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Abstract—Exploiting computational precision can 
improve performance significantly without losing 
accuracy in many applications. To enable this, we 
propose an innovative arithmetic logic unit (ALU) 
architecture that supports true dynamic precision 
operations on the fly. The proposed architecture 
targets both fixed-point and floating-point ALUs, 
but in this paper we focus mainly on the precision-
controlling mechanism and the corresponding 
implementations for fixed-point adders and 
multipliers. We implemented the architecture on 
Xilinx Virtex-5 XC5VLX110T FPGAs, and the 
results show that the area and latency overheads 
are 1% ~ 24% depending on the structure and 
configuration. This implies the overhead can be 
minimized if the ALU structure and configuration 
are chosen carefully for specific applications. As a 
case study, we apply this architecture to binary 
cascade iterative refinement (BCIR). 4X speedup is 
observed in this case study. 

Keywords-dynamic precision, ALUs, FPGAs, 
high-performance computing, iterative refinement 

I.  INTRODUCTION 
In computational science and engineering, users 

continually seek to solve ever more challenging 
problems: faster computers with bigger memory 
capacity enable the analysis of larger systems, finer 
resolution, and/or the inclusion of additional physics. 
For the past several decades, standardized floating-
point representations have enabled more predictable 
numeric behavior and portability, but at the expense of 
making it impractical for users to exploit customized 
precision with good performance. The introduction of 
reconfigurable computing platforms provides scientists 
with an affordable accelerating solution that not only 
has the computational power of dedicated hardware 
processors (ASICs and DSPs), but also the flexibility 
of software due to the fabric and circuit configurability 
[13]. Serving as either standalone platforms or co-
processors, field-programmable gate arrays (FPGAs) 

have shown the potential of significant performance 
improvement over microprocessors for certain 
applications [14]. With the development of FPGA 
hardware and CAD tools, floating-point arithmetic 
functions are no longer impractical for FPGAs designs 
[15]. Instead, FPGA accelerators can out-perform 
general processors or GPUs in very-high-precision 
floating-point operations (higher than double-precision) 
due to the native hardware support. Other advantages 
FPGAs have over other computing solutions include 
their fine-grained parallelism, fault-tolerant designs, 
and flexible precision configurations. 

Exploiting precision can gain performance 
improvement in many applications [1-5]. Lower 
precision renders Arithmetic Logic Units (ALUs) 
smaller implying higher performance and better energy 
efficiency [4]. The exploitable parallelism can be 
increased since the number of ALUs in fixed area is 
increased using smaller ALUs. Fewer transistors are 
employed to build smaller ALUs implying lower power 
consumption. Most current computing platforms 
employing statically defined arithmetic units such as 
multi-cores and GPUs face limitations on exploiting 
precision since they employ only single and double 
precision ALUs in hardware. However, FPGAs are 
able to support arbitrary precision ALUs as long as 
sufficient hardware resources are available. 

Previous work shows the advantages of arbitrary 
precision ALUs on FPGAs in some applications [4-6], 
but the impact on performance of utilizing arbitrary 
precision can be maximized if ALUs on FPGAs can be 
switched to desirable precision ALUs on the fly. 
Exploiting multiple precisions in some applications is 
explored in [1, 7]. To employ multiple precision ALUs, 
it would be necessary to download bit-stream files on 
FPGAs whenever the precision requirement is changed, 
causing degraded performance. Partial reconfiguration 
(PR) can be applied to reduce the re-programing time 
with smaller partial bit-streams [33]. However, the 
performance improvement might be limited for designs 
with relatively small and frequently switching PR 
modules as ALUs. The small size of the ALU makes 
the cost of embedded/external processor and interface 
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for PR control too expensive; the frequent 
reconfiguration makes it harder to control and to 
guarantee the accuracy of operation; and the device-
specific PR makes it difficult to port the design to other 
vendors or impossible to other technologies. 

It is desired to remove the requirement for updating 
the configuration bit-stream.  Hence, we propose a new 
ALU architecture performing arbitrary precision 
arithmetic operations according to the user’s 
preference. This new paradigm for ALUs may enable 
users to prevent unnecessary loss of performance and 
energy from applying unnecessarily high precision on 
computation (e.g., programmers often employ double 
precision for scientific computations even when not 
needed). In small-scale applications, people often do 
not care as much about the performance loss from 
overly high precision. However, as scientific 
applications become larger, the potential impact of this 
new ALU architecture on achievable accuracy and 
performance becomes greater. 

