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Abstract

This paper addresses the resource-constrained project scheduling
problem with uncertain activity durations. An adaptive robust opti-
mization model is proposed to derive the resource allocation decisions
that minimize the worst-case makespan, under general polyhedral un-
certainty sets. The properties of the model are analyzed, assuming
that the activity durations are subject to interval uncertainty where
the level of robustness is controlled by a protection factor related to the
risk aversion of the decision maker. A general decomposition approach
is proposed to solve the robust counterpart of the resource-constrained
project scheduling problem, further tailored to address the uncertainty
set with the protection factor. An extensive computational study is
presented on benchmark instances adapted from the PSPLIB.

Keywords: Project scheduling, Resource constraints, Robust opti-
mization, Benders decomposition.

1 Introduction

The resource-constrained project scheduling problem (RCPSP) consists in
sequencing and scheduling project activities usually related by precedence
and resource constraints involving renewable scarce resources. As com-
prehensively investigated in the literature, the RCPSP is an outstanding
and challenging problem both in practice, since it arises in many important
application fields (construction industry [20, 40], rolling ingots production
[55, 57], to mention a few), and in theory.
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The majority of the scientific contributions considers the model parame-
ters deterministic ([41]). However, in the last years a frank acknowledgment
of the uncertainties characterizing the project environment and a growing
attention on the project execution, have highlighted the need of incorporat-
ing the uncertainty in problem parameters as an inevitable feature of the
decision-making process [2, 52]. In fact, due to employees’ absenteeism,
delays in materials supply, bad weather conditions and many other un-
controllable factors, some project activities may last longer than expected,
threatening the operational viability of the planned schedule.

To address these challenges, a flourishing stream of literature has focused
on the RCPSP under uncertainty, where the activity durations are assumed
uncertain [21, 22]. Two different approaches can be used depending on
the genuine interpretation of the RCPSP under uncertainty and the way
this uncertainty is tackled. The first approach assumes that uncertainty
is represented by random variables with known distribution functions and
interprets the RCPSP as a stochastic dynamic optimization problem, where
decisions are made each time new information becomes available.

The second approach has mainly dealt with the development of effec-
tive and efficient proactive and reactive scheduling procedures. Proactive
scheduling aims at generating baseline schedules that incorporate some pro-
tection against possible disruptions, whereas reactive scheduling procedures
can be invoked during the execution of the project, to repair the baseline
schedule by deviating as little as possible from the original one.

Scant attention has been devoted to robust optimization approaches for
the RCPSP. The robust optimization methodology ([15, 16, 31]) was first
introduced for linear programming problems ([13]) and then extended for
mixed-integer linear programming problems. The approach produces solu-
tions that are feasible for all the realizations of the parameters lying within
the uncertainty set. The success of this paradigm, in a broad variety of appli-
cation areas, is mainly due to the fact that this approach is the only reason-
able alternative when the distributional information is not readily available.
Moreover, it is easy to understand intuitively and it yields computational
tractable mathematical programming problems. Originally designed to han-
dle static problems with uncertain parameters, robust optimization was re-
cently extended into a dynamic setting ([14, 23]). In particular, part of
the variables must be determined before the realization of the uncertainty,
whilst other variables can be adjusted to the realization of the uncertain pa-
rameters, hence offering increased flexibility. This framework overcomes the
conservativeness of early static robust approaches producing significantly
less conservative solutions than the static case and yielding better objective
values.

Following this stream, this paper presents an adjustable robust formula-
tion for the RCPSP where in the first stage, sequencing decisions are taken,
concerning the order of the project activities. In the second stage, schedul-
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ing decisions are made, allowing the activity starting times to depend on
the activity delays realized.

The contributions of this work are manifold. A novel robust optimization
model for the RCPSP under polyhedral duration uncertainty is presented.
A tailored solution approach equipped with problem-specific cuts and lower
bound inequalities is provided. Further, a polynomially solvable case is
identified with a specific uncertainty structure, which provides an intuitive
interpretation for decision makers who might flexibly adjust the level of risk
aversion. The resulting problem is then solved with an enhanced approach
that exploits the specific structure of the uncertainty set. The results, col-
lected on instances adapted from the PSPLIB, show that the behavior of the
proposed solution approach is strongly related to the characteristics of the
instances and that not all the cases can be solved within the time limit of 20
minutes. In particular, 15 out of the 48 problem classes of the PSPLIB are
computationally demanding, for any risk aversion level. The average compu-
tational effort, for the solved instances is, on average, around 173.35 seconds
whereas the gap for the unsolved instances is around 38%. The results con-
firm that robust variants of the RCPSP are computationally demanding, in
line with the results presented in [4].

The remainder of the paper is organized as follows. First, we survey the
literature in Section 2. A formal definition of the robust RCPSP is given
in Section 3. A tailored decomposition approach is presented in Section
4, whereas Section 5 focuses on a specific uncertain set, where the activity
durations are subject to interval uncertainty and the level of robustness is
controlled by a protection factor. Section 6 discusses the computational
results obtained on a set of benchmark problems. Finally, some conclusions
are drawn in Section 7. A detailed accounting of the numerical results is
given in Appendix A. Formal proofs of theorems are reported in Appendix
B.

2 Related literature

The RCPSP has been widely investigated in the academic literature, but
the issue of the incorporation of uncertainty has received a growing research
attention only in the last fifteen years. Two alternative approaches have
been proposed to handle the problem.

