
 ALU Architecture with Dynamic Precision Support

Getao Liang, JunKyu Lee, Gregory D. Peterson
Department of Electrical Engineering and Computer Science

University of Tennessee
Knoxville, TN, USA

[gliang, jlee57, gdp]@utk.edu

Abstract—Exploiting computational precision can
improve performance significantly without losing
accuracy in many applications. To enable this, we
propose an innovative arithmetic logic unit (ALU)
architecture that supports true dynamic precision
operations on the fly. The proposed architecture
targets both fixed-point and floating-point ALUs,
but in this paper we focus mainly on the precision-
controlling mechanism and the corresponding
implementations for fixed-point adders and
multipliers. We implemented the architecture on
Xilinx Virtex-5 XC5VLX110T FPGAs, and the
results show that the area and latency overheads
are 1% ~ 24% depending on the structure and
configuration. This implies the overhead can be
minimized if the ALU structure and configuration
are chosen carefully for specific applications. As a
case study, we apply this architecture to binary
cascade iterative refinement (BCIR). 4X speedup is
observed in this case study.

Keywords-dynamic precision, ALUs, FPGAs,
high-performance computing, iterative refinement

I. INTRODUCTION
In computational science and engineering, users

continually seek to solve ever more challenging
problems: faster computers with bigger memory
capacity enable the analysis of larger systems, finer
resolution, and/or the inclusion of additional physics.
For the past several decades, standardized floating-
point representations have enabled more predictable
numeric behavior and portability, but at the expense of
making it impractical for users to exploit customized
precision with good performance. The introduction of
reconfigurable computing platforms provides scientists
with an affordable accelerating solution that not only
has the computational power of dedicated hardware
processors (ASICs and DSPs), but also the flexibility
of software due to the fabric and circuit configurability
[13]. Serving as either standalone platforms or co-
processors, field-programmable gate arrays (FPGAs)

have shown the potential of significant performance
improvement over microprocessors for certain
applications [14]. With the development of FPGA
hardware and CAD tools, floating-point arithmetic
functions are no longer impractical for FPGAs designs
[15]. Instead, FPGA accelerators can out-perform
general processors or GPUs in very-high-precision
floating-point operations (higher than double-precision)
due to the native hardware support. Other advantages
FPGAs have over other computing solutions include
their fine-grained parallelism, fault-tolerant designs,
and flexible precision configurations.

Exploiting precision can gain performance
improvement in many applications [1-5]. Lower
precision renders Arithmetic Logic Units (ALUs)
smaller implying higher performance and better energy
efficiency [4]. The exploitable parallelism can be
increased since the number of ALUs in fixed area is
increased using smaller ALUs. Fewer transistors are
employed to build smaller ALUs implying lower power
consumption. Most current computing platforms
employing statically defined arithmetic units such as
multi-cores and GPUs face limitations on exploiting
precision since they employ only single and double
precision ALUs in hardware. However, FPGAs are
able to support arbitrary precision ALUs as long as
sufficient hardware resources are available.

Previous work shows the advantages of arbitrary
precision ALUs on FPGAs in some applications [4-6],
but the impact on performance of utilizing arbitrary
precision can be maximized if ALUs on FPGAs can be
switched to desirable precision ALUs on the fly.
Exploiting multiple precisions in some applications is
explored in [1, 7]. To employ multiple precision ALUs,
it would be necessary to download bit-stream files on
FPGAs whenever the precision requirement is changed,
causing degraded performance. Partial reconfiguration
(PR) can be applied to reduce the re-programing time
with smaller partial bit-streams [33]. However, the
performance improvement might be limited for designs
with relatively small and frequently switching PR
modules as ALUs. The small size of the ALU makes
the cost of embedded/external processor and interface

2012 Symposium on Application Accelerators in High Performance Computing

CFP1225P-ART/12 $26.00 © 2012 IEEE

DOI 10.1109/SAAHPC.2012.29

26

for PR control too expensive; the frequent
reconfiguration makes it harder to control and to
guarantee the accuracy of operation; and the device-
specific PR makes it difficult to port the design to other
vendors or impossible to other technologies.