What distinguishes this dynamic precision ALU 
research from previous multiple precision work is the 
dynamic support of arbitrary precisions with arbitrary 
position arrangement. Although the proposed 
architecture is designed for floating-point ALUs, the 
main focus of this paper will be put on the fixed-point 
datapath, which is the fundamental arithmetic engine of 
a floating-point ALU.  

Previous work on ALU structures and applications 
requiring multiple precisions are discussed in section 
II. Section III is dedicated to the approach and 
implementation for the proposed architecture. The 
implementations results are analyzed and a case study 
is conducted to justify the potentials of the proposed 
innovative architecture in section IV, followed by 
conclusions in section V.  

II. PREVIOUS WORK 

A. ALUs Designs 
Computer engineers have never stopped trying to 

improve system performance by optimizing arithmetic 
units. In 1951, Booth proposed a signed binary 
recoding scheme [16] for multipliers to reduce the 
number of partial products, and this scheme was later 
improved by Wallace in [17]. Besides integer 
operations, floating-point arithmetic is also a hot topic 
for many researchers [15, 18-22]. 

With the emergence of reconfigurable computing, 
engineers started to look for practical solutions for 
multiple-precision computations. Constantinides, and 
his colleagues had broad explorations [23-25] of bit-
width assignment and optimization for static multiple-
precision applications. Wang and Leeser spent years to 

develop and refine a complete statically-defined, 
variable-precision fixed- and floating-point ALU 
library for reconfigurable hardware [26]. 

Since re-synthesizing, re-downloading, and re-
configuring are required for static multiple-precision 
ALUs whenever precision is changed, this solution is 
not practical for applications that require frequently 
changing precision. Thus, multi-mode ALUs become 
more attractive. In [27], Tan proposed a 64-bit multiply 
accumulator (MAC) that can compute one 64x64, two 
32x32, four 16x16, or eight 8x8 unsigned/signed 
multiply-accumulations using shared segmentation. On 
the other hands, Akkas presented architectures for dual-
mode adders and multipliers in floating-point [28, 29], 
and Isseven presented a dual-mode floating-point 
divider [30] that supports two parallel double-precision 
divisions or one quadruple-precision division. In [31], 
Huang present a three-mode (32-, 64- and 128-bit 
mode) floating-point fused multiply-add (FMA) unit 
with SIMD support. It is clear that all the above multi-
mode multiple-precision structures can only support a 
few pre-defined precisions. To the best of our 
knowledge, our proposed architecture is the first true 
dynamic precision architecture targeting both fixed-
point and floating-point ALUs. 

B. Applications 
Dynamic precision computations were investigated 

around 20 or 30 years ago, since at that time the 
computational scientists required extremely accurate 
numeric solutions compared to the contemporaneous 
computing technology [1, 7-9]. At that time, 
computations with high precision arithmetic generally 
used software routines.  

In [1], Muller’s method is implemented using 
dynamic precision computations. The implementation 
monitors the magnitude of some function values in 
order to recognize the solution is getting closer to the 
solution. For example, when the function value is 
small, they change the precision from low to high, 
recognizing the solution is getting closer to the exact 
solution. They claimed that the performance gain was 
from 1.4 to 4 compared to static precision computation. 
They utilized two types of precision on the MasPar 
MP-1 and Cray Y-MP. 

Binary Cascade Iterative Refinement (BCIR) was 
proposed in 1981 [9]. BCIR seeks optimized 
performance to solve linear systems by utilizing 
multiple precisions. BCIR faces limitations for 
practical use since the condition number of the matrix 
should be given before computation to decide an initial 
precision (i.e., lowest precision among multiple 
precisions). Another paper proposes BCIR employing 
doubled precision arithmetic per iteration given an 
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initial precision [8]. For numeric proofs and the BCIR 
algorithm, refer to [8, 9]. We perform a case study for 
the performance gain of BCIR if BCIR employs our 
ALU design in section IV. 

