short, the
disrupted supplier is back to business before its customer applies
contingent rerouting. Delay in the application of contingency strategy
causes unnecessary inventory oscillations and results in increased costs
and decreased fill-rates for both the OEM and the whole network (Figs. 8
and 9).

Contingent rerouting is effective for long disruptions, but not in all
cases. It improves random network performance, with an increase in
FRNET and FRMAN, and with a decrease in CNET and CMAN. For scale-free
networks, the strategy works only for the OEM with an increase in
FRMAN and a decrease in CMAN. However, it does not improve the per-
formance of the overall network (Table 5). This happens because the
majority of firms within the scale-free network do not have many alter-
native sourcing options.



Fig. 7. (a, b) Network and (c, d) manufacturer's fill-rates for inventory mitigation strategy for random and scale-free topologies.

Table 5
Effectiveness of mitigation and contingency when all agents apply IM or CR strategies. %
change from when no IM/CR strategy is applied.

Topology Risk profile FRNET CNET

IMa CRa IMa CRa

Random rare, short 22.84% �6.84% 52.71% 24.50%
rare, long 43.32% 2.03% �34.95% �5.88%
frequent, short 38.93% �3.11% �43.75% 19.44%
frequent, long 13.43% 6.63% �31.81% �8.87%

Scale-free rare, short 3.97% �2.65% 836.54% 58.23%
rare, long 8.58% �1.96% 182.64% 5.53%
frequent, short 21.69% �10.72% 23.27% 42.70%
frequent, long 17.44% �2.65% �32.66% �4.37%

a IM (inventory mitigation); CR (contingent rerouting).
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4.4. Differences between inventory mitigation and contingent rerouting

The inventory mitigation strategy clearly outperforms contingent
rerouting for both topology types and the majority of the risk profiles.
The more additional inventory is kept in the network the lower the cost of
disruptions is. However, network topology plays an important role in
effectiveness of inventory mitigation because it influences the threshold
value beyond which the cost of inventory exceeds the benefits obtained
from it. Scale-free topologies have lower threshold than random, which
implies that they need less inventory.

Contingent rerouting decreases the costs for long disruptions and
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increases costs for short disruptions. However, even for long disruptions,
effectiveness of inventory mitigation is still better than contingent
rerouting (Table 5). Inventory mitigation always improves the fill-rate,
whereas contingent rerouting decreases it for the majority of the cases.

Effectiveness of inventory mitigation and contingent rerouting has
been a topic broadly discussed in the literature. It has been claimed that
for long disruptions, the inventory mitigation is not an attractive strategy
(Dong and Tomlin, 2012; Tomlin, 2006; Talluri et al., 2013), whereas our
results show that the effectiveness of the strategy is highly dependent on
the topology and performs better than contingent rerouting for the ma-
jority of the cases. High effectiveness of inventory mitigation results from
the absorption of inventory oscillations across the network (Mishra et al.,
2016). Low performance of contingent rerouting results from high
interconnectedness of the supply network; in which the alternative
supplier that receives demand has other supply obligations to meet. This
short-term increase in demand at the alternative supplier causes in-
ventory oscillations that travel through the network creating a bullwhip
effect and generating higher backlogs.

4.5. Effectiveness of targeted mitigation and contingency

Next, we investigate how strengthening the weakest firms influences
overall network performance. To do so, we choose 5% of companies
which showed lowest unit fill-rates and highest costs during the analysis.
These firms then apply inventory mitigation and contingent rerouting
(Tables 6 and 7). We then compare results of targeted mitigation with



Fig. 8. (a, b) Network and (c, d) manufacturer's costs for contingent rerouting strategy for random and scale-free topologies.
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results obtained from runs with risk management strategies chosen at
random.