It is desired to remove the requirement for updating
the configuration bit-stream. Hence, we propose a new
ALU architecture performing arbitrary precision
arithmetic operations according to the user’s
preference. This new paradigm for ALUs may enable
users to prevent unnecessary loss of performance and
energy from applying unnecessarily high precision on
computation (e.g., programmers often employ double
precision for scientific computations even when not
needed). In small-scale applications, people often do
not care as much about the performance loss from
overly high precision. However, as scientific
applications become larger, the potential impact of this
new ALU architecture on achievable accuracy and
performance becomes greater.

What distinguishes this dynamic precision ALU
research from previous multiple precision work is the
dynamic support of arbitrary precisions with arbitrary
position arrangement. Although the proposed
architecture is designed for floating-point ALUs, the
main focus of this paper will be put on the fixed-point
datapath, which is the fundamental arithmetic engine of
a floating-point ALU.

Previous work on ALU structures and applications
requiring multiple precisions are discussed in section
II. Section III is dedicated to the approach and
implementation for the proposed architecture. The
implementations results are analyzed and a case study
is conducted to justify the potentials of the proposed
innovative architecture in section IV, followed by
conclusions in section V.

II. PREVIOUS WORK

A. ALUs Designs
Computer engineers have never stopped trying to

improve system performance by optimizing arithmetic
units. In 1951, Booth proposed a signed binary
recoding scheme [16] for multipliers to reduce the
number of partial products, and this scheme was later
improved by Wallace in [17]. Besides integer
operations, floating-point arithmetic is also a hot topic
for many researchers [15, 18-22].

With the emergence of reconfigurable computing,
engineers started to look for practical solutions for
multiple-precision computations. Constantinides, and
his colleagues had broad explorations [23-25] of bit-
width assignment and optimization for static multiple-
precision applications. Wang and Leeser spent years to

develop and refine a complete statically-defined,
variable-precision fixed- and floating-point ALU
library for reconfigurable hardware [26].

Since re-synthesizing, re-downloading, and re-
configuring are required for static multiple-precision
ALUs whenever precision is changed, this solution is
not practical for applications that require frequently
changing precision. Thus, multi-mode ALUs become
more attractive. In [27], Tan proposed a 64-bit multiply
accumulator (MAC) that can compute one 64x64, two
32x32, four 16x16, or eight 8x8 unsigned/signed
multiply-accumulations using shared segmentation. On
the other hands, Akkas presented architectures for dual-
mode adders and multipliers in floating-point [28, 29],
and Isseven presented a dual-mode floating-point
divider [30] that supports two parallel double-precision
divisions or one quadruple-precision division. In [31],
Huang present a three-mode (32-, 64- and 128-bit
mode) floating-point fused multiply-add (FMA) unit
with SIMD support. It is clear that all the above multi-
mode multiple-precision structures can only support a
few pre-defined precisions. To the best of our
knowledge, our proposed architecture is the first true
dynamic precision architecture targeting both fixed-
point and floating-point ALUs.

B. Applications
Dynamic precision computations were investigated

around 20 or 30 years ago, since at that time the
computational scientists required extremely accurate
numeric solutions compared to the contemporaneous
computing technology [1, 7-9]. At that time,
computations with high precision arithmetic generally
used software routines.

In [1], Muller’s method is implemented using
dynamic precision computations. The implementation
monitors the magnitude of some function values in
order to recognize the solution is getting closer to the
solution. For example, when the function value is
small, they change the precision from low to high,
recognizing the solution is getting closer to the exact
solution. They claimed that the performance gain was
from 1.4 to 4 compared to static precision computation.
They utilized two types of precision on the MasPar
MP-1 and Cray Y-MP.