III. PROPOSED APPROACH 
Arithmetic logic units are the fundamental 

components within a CPU to process input data and 
produce output using certain standardized number 
systems.  In addition to the arithmetic and logic 
operations, ALUs also need to detect exceptions and 
generate corresponding error flags for the status 
register. Given the huge design space, we simplify the 
ALU design presented in this paper without affecting 
generality by establishing some design specifications. 

In order to be compatible with most current 
systems, a two's complement number system is 
selected as the interfacing data format between the 
ALU and outside logic. This system is also used as the 
internal representation within the functional unit only 
when signed values are required to be represented (e.g., 
Booth multiplier). 

In this paper, only unsigned fixed-point operations 
are considered for designing the arithmetic units. The 
reasons for such a decision are as follows. First, fixed-
point arithmetic is the core datapath that handles the 
computations on the mantissa bits and the exponent 
(mostly addition/subtraction) for a floating-point 
operation. Most of the circuit area for the dynamic 
precision ALU are dedicated to these portions of a 
floating-point unit. Second, it is trivial to transform an 
unsigned integer ALU into a signed one by simply 
adding extra control logic, without significant 
modification to the circuit. In most current floating-
point representations, the mantissa can be only used to 
represent positive numbers or zero (e.g., enabling an 
integer unit compare to work for floating point values), 
so all the operand inputs for the fixed-point datapath 
can be represented by unsigned integers. Since this 
work is a gateway research for the dynamic precision 
floating-point ALUs, limiting the focus on unsigned 
operations will be sufficient to cover the design 
requirements.   

No exception handling other than carry-in/carry-out 
will be taken into account in this paper. 

A. Dynamic precision support 
The block diagram for both the traditional design 

and the proposed ALU architecture are presented in 
Fig. 1, which obviously shows the similarity shared 
between these two designs. The only difference shown 
in the diagrams is that the bit-width for the control 
(ctrl) and carry-out (carry) signals for the design with 
dynamic precision (DP) support are no longer single-

bit when the standard design is extended to support 
more than one precision-mode. The extra bits are used 
to deliver precision and overflow information 
respectively. 

In contrast to multiple precision-mode designs, 
where only operations of certain precisions that match 
the supported modes can be performed in parallel (e.g., 
two single precision or one double precision operation), 
ALU with true dynamic precision support allows 
operations of any combination of different precisions 
simultaneously, as long as the total bit-width for 
operands is not exceeded.  

To support true dynamic precision, an n-bit operand 
is partitioned into k sub-blocks with block size of n/k-
bits. Depending on the design requirement on precision 
granularity, the number of blocks, k, can be any value 
between 1 and n. This size arrangement can be even 
more aggressive, allowing optimized a non-uniform, 
asymmetric distribution among different blocks for 
certain ALU structures. Adjacent sub-blocks can be 
combined together dynamically to form a super-block 
according to the currently required precision, so that 
independent operations can be performed on each 
super-block pair (one form each operands) without 
affecting others.  This grouping process is controlled 
by a (k-1)-bit control signal (ctrl). The concept of the 
proposed operand segmentation and precision-
controlling mechanism is illustrated in Fig. 2, where an 
n-bit operand is divided into two n/4-bit numbers and 
one n/2-bit number. More precision modes can be 
obtained by changing the ctrl signal. It is obvious that 

Figure 1. ALU Designs. (a) Traditional ALU. (b) ALU with multiple 
precision support 

 
Figure 2. Operand segmentation and precision arrangement 
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the proposed mechanism guarantees that support for 
arbitrary precision-combinations is only limited by the 
sub-block segmentation.  

Note that for addition (and subtraction), one extra 
bit ctrl signal is required to supply the carry-in shared 
by all the super-blocks, and a different one-bit carry 
will be generated for every super-block.   

B. Adder Design with DP support 
The critical path within an adder design is the carry 

chain that links separated full-adders together and 
produces the carries from the lowest position to the 
output. It is also the key factor to look into, when 
modifying a traditional adder to support multiple 
precision modes. Though implementation varies, the 
generation processes of carry signals can be classified 
into two categories: (1) carry propagated from previous 
bits and (2) carry generated using operands [32]. 
Accordingly, two different methods can be applied to 
handle dynamic precision support based on the actual 
implementations.  