For the majority of the cases, when 5% of firms with highest costs and
lowest fill-rate are targeted for inventory mitigation the performance of
the overall network is higher than when these 5% of firms were chosen at
random. The observation does not hold for rare disruptions in scale-free
networks. In those cases, targeting companies that generate highest costs
significantly increases costs incurred - by 383.36% for rare and short
disruptions and by 72.74% for rare and long disruptions compared to
when the selection was random. This is because firms that generate
highest costs also have the highest demand and inventory oscillations,
which imply that the amount of additional inventory kept would be high
and incur high inventory holding costs.

Targeted contingent rerouting proves to be effective only for long
disruptions; for other cases, the performance is even worse than what it
would be if the firms were chosen at random. Although a previous study
advocated that strengthening the weakest link improves overall system
performance (Schmitt and Singh, 2012), this did not hold true for some of
our experiments. For some cases, scale-free topologies recovered better
with random risk management strategies compared to the cases with the
targeted ones.

5. Conclusions

SCRM approaches involve practices that are well understood at the
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local and dyadic levels. However, the relationship between the effec-
tiveness of SCRM strategies and supply network topology has thus far not
been investigated, despite recent studies highlighting complex network
topologies that underpin supply chains. In this paper we bridged this gap
by exploring effectiveness of inventory mitigation and contingent
rerouting in supply networks with different topological characteristics.

After a review of literature, we focussed on two widely practiced
SCRM strategies: inventory based risk mitigation and contingent routing;
and two supply network topologies: a randomly organised supply
network and a scale-free supply network. This was then followed by a
simulation approach to test which strategy, at what level, in which to-
pology results in a better performance for the OEM and for the overall
network. Performance criteria included both network and the OEM's fill-
rate and associated costs.

We came to the following conclusions about inventory mitigation
strategy: (1) Additional inventory always increases fill-rate regardless of
topology; (2) Additional inventory might decrease or increase costs
depending on risk profile and network topology. Application of inventory
mitigation for rare and long disruptions decreases costs in random net-
works and increases costs in scale-free networks, while the opposite is
true for scale-free networks; (3) Scale-free networks have higher
disruption tolerance and need less inventory to recover than random
topologies for the same risk profiles.

We have come to the following conclusions about contingent
rerouting strategy: (1) Contingent rerouting decreases costs and increases



Fig. 9. (a, b) Network and (c, d) manufacturer's fill-rates for contingent rerouting strategy for random and scale-free topologies.

Table 6
The change in CNET and FRNET for inventory mitigation. The comparison is done for the case with disruptions between no mitigation and 5% mitigation.

Topology Selection strategy FRNET CNET

RSa RLa FSa FLa RSa RLa FSa FLa

Random Random 2.86% 5.65% 3.80% 2.16% �4.27% �3.82% �3.27% �1.29%
Targeted Highest cost 4.90% 9.90% 5.20% 2.89% 0.60% �21.21% - 14.75% �9.25%

Lowest fill-rate 6.46% 11.18% 5.38% 0.56% �26.44% �10.13% �8.36% �1.76%
Scale-free Random 0.25% 0.24% 1.20% 1.35% 41.31% 10.27% �0.33% �1.72%

Targeted Highest cost 1.28% 1.53% 2.99% 1.17% 382.36% 72.74% �5.09% �22.68%
Lowest fill-rate 0.21% 3.14% 2.00% 1.33% 30.99% �15.60% �2.17% �23.43%

a R (rare disruptions); F (frequent); S (short); L (long).

Table 7
The change in CNET and FRNET for contingent rerouting. The comparison is done for the case with disruptions between no rerouting and 5% rerouting.

Topology Selection strategy FRNET CNET

RSa RLa FSa FLa RSa RLa FSa FLa

Random Random 0.05% 0.97% �1.07% 1.12% �2.01% �3.25% 2.25% �0.76%
Targeted Highest cost �5.59% 5.53% �3.01% 3.65% 25.39% �9.26% 8.28% �3.76%

Lowest fill-rate 0.06% 3.14% �0.86% 3.10% �0.76% �0.69% 3.48% �0.01%
Scale-free Random �0.16% 0.20% �1.03% �0.31% 2.88% �2.93% 3.56% �0.66%

Targeted Highest cost �1.71% 0.79% �12.10% �5.37% 47.25% �15.27% 40.84% �4.97%
Lowest fill-rate �0.71% 1.01% 0.26% �6.74% 34.08% �0.94% 2.38% �2.73%

a R (rare disruptions); F (frequent); S (short); L (long).
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fill-rates only when disruption duration is long. For short disruptions,
there is an increase in costs and decrease in fill-rates due to inventory
oscillations caused by order processing time; (2) Contingent rerouting
does not allow fill-rate increase and cost reduction for scale-free net-
works because most companies in the network have a small number of
alternative suppliers.