Binary Cascade Iterative Refinement (BCIR) was
proposed in 1981 [9]. BCIR seeks optimized
performance to solve linear systems by utilizing
multiple precisions. BCIR faces limitations for
practical use since the condition number of the matrix
should be given before computation to decide an initial
precision (i.e., lowest precision among multiple
precisions). Another paper proposes BCIR employing
doubled precision arithmetic per iteration given an

27

initial precision [8]. For numeric proofs and the BCIR
algorithm, refer to [8, 9]. We perform a case study for
the performance gain of BCIR if BCIR employs our
ALU design in section IV.

III. PROPOSED APPROACH
Arithmetic logic units are the fundamental

components within a CPU to process input data and
produce output using certain standardized number
systems. In addition to the arithmetic and logic
operations, ALUs also need to detect exceptions and
generate corresponding error flags for the status
register. Given the huge design space, we simplify the
ALU design presented in this paper without affecting
generality by establishing some design specifications.

In order to be compatible with most current
systems, a two's complement number system is
selected as the interfacing data format between the
ALU and outside logic. This system is also used as the
internal representation within the functional unit only
when signed values are required to be represented (e.g.,
Booth multiplier).

In this paper, only unsigned fixed-point operations
are considered for designing the arithmetic units. The
reasons for such a decision are as follows. First, fixed-
point arithmetic is the core datapath that handles the
computations on the mantissa bits and the exponent
(mostly addition/subtraction) for a floating-point
operation. Most of the circuit area for the dynamic
precision ALU are dedicated to these portions of a
floating-point unit. Second, it is trivial to transform an
unsigned integer ALU into a signed one by simply
adding extra control logic, without significant
modification to the circuit. In most current floating-
point representations, the mantissa can be only used to
represent positive numbers or zero (e.g., enabling an
integer unit compare to work for floating point values),
so all the operand inputs for the fixed-point datapath
can be represented by unsigned integers. Since this
work is a gateway research for the dynamic precision
floating-point ALUs, limiting the focus on unsigned
operations will be sufficient to cover the design
requirements.

No exception handling other than carry-in/carry-out
will be taken into account in this paper.

A. Dynamic precision support
The block diagram for both the traditional design

and the proposed ALU architecture are presented in
Fig. 1, which obviously shows the similarity shared
between these two designs. The only difference shown
in the diagrams is that the bit-width for the control
(ctrl) and carry-out (carry) signals for the design with
dynamic precision (DP) support are no longer single-

bit when the standard design is extended to support
more than one precision-mode. The extra bits are used
to deliver precision and overflow information
respectively.

In contrast to multiple precision-mode designs,
where only operations of certain precisions that match
the supported modes can be performed in parallel (e.g.,
two single precision or one double precision operation),
ALU with true dynamic precision support allows
operations of any combination of different precisions
simultaneously, as long as the total bit-width for
operands is not exceeded.

To support true dynamic precision, an n-bit operand
is partitioned into k sub-blocks with block size of n/k-
bits. Depending on the design requirement on precision
granularity, the number of blocks, k, can be any value
between 1 and n. This size arrangement can be even
more aggressive, allowing optimized a non-uniform,
asymmetric distribution among different blocks for
certain ALU structures. Adjacent sub-blocks can be
combined together dynamically to form a super-block
according to the currently required precision, so that
independent operations can be performed on each
super-block pair (one form each operands) without
affecting others. This grouping process is controlled
by a (k-1)-bit control signal (ctrl). The concept of the
proposed operand segmentation and precision-
controlling mechanism is illustrated in Fig. 2, where an
n-bit operand is divided into two n/4-bit numbers and
one n/2-bit number. More precision modes can be
obtained by changing the ctrl signal. It is obvious that

Figure 1. ALU Designs. (a) Traditional ALU. (b) ALU with multiple
precision support

Figure 2. Operand segmentation and precision arrangement

28

the proposed mechanism guarantees that support for
arbitrary precision-combinations is only limited by the
sub-block segmentation.