 
1) Carry extraction and insertion 
Pure carry propagation is mainly used for slow 

adder realizations that require less area. Serial adders 
and ripple-carry adders are two common adder 
structures that fall into this category. In such adders, 
the carry-out for the current bit position cannot be 
evaluated until the carry from the previous position is 
available. Thus, in order to perform independent 
calculations on the re-grouped super-blocks, the carry 
propagations in between two super-block neighbors 
need to be specially handled.  

First, it is necessary to terminate the carry 
propagation, so that the computation of one super-
block will not be affected by the result from previous 
one. Then, carry extraction and insertion, as described 
in Eq. (1), can be performed to compute the carry-out 
(overflow) and carry-in values for the i-th and (i-1)-th 
sub-blocks. As mentioned above, a carry-in, denoted as 

0c , for all the super-blocks should be identical for the 
support of SIMD-like operations. 

 

 1 1 1

1 0 1 1

_

_
i i i

i i i i

carry out ctrl c

carry in ctrl c ctrl c
� � �

� � �

� �
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  (1) 

 
The hardware implementation for these special 

functions is shown in Fig. 3. One can see that in both 
Eq. (1) and Fig. 3 the corresponding ctrl signal bit is 
used to generate the correct carry-in and carry-out 
signal for that respective sub-block. In fact, this circuit 
also suggests the construction of super-blocks 

implicitly. Thus no extra hardware resources have to be 
allocated for a dedicated segmentation circuit. Note 
also that for every sub-block, there are 4 extra gates, 
resulting in two extra gate-levels of delay. The latency 
from every extra block accumulates due to the fact that 
these circuits are cascaded on the critical path. 
Therefore, the total area and delay overhead introduced 
by adding dynamic precision support to a ripple-carry 
adder can be calculated with Eq. (2). Assuming a full 
adder consists of 4 gates with a latency of 3 gate-levels, 
the area overhead is k/n of the area of a static precision 
design, and the latency overhead is 2k/3n.   

 

 
4
2

overhead

overhead

area k
delay k

�
�

  (2) 

 
2) Carry manipulation 
In contrast to the adders with carry propagation 

whose worst-case delays increase linearly with the bit-
width of operands, most modern CPU adders employ a 
scheme called carry-lookahead for carry generation 
from the operands directly or indirectly [32]. This 
scheme can achieve logarithmic time delay at a cost of 
extra hardware area. Instead of working on the carry 
signals directly as in ripple-carry adders, carry 
manipulation is applied for fast adders. This scheme 
manipulates the carry process at the edge between two 
continuous super-blocks by engineering the MSB’s 
generate (gi) and propagate (pi) signals from every sub-
block. The logic of this method is shown in Eq. (3). 

 

 
'

'
0

i i i

i i i i

p ctrl p

g ctrl c ctrl g

� �

� � � �
  (3) 

 
By comparing Eq. (3) with Eq. (1), one can see that 

they are arithmetically similar to each other. Thus, the 
hardware logic for carry manipulation can also be 
implemented with one two-input MUX and one AND 

Figure 3. Hardware for carry extraction and insertion 
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gate. However, with this method, the calculation of all 
generate and propagate signals can be performed in 
parallel without having to wait for the completion of 
carry generation from previous positions. Since the 
carry generation process is modified, the calculation of 
the final carry-out (overflow) for each super-block 
requires one extra gate-level delay. Therefore, the total 
latency overhead for adding dynamic precision support 
is only (2+1) gate-levels. For better comparison with 
the ripple-carry adder, the absolute total area and delay 
overhead introduced by dynamic precision is listed in 
Eq. (4). As there are various carry-lookahead adder 
designs [32], it is difficult to represent the extra area 
and delay in terms of percentages to those in static 
precision designs. But it is safe to say that the 
percentage will be small, given that most carry-
lookahead adders are larger than ripple-carry adders.  

 
4
3

overhead

overhead

area k
delay

�
�

  (4) 

 

C. Multiplier Design with DP support 
The block diagram, as illustrated in Fig. 4, for a tree 

multiplier with dynamic precision support consists of 
three major design blocks: a partial products generator, 
a partial products reduction tree, and a final carry-
propagate adder. Extra circuitry is designed in the first 
two blocks in order for the multiplier to support 
dynamic precision modes. 