Following on these findings, further experiments were conducted to
explore whether the targeting of SCRM strategies in the network would
affect the outcome differently. This involved selecting suppliers that had
the highest costs and lowest fill-rates during disruptions in previous
simulation runs. Interestingly, we found that targeting the worst per-
forming companies did not always increase performance.

The following managerial implications may be deduced from our
work: (1) Literature has often underestimated inventory mitigation as a
risk treatment strategy. This research shows that it serves well in majority
of cases as an effective shock absorption mechanism; (2) Scale-free
supply network topologies need less inventory than random topologies
to both withstand and recover from disruptions, therefore it is important
to identify the topology under which an OEM's network operates when
considering risk management strategies; (3) Contingent rerouting has
proven to be less efficient than inventory mitigation in a complex supply
network setting. In order for contingent rerouting to work well, specific
conditions need to be met: (a) majority of supply chain members need to
have multiple alternative suppliers, which might not be practical in real-
world scenarios; (b) the response time has to be less than the disruption
duration. If these conditions are not met, contingent rerouting results in
increased inventory oscillations and drops in effectiveness; (4) Since
supply network topologies show robustness to different risk types,
theoretically it is possible to design supply network in a way that it is
robust to specific types of risk; (5) Targeted risk management can be an
effective tool to remedy the impact of disruptions, however it needs to be
carefully designed. If misaligned, the strategy that initially was aimed at
decreasing risk might end up significantly hurting the performance of the
overall system.

In conclusion, this work shows that network topology plays a crucial
role when exposed to random disruptions.

There are a few limitations of this study that provide directions for the
future research. We considered only two strategies as examples of
redundancy and flexibility based approaches. In the future, more diverse
mitigation and contingency strategies could be explored. Moreover,
hybrid strategies that combine inventory mitigation and contingent
rerouting could be applied. It should also be noted that strategies
considered in our work are not a one-fits-all solution and they might
increase other types of risks such as inventory handling risks (Chopra and
Meindl, 2004). Future extensions could incorporate different types of
targeted disruption scenarios.

The model presented in our paper is a single-product supply network,
which assumes that all suppliers deliver perfectly substitutable goods.
Multi-product considerations could bring more in-depth analysis on how
a company's product portfolio influences the effectiveness of mitigation
and contingency. Finally, while in this work we focus on the upstream
part of the supply network, future extensions could incorporate the
downstream network including distributors, wholesalers and retailers.

Acknowledgements

We thank two anonymous reviewers for their support and insightful
comments during the review process which has greatly improved this
paper.

References

Barabasi, A., 2009. Scale-free networks: a decade and beyond. Science 325 (5939),
412–413.

Barabasi, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science 286,
509–512.
25
Basole, R.C., Bellamy, M.A., 2012. Global supply network health: analysis and
visualization. Inf. Knowl. Syst. Manag. 11, 59–76.

Benaicha, S., Hadj-Alouane, A.B., 2013. Super facilities versus chaining in mitigating
disruptions impacts. Comput. Ind. Eng. 65, 351–359.

Borgatti, S.P., Li, X., 2009. On social network analysis in a supply chain context. J. Supply
Chain Manag. 45, 5–22.

Brintrup, A., Kito, T., Reed-Tsochas, F., New, S., 2011. Mapping the Toyota supply
network: implications for resilience. Available at: http://eureka.sbs.ox.ac.uk/1236/.