Note that for addition (and subtraction), one extra
bit ctrl signal is required to supply the carry-in shared
by all the super-blocks, and a different one-bit carry
will be generated for every super-block.

B. Adder Design with DP support
The critical path within an adder design is the carry

chain that links separated full-adders together and
produces the carries from the lowest position to the
output. It is also the key factor to look into, when
modifying a traditional adder to support multiple
precision modes. Though implementation varies, the
generation processes of carry signals can be classified
into two categories: (1) carry propagated from previous
bits and (2) carry generated using operands [32].
Accordingly, two different methods can be applied to
handle dynamic precision support based on the actual
implementations.

1) Carry extraction and insertion
Pure carry propagation is mainly used for slow

adder realizations that require less area. Serial adders
and ripple-carry adders are two common adder
structures that fall into this category. In such adders,
the carry-out for the current bit position cannot be
evaluated until the carry from the previous position is
available. Thus, in order to perform independent
calculations on the re-grouped super-blocks, the carry
propagations in between two super-block neighbors
need to be specially handled.

First, it is necessary to terminate the carry
propagation, so that the computation of one super-
block will not be affected by the result from previous
one. Then, carry extraction and insertion, as described
in Eq. (1), can be performed to compute the carry-out
(overflow) and carry-in values for the i-th and (i-1)-th
sub-blocks. As mentioned above, a carry-in, denoted as

0c , for all the super-blocks should be identical for the
support of SIMD-like operations.

 1 1 1

1 0 1 1

_

_
i i i

i i i i

carry out ctrl c

carry in ctrl c ctrl c
� � �

� � �

� �

� � � �
 (1)

The hardware implementation for these special

functions is shown in Fig. 3. One can see that in both
Eq. (1) and Fig. 3 the corresponding ctrl signal bit is
used to generate the correct carry-in and carry-out
signal for that respective sub-block. In fact, this circuit
also suggests the construction of super-blocks

implicitly. Thus no extra hardware resources have to be
allocated for a dedicated segmentation circuit. Note
also that for every sub-block, there are 4 extra gates,
resulting in two extra gate-levels of delay. The latency
from every extra block accumulates due to the fact that
these circuits are cascaded on the critical path.
Therefore, the total area and delay overhead introduced
by adding dynamic precision support to a ripple-carry
adder can be calculated with Eq. (2). Assuming a full
adder consists of 4 gates with a latency of 3 gate-levels,
the area overhead is k/n of the area of a static precision
design, and the latency overhead is 2k/3n.

4
2

overhead

overhead

area k
delay k

�
�

 (2)

2) Carry manipulation
In contrast to the adders with carry propagation

whose worst-case delays increase linearly with the bit-
width of operands, most modern CPU adders employ a
scheme called carry-lookahead for carry generation
from the operands directly or indirectly [32]. This
scheme can achieve logarithmic time delay at a cost of
extra hardware area. Instead of working on the carry
signals directly as in ripple-carry adders, carry
manipulation is applied for fast adders. This scheme
manipulates the carry process at the edge between two
continuous super-blocks by engineering the MSB’s
generate (gi) and propagate (pi) signals from every sub-
block. The logic of this method is shown in Eq. (3).

'

'
0

i i i

i i i i

p ctrl p

g ctrl c ctrl g

� �

� � � �
 (3)

By comparing Eq. (3) with Eq. (1), one can see that

they are arithmetically similar to each other. Thus, the
hardware logic for carry manipulation can also be
implemented with one two-input MUX and one AND

Figure 3. Hardware for carry extraction and insertion

29

gate. However, with this method, the calculation of all
generate and propagate signals can be performed in
parallel without having to wait for the completion of
carry generation from previous positions. Since the
carry generation process is modified, the calculation of
the final carry-out (overflow) for each super-block
requires one extra gate-level delay. Therefore, the total
latency overhead for adding dynamic precision support
is only (2+1) gate-levels. For better comparison with
the ripple-carry adder, the absolute total area and delay
overhead introduced by dynamic precision is listed in
Eq. (4). As there are various carry-lookahead adder
designs [32], it is difficult to represent the extra area
and delay in terms of percentages to those in static
precision designs. But it is safe to say that the
percentage will be small, given that most carry-
lookahead adders are larger than ripple-carry adders.