1) Partial products generator 
To support dynamic precision operations, extra care 

is taken when generating the partial products. Instead 
of copying the whole multiplicand as the partial 
product for every ‘1’ in the multiplier, the generator 
only selects the multiplicand bits from the 
corresponding super-block based on the multiplier bit 

position, and sets all others as ‘0’. This can be realized 
using AND gates with multiplicand bits and a block-
select signal (block_sel) as inputs. For every sub-block 
pair, a k-bit block_sel is generated by a series of OR 
trees using ctrl signals. Fig. 5 shows the hardware for 
the selection process of sub-blocks and generation of 
the un-shifted partial product. As mentioned above, the 
multiplier design presented in this paper supports only 
unsigned operands, so no hardware is needed for 
negative weighted bits as in signed numbers. The 
additional area and delay introduced by the DP circuits 
is listed in Eq. (5). 

 

� �

� �

1 1

2 1 1

3

2

( 1) ( ) ( )

1 1
3 3
log

k i k
overhead i j j i

overhead

area k k i j j i

k k

delay k

� �

� � � �
� � � � � �

� �

�

� � �
 (5) 

 
If a high-radix Booth recoding is used for the 

generation of partial products, additional circuit blocks 
are necessary to handle the following problems: 

	 Generation of sign extension 
	 Zero padding for LSB/MSB of each super-

block 
	 Overlapped recoding cases for LSB of each 

super-block 
	 Extra recoding cases for MSB of each super-

block 
 
These hardware blocks include a sign encoder, a 

block-boundary detector, a boundary-bit detector, and 
other supporting modules.  

 
2) Reduction tree 
If a bit-wise partial products generator is employed, 

the carry will never be generated or propagated outside 
of the super-block (2X the size of the operands) due to 
the nature of unsigned multiplication. Therefore, no 
additional circuit is required in the reduction tree. 

 
Figure 4. Multiplier design with dynamic precision support 

 
Figure 5. Hardware for partial products generation 
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However, when Booth recoding is used, some of the 
partial products might become negative numbers 
represented as two’s complement number. Summation 
of two’s complement numbers can cause overflow, 
resulting in unwanted carries propagating through 
super-block boundaries. The ctrl signal is used to filter 
any unwanted carries at the sub-block boundaries. The 
fundamental arithmetic for such filtering is the same as 
in Eq. (1) for the hardware implementation. At the sub-
block boundaries, one extra AND gate is added to the 
critical path for every level of the reduction tree. In 
fact, this can be further optimized by reducing the 
number of level that might cause unwanted carries, or 
integrating the termination circuit with the reduction 
elements. 

IV. IMPREMENTATION RESULTS AND A CASE 
STUDY 

The proposed precision-controlling mechanism 
requires additional hardware resources and introduces 
extra delay in the critical path of ALU designs. To 
examine the latency and area impact on different 
implementations of adders or multipliers, two versions 
of implementations are developed for several popular 
adder/multiplier structures. For fair comparison, a 
standard version is created manually first, and then 
modifications are performed to enable dynamic 
precision support, using the same level of development 
and optimization efforts. 

All designs are implemented in VHDL with 
parameterized bit-width for operand and sub-block, and 
are extensively simulated with randomly generated 
operands to verify their functionality. Xilinx ISE 13.4 
is used to synthesize the designs for Xilinx Virtex-5 
XC5VLX110T FPGAs.  

Table I shows the area and latency information for 
four different adder implementations: (1) adder 
generated from Xilinx proprietary IP (fabric only); (2) 
ripple-carry adder with small footprint and linear delay; 

(3) multi-level carry-lookahead adder; (4) hybrid prefix 
adder with a moderate latency-area tradeoff. Since the 
Xilinx adder is deeply optimized for Xilinx’s own 
FPGAs, it gives the best results for both area and 
latency.  The other three manually designed adders 
show some degree of degradation in comparison, which 
is expected considering the characteristics of these 
implementations and the lesser amount of effort in 
design optimization.   