Brintrup, A., Wang, Y., Tiwari, A., 2015. Supply networks as complex systems: a network-
science-based characterization. IEEE Syst. J. 11 (4), 2170–2181.

Carvalho, H., Barroso, A.P., Machado, V.H., Azevedo, S., Cruz-Machado, V., 2012. Supply
chain redesign for resilience using simulation. Comput. Ind. Eng. 62 (1), 329–341.

Chatfield, D.C., Hayya, J.C., Cook, D.P., 2013. Stockout propagation and amplification in
supply chain inventory systems. Int. J. Prod. Res. 51, 1491–1507.

Chen, J., Zhao, X., Zhou, Y., 2012. A periodic-review inventory system with a capacitated
backup supplier for mitigating supply disruptions. Eur. J. Oper. Res. 219, 312–323.

Choi, T.Y., Dooley, K.J., Rungtusanatham, M., 2001. Supply networks and complex
adaptive systems: control versus emergence. J. Oper. Manag. 19 (3), 351–366.

Chopra, S., Meindl, P., 2004. Managing risk to avoid supply-chain breakdown. MIT Sloan
Manag. Rev. 46, 133–155.

Christopher, M., Holweg, M., 2011. Supply chain 2.0: managing supply chains in the era
of turbulence. Int. J. Phys. Distrib. Logist. Manag. 41, 63–82.

Christopher, M., Peck, H., 2004. Building the resilient supply chain. Int. J. Logist. Manag.
15 (2), 1–14.

Closs, D.J., Nyaga, G.N., Voss, M.D., 2010. The differential impact of product complexity,
inventory level, and configuration capacity on unit and order fill rate performance.
J. Oper. Manag. 28, 47–57.

Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S., 2000. Resilience of the Internet to
random breakdowns. Phys. Rev. Lett. 85 (4626).

Dong, L., Tomlin, B., 2012. Managing disruption risk: the interplay between operations
and insurance. Manag. Sci. 58, 1898–1915.

Edali, M., Yasarcan, H., 2014. A mathematical model of the beer game. J. Artif. Soc. Soc.
Simulat. 17, 2.

Edali, M., Yasarcan, H., 2016. Results of a beer game experiment: should a manager
always behave according to the book? Complexity 21, 190–199.

Gafiychuk, V., Lubashevsky, I., Stosyk, A., 2000. Remarks on Scaling Properties Inherent
to the Systems with Hierarchically Organized Supplying Network. arXiv preprint
nlin/0004033.

Giannakis, M., Louis, M., 2011. A multi-agent based framework for supply chain risk
management. J. Purch. Supply Manag. 17 (1), 23–31.

Hearnshaw, E.J.S., Wilson, M.M., 2013. A complex network approach to supply chain
network theory. Int. J. Oper. Prod. Manag. 33, 442–469.

Iakovou, E., Vlachos, D., Keramydas, C., Tsiolias, D., 2015. Evaluation of emergency
sourcing risk mitigation strategies for a discrete part manufacturer. Int. J. Appl.
Logist. 4, 37–46.

Juttner, U., Peck, H., Christopher, M., 2003. Supply chain risk management: outlining an
agenda for future research. Int. J. Logist. Res. Appl. 6 (4), 197–210.

Kamalahmadi, M., Parast, M.M., 2017. An assessment of supply chain disruption
mitigation strategies. Int. J. Prod. Econ. 184, 210–230.

Keqiang, W., Zhaofeng, Z., Dongchuan, S., 2008. Structure analysis of supply chain
networks based on complex network theory. In: IEEE Semantics, Knowledge and
Grid, 2008. SKG'08. Fourth International Conference, pp. 493–494.

Khan, O., Burnes, B., 2007. Risk and supply chain management: creating a research
agenda. Int. J. Logist. Manag. 18, 197–216.

Kim, Y., Chen, Y., Linderman, K., 2015. Supply network disruption and resilience: a
network structural perspective. J. Oper. Manag. 33–34, 43–59.