4
3

overhead

overhead

area k
delay

�
�

 (4)

C. Multiplier Design with DP support
The block diagram, as illustrated in Fig. 4, for a tree

multiplier with dynamic precision support consists of
three major design blocks: a partial products generator,
a partial products reduction tree, and a final carry-
propagate adder. Extra circuitry is designed in the first
two blocks in order for the multiplier to support
dynamic precision modes.

1) Partial products generator
To support dynamic precision operations, extra care

is taken when generating the partial products. Instead
of copying the whole multiplicand as the partial
product for every ‘1’ in the multiplier, the generator
only selects the multiplicand bits from the
corresponding super-block based on the multiplier bit

position, and sets all others as ‘0’. This can be realized
using AND gates with multiplicand bits and a block-
select signal (block_sel) as inputs. For every sub-block
pair, a k-bit block_sel is generated by a series of OR
trees using ctrl signals. Fig. 5 shows the hardware for
the selection process of sub-blocks and generation of
the un-shifted partial product. As mentioned above, the
multiplier design presented in this paper supports only
unsigned operands, so no hardware is needed for
negative weighted bits as in signed numbers. The
additional area and delay introduced by the DP circuits
is listed in Eq. (5).

� �

� �

1 1

2 1 1

3

2

(1) () ()

1 1
3 3
log

k i k
overhead i j j i

overhead

area k k i j j i

k k

delay k

� �

� � � �
� � � � � �

� �

�

� � �
 (5)

If a high-radix Booth recoding is used for the

generation of partial products, additional circuit blocks
are necessary to handle the following problems:

	 Generation of sign extension
	 Zero padding for LSB/MSB of each super-

block
	 Overlapped recoding cases for LSB of each

super-block
	 Extra recoding cases for MSB of each super-

block

These hardware blocks include a sign encoder, a

block-boundary detector, a boundary-bit detector, and
other supporting modules.

2) Reduction tree
If a bit-wise partial products generator is employed,

the carry will never be generated or propagated outside
of the super-block (2X the size of the operands) due to
the nature of unsigned multiplication. Therefore, no
additional circuit is required in the reduction tree.

Figure 4. Multiplier design with dynamic precision support

Figure 5. Hardware for partial products generation

30

However, when Booth recoding is used, some of the
partial products might become negative numbers
represented as two’s complement number. Summation
of two’s complement numbers can cause overflow,
resulting in unwanted carries propagating through
super-block boundaries. The ctrl signal is used to filter
any unwanted carries at the sub-block boundaries. The
fundamental arithmetic for such filtering is the same as
in Eq. (1) for the hardware implementation. At the sub-
block boundaries, one extra AND gate is added to the
critical path for every level of the reduction tree. In
fact, this can be further optimized by reducing the
number of level that might cause unwanted carries, or
integrating the termination circuit with the reduction
elements.

IV. IMPREMENTATION RESULTS AND A CASE
STUDY

The proposed precision-controlling mechanism
requires additional hardware resources and introduces
extra delay in the critical path of ALU designs. To
examine the latency and area impact on different
implementations of adders or multipliers, two versions
of implementations are developed for several popular
adder/multiplier structures. For fair comparison, a
standard version is created manually first, and then
modifications are performed to enable dynamic
precision support, using the same level of development
and optimization efforts.