Normalized area results for the three adder 
implementations with dynamic precision support are 
provided in Table II. To emphasize the overhead posed 
by the modification, the area data listed are normalized 
with those from respective adders without DP support. 
The hardware size growth with the increasing of either 

TABLE I. AREA AND LATENCY FOR STATIC DESIGNS 

 

TABLE II. NORMALIZED AREA FOR DYNAMIC 
PRECISION ADDERS 

 

TABLE III. NORMALIZED LATENCY FOR DYNAMIC 
PRECISION ADDERS  
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data width or number of blocks is consistent with the 
analysis in section III. It is also clear that prefix adders 
suffer less, in terms of area, from the additional 
precision-control circuitry than the others architectures.  

Likewise, normalized latency results are provided in 
Table III. In general, the latency impacts from the 
additional modules share the same pattern shown in 
Table II. However, carry-lookahead adders have the 
best performance in terms of absorbing latency 
overhead.   

To evaluate the impact of dynamic precision on real 
applications, we emulate the DP ALUs and analyze the 
impact on performance when utilizing multiple 
precisions dynamically. We choose Binary Cascade 
Iterative Refinement (BCIR) in [8, 9] for the application. 
A set of arbitrary precision arithmetic operators is 
developed in C, and then used to implement the BCIR 
algorithm employing Gaussian Elimination with Partial 
Pivoting (GEPP). We compare the total run-times 
obtained from BCIR and the double precision direct 
method. The direct method solves the problem with 
matrix decomposition and back-substitution [10]. The 
iteration in BCIR is terminated if the solution accuracy 
is higher than that from the double precision direct 
method. 100 64 x 64 Gaussian Random matrices are 
tested, and the run-time for each matrix is calculated 
based on the run-time impact on precision described in  
[4]. Finally, achievable speedups are calculated as 
TDIR/TBCIR, where TDIR is the run-time for the direct 
method and TBCIR is the run-time for the BCIR.  

Fig. 6 shows the required number of iterations for 
BCIR according to the condition numbers. The X-axis 
represents the log2 based condition numbers and the Y-
axis represents the required number of iterations for 
BCIR. Notice that employing our ALUs does not 
require downloading bit-stream files while employing 
static arbitrary precision ALUs with FPGAs requires 
downloading bit-stream files as often as the required 
number of iterations due to the changing precision used 
for each iteration. Fig. 7 shows the estimated speedups 
when utilizing precisions to solve linear systems with 

BCIR employing our proposed dynamic precision 
ALUs (i.e., this run-time does not consider the 
overhead due to multiple iterations). In Fig. 7, the X-
axis represents the log2 based condition numbers and 
Y-axis represents the achievable speedups using BCIR 
employing our ALUs. 

In this case study, nearly 4X speedup can be 
achieved by utilizing dynamic precisions in BCIR 
employing our DP ALUs when the systems are not ill 
conditioned, as compared to the given initial precision. 
The speedup can be greater when matrix size becomes 
larger or accuracy requirements become higher [11, 
12]. Hence, we expect our ALUs to have even more 
benefit with large-scale high-accuracy applications.  

V. CONCLUSION 
Reconfigurable computing with FPGAs has shown 

impressive performance improvements on a variety of 
applications for computational sciences Exploiting 
precision at both the application-level and ALU-level 
can gain even more from these powerful yet flexible 
hardware accelerators. In this paper, we proposed an 
innovative ALU architecture that supports dynamic 
precision operations on the fly. Our architecture can 
improve the computational throughput for low-
precision operations by increasing the parallelism, 
without losing the ability to perform high-performance 
operations for high-precision applications. We 
implemented the proposed architecture for some fixed-
point adders and multipliers with parameterized 
VHDL, and their functionalities are tested and verified. 
Implementation results from 3 adder structures of 
different precision configurations were presented to 
analyze the area and delay overheads, which range 
from 1% to 24%. A case study was also conducted to 
evaluate the impact of the approach, with speedups 
approaching 4X for a linear system solver application 
of small size. When system size becomes larger or 
accuracy requirement becomes higher, the speedup can 
be greater.  

 

 
 

Figure 6. Required Number of BCIR Iterations as a Function of the 
Logarithm of the Condition Number 

 
Figure 7. Performance Gain as a Function of the Logarithm of the 

Condition Number 
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