Kim, Y., Choi, T.Y., Yan, T., Dooley, K., 2011. Structural investigation of supply networks:
a social network analysis approach. J. Oper. Manag. 3, 194–211.

Kito, T., Brintrup, A., New, S., Reed-Tsochas, F., 2014. The structure of the Toyota supply
network: an empirical analysis. available at SSRN: http://ssrn.com/
abstract¼2412512.

Kurano, T., McKay, K.N., Black, G.W., 2014. Proactive inventory policy intervention to
mitigate risk within cooperative supply chains. Int. J. Ind. Eng. Comput. 5, 249–264.

Lomi, A., Pattison, P., 2006. Manufacturing relations: an empirical study of the
organization of production across multiple networks. Organ. Sci. 17, 313–332.

Manuj, I., Mentzer, J.T., 2008. Global supply chain risk management. J. Bus. Logist. 29,
133–155.

Mari, S.I., Lee, Y.H., Memon, M.S., Park, Y.S., Kim, M., 2015. Adaptivity of complex
network topologies for designing resilient supply chain networks. Int. J. Ind. Eng. 22,
102–116.

Mishra, D., Sharma, R.R.K., Kumar, S., Dubey, R., 2016. Bridging and buffering: strategies
for mitigating supply risk and improving supply chain performance. Int. J. Prod.
Econ. 180, 183–197.

Nair, A., Vidal, J.M., 2011. Supply network topology and robustness against disruptions -
an investigation using multi-agent model. Int. J. Prod. Res. 49, 1391–1404.

Newman, M.E.J., 2005. Power laws, Pareto distributions and Zipf's law. Contemp. Phys.
46 (5), 323–351.

Newman, M.E.J., 2010. Networks: an Introduction. Oxford University Press.
Oke, A., Gopalakrishnan, M., 2009. Managing disruptions in supply chains: a case study of

a retail supply chain. Int. J. Prod. Econ. 118, 168–174.
Pathak, S.D., Day, J.M., Nair, A., Sawaya, W.J., Kristal, M.M., 2007. Complexity and

adaptivity in supply networks: building supply network theory using a complex
adaptive systems perspective. Decis. Sci. 38, 547–580.

Qi, L., 2013. A continuous-review inventory model with random disruptions at the
primary supplier. Eur. J. Oper. Res. 225, 59–74.

http://refhub.elsevier.com/S0925-5273(17)30419-X/sref1
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref1
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref1
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref2
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref2
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref2
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref3
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref3
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref3
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref4
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref4
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref4
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref5
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref5
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref5
http://eureka.sbs.ox.ac.uk/1236/
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref7
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref7
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref7
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref8
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref8
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref8
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref9
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref9
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref9
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref10
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref10
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref10
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref11
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref11
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref11
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref12
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref12
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref12
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref13
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref13
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref13
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref14
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref14
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref14
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref15
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref15
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref15
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref15
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref16
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref16
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref17
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref17
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref17
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref18
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref18
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref19
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref19
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref19
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref20
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref20
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref20
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref21
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref21
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref21
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref22
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref22
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref22
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref23
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref23
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref23
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref23
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref24
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref24
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref24
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref25
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref25
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref25
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref26
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref26
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref26
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref26
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref27
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref27
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref27
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref28
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref28
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref28
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref28
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref29
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref29
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref29
http://ssrn.com/abstract=2412512
http://ssrn.com/abstract=2412512
http://ssrn.com/abstract=2412512
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref31
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref31
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref31
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref32
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref32
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref32
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref33
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref33
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref33
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref34
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref34
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref34
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref34
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref35
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref35
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref35
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref35
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref36
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref36
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref36
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref37
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref37
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref37
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref38
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref39
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref39
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref39
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref40
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref40
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref40
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref40
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref41
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref41
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref41


A. Ledwoch et al. International Journal of Production Economics 197 (2018) 13–26
Qi, L., Lee, K., 2015. Supply chain risk mitigations with expedited shipping. Omega 57,
98–113.