All designs are implemented in VHDL with
parameterized bit-width for operand and sub-block, and
are extensively simulated with randomly generated
operands to verify their functionality. Xilinx ISE 13.4
is used to synthesize the designs for Xilinx Virtex-5
XC5VLX110T FPGAs.

Table I shows the area and latency information for
four different adder implementations: (1) adder
generated from Xilinx proprietary IP (fabric only); (2)
ripple-carry adder with small footprint and linear delay;

(3) multi-level carry-lookahead adder; (4) hybrid prefix
adder with a moderate latency-area tradeoff. Since the
Xilinx adder is deeply optimized for Xilinx’s own
FPGAs, it gives the best results for both area and
latency. The other three manually designed adders
show some degree of degradation in comparison, which
is expected considering the characteristics of these
implementations and the lesser amount of effort in
design optimization.

Normalized area results for the three adder
implementations with dynamic precision support are
provided in Table II. To emphasize the overhead posed
by the modification, the area data listed are normalized
with those from respective adders without DP support.
The hardware size growth with the increasing of either

TABLE I. AREA AND LATENCY FOR STATIC DESIGNS

TABLE II. NORMALIZED AREA FOR DYNAMIC
PRECISION ADDERS

TABLE III. NORMALIZED LATENCY FOR DYNAMIC
PRECISION ADDERS

31

data width or number of blocks is consistent with the
analysis in section III. It is also clear that prefix adders
suffer less, in terms of area, from the additional
precision-control circuitry than the others architectures.

Likewise, normalized latency results are provided in
Table III. In general, the latency impacts from the
additional modules share the same pattern shown in
Table II. However, carry-lookahead adders have the
best performance in terms of absorbing latency
overhead.

To evaluate the impact of dynamic precision on real
applications, we emulate the DP ALUs and analyze the
impact on performance when utilizing multiple
precisions dynamically. We choose Binary Cascade
Iterative Refinement (BCIR) in [8, 9] for the application.
A set of arbitrary precision arithmetic operators is
developed in C, and then used to implement the BCIR
algorithm employing Gaussian Elimination with Partial
Pivoting (GEPP). We compare the total run-times
obtained from BCIR and the double precision direct
method. The direct method solves the problem with
matrix decomposition and back-substitution [10]. The
iteration in BCIR is terminated if the solution accuracy
is higher than that from the double precision direct
method. 100 64 x 64 Gaussian Random matrices are
tested, and the run-time for each matrix is calculated
based on the run-time impact on precision described in
[4]. Finally, achievable speedups are calculated as
TDIR/TBCIR, where TDIR is the run-time for the direct
method and TBCIR is the run-time for the BCIR.

Fig. 6 shows the required number of iterations for
BCIR according to the condition numbers. The X-axis
represents the log2 based condition numbers and the Y-
axis represents the required number of iterations for
BCIR. Notice that employing our ALUs does not
require downloading bit-stream files while employing
static arbitrary precision ALUs with FPGAs requires
downloading bit-stream files as often as the required
number of iterations due to the changing precision used
for each iteration. Fig. 7 shows the estimated speedups
when utilizing precisions to solve linear systems with

BCIR employing our proposed dynamic precision
ALUs (i.e., this run-time does not consider the
overhead due to multiple iterations). In Fig. 7, the X-
axis represents the log2 based condition numbers and
Y-axis represents the achievable speedups using BCIR
employing our ALUs.

In this case study, nearly 4X speedup can be
achieved by utilizing dynamic precisions in BCIR
employing our DP ALUs when the systems are not ill
conditioned, as compared to the given initial precision.
The speedup can be greater when matrix size becomes
larger or accuracy requirements become higher [11,
12]. Hence, we expect our ALUs to have even more
benefit with large-scale high-accuracy applications.

V. CONCLUSION
Reconfigurable computing with FPGAs has shown

impressive performance improvements on a variety of
applications for computational sciences Exploiting
precision at both the application-level and ALU-level
can gain even more from these powerful yet flexible
hardware accelerators. In this paper, we proposed an
innovative ALU architecture that supports dynamic
precision operations on the fly. Our architecture can
improve the computational throughput for low-
precision operations by increasing the parallelism,
without losing the ability to perform high-performance
operations for high-precision applications. We
implemented the proposed architecture for some fixed-
point adders and multipliers with parameterized
VHDL, and their functionalities are tested and verified.
Implementation results from 3 adder structures of
different precision configurations were presented to
analyze the area and delay overheads, which range
from 1% to 24%. A case study was also conducted to
evaluate the impact of the approach, with speedups
approaching 4X for a linear system solver application
of small size. When system size becomes larger or
accuracy requirement becomes higher, the speedup can
be greater.

Figure 6. Required Number of BCIR Iterations as a Function of the
Logarithm of the Condition Number

Figure 7. Performance Gain as a Function of the Logarithm of the

Condition Number

32

ACKNOWLEDGMENT
This work was partially supported by the National

Science Foundation, grant NSF CHE-0625598.

REFERENCES
[1] D. A. Kramer and I. D. Scherson, "Dynamic Precision

Iterative Algorithms," in The IEEE 1992 Symposium on the
Frontiers of Massively Parallel Computation, 1992.

[2] J. Kurzak and J. Dongarra, "Implementation of mixed
precision in solving systems of linear equations on the Cell
processor: Research Articles," Concurr. Comput. : Pract.
Exper., vol. 19, pp. 1371-1385, 2007.

[3] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and
J. Dongarra, "Exploiting the performance of 32 bit floating
point arithmetic in obtaining 64 bit accuracy (revisiting
iterative refinement for linear systems)," presented at the
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, Tampa, Florida, 2006.

[4] J. Lee and G. D. Peterson, "Iterative Refinement on FPGAs,"
in Application Accelerators in High-Performance Computing
(SAAHPC), 2011 Symposium on, 2011, pp. 8-13.

[5] A. R. Lopes, A. Shahzad, G. A. Constantinides, and E. C.
Kerrigan, "More flops or more precision? Accuracy
parameterizable linear equation solvers for model predictive
control," in IEEE Symposium on Field Programmable
Custom Computing Machines, Napa, California, 2009.

[6] J. Sun, G. D. Peterson, and O. O. Storaasli, "High-
Performance Mixed-Precision Linear Solver for FPGAs,"
IEEE Trans. Comput., vol. 57, pp. 1614-1623, 2008.

[7] M. Zubair, S. N. Gupta, and C. E. Grosch, "A variable
precision approach to speedup iterative schemes on fine
grained parallel machines," Parallel Computing, vol. 18, pp.
1223-1231, 1992.

[8] A. Smoktunowicz and J. Sokolnicka, "Binary cascade
iterative refinement in doubled-mantissa arithmetics," BIT,
vol. 24, pp. 123-127, 1984.

[9] A. Kielbasinski, "Iterative refinement for linear systems in
variable-precision arithmetic," BIT, vol. 21, pp. 97-103, 1981.

[10] L. N. Trefethen, Numerical Linear Algebra: SIAM, 1998.
[11] D. H. Bailey, "High-Precision Floating-Point Arithmetic in

Scientific Computation," Computing in Science and Engg.,
vol. 7, pp. 54-61, 2005.

[12] A. Edelman, "Large Dense Numerical Linear Algebra in
1993: The Parallel Computing Influence," The International
Journal of Supercomputer Applications, vol. 7, pp. 113-128,
1993.

[13] K. Compton and S. Hauck, “Reconfigurable computing: a
survey of systems and software,” ACM Computing Surveys,
vol. 34, no. 2, pp. 171-210, Jun. 2002.

[14] S. Craven and P. Athanas, “Examining the Viability of FPGA
Supercomputing,” EURASIP Journal on Embedded Systems,
vol. 2007, pp. 1-8, 2007.