Schmitt, A.J., Singh, M., 2012. A quantitative analysis of disruption risk in a multi-
echelon supply chain. Int. J. Prod. Econ. 139, 22–32.

Silbermayr, L., Minner, S., 2014. A multiple sourcing inventory model under disruption
risk. Int. J. Prod. Econ. 149, 37–46.

Sterman, J.D., 1989. Modeling managerial behavior: misperceptions of feedback in a
dynamic decision making experiment. Manag. Sci. 35, 321–339.

Swaminathan, J.M., Smith, S.F., Sadeh, N.M., 1998. Modeling supply chain dynamics: a
mutliagent approach. Decis. Sci. 3, 607–632.

Talluri, S., Kull, T.J., Yildiz, H., Yoon, J., 2013. Assessing the efficiency of risk mitigation
strategies in supply chains. J. Bus. Logist. 24, 253–269.

Tang, C.S., 2006. Perspectives in supply chain risk management. Int. J. Prod. Econ. 103,
451–488.

Thadakamalla, H.P., Raghavan, U.N., Kumara, S., Albert, R., 2004. Survivability of
multiagent-based supply networks: a topological perspective. Intell. Syst. 19 (5),
24–31.
26
Tomlin, B., 2006. On the value of mitigation and contingency strategies for managing
supply chain disruption risks. Manag. Sci. 52, 639–657.

Wang, Z., Scaglione, A., Thomas, R.J., 2010. Electrical centrality measures for electric
power grid vulnerability analysis. In: 49th IEEE Conference on Decision and Control,
pp. 5792–5797.

Watts, D.J., 2002. A simple model of global cascades on random networks. Proc. Natl.
Acad. Sci. Unit. States Am. 99 (9), 5766–5771.

Yang, B., Yang, Y., 2010. Postponement in supply chain risk management: a complexity
perspective. Int. J. Prod. Res. 48, 1901–1912.

Yasarcan, H., 2011. Stock management in the presence of significant measurement delays.
Syst. Dynam. Rev. 27, 91–109.

Zhao, K., Kumar, A., Harrison, T.P., Yen, J., 2011. Analyzing the resilience of complex
supply network topologies against random and targeted disruptions. IEEE Syst. J. 5
(1), 28–39.

http://refhub.elsevier.com/S0925-5273(17)30419-X/sref42
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref42
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref42
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref43
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref43
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref43
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref44
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref44
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref44
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref45
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref45
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref45
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref46
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref46
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref46
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref47
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref47
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref47
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref48
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref48
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref48
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref49
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref49
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref49
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref49
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref50
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref50
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref50
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref51
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref51
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref51
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref51
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref52
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref52
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref52
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref53
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref53
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref53
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref54
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref54
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref54
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref55
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref55
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref55
http://refhub.elsevier.com/S0925-5273(17)30419-X/sref55

	The moderating impact of supply network topology on the effectiveness of risk management
	1. Introduction
	2. Literature review
	2.1. Supply chain risk management
	2.2. Supply network topology
	2.3. Knowledge gap

	3. Research design
	3.1. Agent-based model
	3.2. Upstream supply network generation
	3.3. The stock management model
	3.3.1. Physical sub-structure
	3.3.2. Decision-making sub-structure

	3.4. Experimental setup for the stock management structures in the network
	3.5. Performance metrics
	3.6. Design of experiments

	4. Results and discussion
	4.1. Disruption impact
	4.2. Effectiveness of inventory mitigation
	4.3. Effectiveness of contingent rerouting
	4.4. Differences between inventory mitigation and contingent rerouting
	4.5. Effectiveness of targeted mitigation and contingency

	5. Conclusions
	Acknowledgements
	References