[15] K. S. Hemmert and K. D. Underwood, “Fast , Efficient
Floating-Point Adders and Multipliers for FPGAs,”
Technology, vol. 3, no. 3, 2010.

[16] A. Booth, “A signed binary multiplication technique,” The
Quarterly Journal of Mechanics and Applied, vol. 4, no. 2, pp.
236-240, 1951.

[17] C. S. Wallace, “A suggestion for a fast multiplier,” Electronic
Computers, IEEE Transactions on, vol. EC–13, no. 1, pp. 14–
17, 1964.

[18] S. Anderson and J. Earle, “The IBM system/360 model 91:
floating-point execution unit,” IBM Journal of, no. January,
1967.

[19] P. Seidel and G. Even, “Delay-optimized implementation of
IEEE floating-point addition,” IEEE Transactions on
Computers, vol. 53, no. 2, pp. 97-113, Feb. 2004.

[20] R. M. Jessani and M. Putrino, “Comparison of single- and
dual-pass multiply-add fused floating-point units,” IEEE
Transactions on Computers, vol. 47, no. 9, pp. 927-937, 1998.

[21] M. J. Schulte, D. Tan, and C. E. Lemonds, “Floating-point
division algorithms for an x86 microprocessor with a
rectangular multiplier,” in 2007 25th International Conference
on Computer Design, 2007, pp. 304-310.

[22] G. Even and P.-M. Seidel, “A comparison of three rounding
algorithms for IEEE floating-point multiplication,” IEEE
Transactions on Computers, vol. 49, no. 7, pp. 638-650, Jul.
2000.

[23] G. A. Constantinides, P. Y. K. Cheung, and W. Luk,
“Wordlength optimization for linear digital signal
processing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 22, no. 10, pp. 1432-
1442, Oct. 2003.

[24] G. a. Constantinides, P. Y. K. Cheung, and W. Luk,
“Optimum and heuristic synthesis of multiple word-length
architectures,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 13, no. 1, pp. 39-57, Jan.
2005.

[25] D.-U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W.
Luk, and G. A. Constantinides, “Accuracy-Guaranteed Bit-
Width Optimization,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, no. 10, pp.
1990-2000, Oct. 2006.

[26] X. Wang, “VFloat: A Variable Precision Fixed-and Floating-
Point Library for Reconfigurable Hardware,” ACM
Transactions on Reconfigurable Technology, vol. 3, no. 3, pp.
1-34, 2010.

[27] D. Tan, A. Danysh, and M. Liebelt, “Multiple-precision fixed-
point vector multiply-accumulator using shared
segmentation,” in 16th IEEE Symposium on Computer
Arithmetic, 2003. Proceedings., 2003, vol. 00, no. C, pp. 12-
19.

[28] A. Akkas, “Dual-mode floating-point adder architectures,”
Journal of Systems Architecture, vol. 54, no. 12, pp. 1129-
1142, Dec. 2008.

[29] A. Akkas and M. Schulte, “Dual-mode floating-point
multiplier architectures with parallel operations,” Journal of
Systems Architecture, vol. 52, no. 10, pp. 549-562, Oct. 2006.

[30] A. Isseven and A. Akkas, “A Dual-Mode Quadruple Precision
Floating-Point Divider,” in Signals, Systems and Computers,
2006. ACSSC’06. Fortieth Asilomar Conference on, 2006, pp.
1697–1701.

[31] L. Huang, S. Ma, L. Shen, Z. Wang, and N. Xiao, “Low Cost
Binary128 Floating-Point FMA Unit Design with SIMD
Support,” IEEE Transactions on Computers, vol. PP, no. 99,
pp. 1-8, 2011.

[32] B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs, 2nd edition, Oxford University Press, New York,
2010.

[33] C. Kao, “Benefits of partial reconfiguration,” Xcell journal,
pp. 65-67, 2005.

33