In the first one, the duration of each activity is assumed to be a ran-
dom variable which follows known probability distribution functions and
the scheduling problem is viewed as a multistage decision process, where
decisions are made each time new information becomes available.

Scheduling is done by policies that define, at decision point, appropriate
actions concerning the choice of activities that should be executed next
and the objective is typically the minimization of the expected makespan.
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First introduced in [56], priority policies schedule activities according to a
given priority order. While easy to define and implement, they have been
abandoned since the so-called Graham anomalies may occur ([32]).

Preselective policies were then introduced by Igelmund and Raderma-
cher [38]. Germane to these policies is the concept of minimal forbidden set
defined as the minimum cardinality set of activities, without precedence con-
straints, whose total resource consumption exceeds the resource availability.
A preselective policy defines for each minimal forbidden set a (preselected)
activity to be postponed in order to solve potential resource conflicts. The
partial order of precedence constraints induces a digraph which has a node
for each activity and for each waiting condition related to preselected activ-
ities.

A combination of priority and preselective policies has been proposed
by Möhring and Stork [51], who studied the so-called linear preselective
policies where an activity is selected to be delayed and the choice respects
the order imposed by a priority list. Since each linear preselective policy
is also a preselective policy, linear preselective policies inherit the analytic
properties of being monotone and continuous. These properties were further
exploited in [59] to develop a branch-and-bound procedure equipped with
dominance rules and different branching schemes to efficiently compute an
optimal preselective policy.

More recently, a new class of policies, called preprocessor policies, have
been proposed in [5]. A-priori sequencing decisions resolve some, but not
necessarily all, resource conflicts in a preprocessing phase, while the remain-
ing conflicts are dynamically resolved during project execution. In partic-
ular, a preprocessor policy is defined by a set of activity pairs (which adds
extra precedence relations between activities) and an ordered list used by a
priority based policy to solve conflicts during project execution.

Policies have also been used for determining predictive activity starting
times, with the objective of minimizing costs related to positive and negative
deviations of actual starting times, from the predicted ones, and to penal-
ties/bonuses associated with late/early project completion. Deblaere et al.
[24] proposed a methodology for the determination of a project execution
policy and a vector of predictive activity starting times. Both expected ac-
tivity starting time deviations and penalties or bonuses associated with late
or early project completion are minimized in objective function. For solving
the problem, the authors proposed a combination of four descent procedures
that heavily rely on simulation for the evaluation of the objective function.

Since the stochastic RCPSP is challenging from both a theoretical and
computational point of view, in the literature it has often been solved by
means of tailored heuristic approaches. Golenko et al. [30] presented a
heuristic algorithm where resource conflicts are resolved by a zero-one in-
teger programming problem. The problem aims at maximizing the total
contribution of the accepted activities to the expected project duration,

4



where such contribution is defined as the product of the average duration of
the activities and their probability of being on the critical path, calculated
via simulation.

Starting from the concept of critical chain introduced by Goldratt [29],
Rabbani et al. [54] presented a new heuristic implementing backward pass
scheduling for feeding-in resources, with the objective of minimizing the ex-
pected project duration and its variance. Similarly to the work of [30], the
solution of a zero-one integer programming approach is suggested to allocate
the resources, considering that the activities with the greatest probability
to be on the critical chain and the greatest correlation with the project vari-
ance are fed-in first. Tsai and Gemmil [61] proposed a tabu search based
heuristic, which uses multiple tabu lists, randomized short-term memory,
and multi start diversification mechanism. Later on, Ballest́ın [7] devel-
oped regret-based biased random sampling procedures and embedded them
into a genetic algorithm. A GRASP-heuristic able to produce high-quality
solutions for multiple possible objective functions is proposed [8]. Bruni
et al. [19] presented a chance-constrained based heuristic to build baseline
schedules with minimum makespan able to absorb dynamic variations of
activity durations.

Within the stochastic programming context, a two-stage integer linear
stochastic model has been proposed in [66]. Target times are determined in
the first stage followed by the development of a detailed project schedule in
the second stage. The two-stage stochastic model aims at minimizing the
cost of project completion and expected penalty associated with starting
time deviations from the targets. Only one non-renewable resource (the
budget) is constrained in the model.

In the second approach, some knowledge of the uncertainty (not nec-
essarily in the form of probability distribution functions) is incorporated
in the decision-making process. Proactive scheduling procedures are then
used to generate schedules that are in some sense robust (i.e. insensitive)
to future adverse events, and reactive scheduling procedures are designed
to be invoked during the execution of the project, when disruptions occur.
The objective is to build schedules that, under uncertainty, deviate as lit-
tle as possible from the baseline schedule. Within this research stream,
and when abstraction of resource usage is made, Herroelen and Leus [33]
developed mathematical programming models for the generation of stable
baseline schedules in a project environment without resource consumption.
They minimized the expected weighted sum of the absolute deviations be-
tween the planned and the actually realized activity starting times when
exactly one activity is expected to be delayed during the project execu-
tion. Tavares et al. [60] studied the risk of a project as a function of the
uncertainty of the duration and the cost of each activity.

When resources come into play, Leus and Herroelen [49], assuming the
availability of a feasible baseline schedule, proposed exact and approximate
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formulations of the robust resource allocation problem, and a branch-and-
bound algorithm for their solution. In the same stream, the problem of
minimizing schedule instability, defined as the expected weighted deviation
between the computed and the realized schedules, is considered in Lam-
brechts et al. [45, 46, 47]. Instead of generating one baseline schedule, Fu
et al. [26] built a partial order schedule [53], that represents a set of feasible
schedules and designed chaining heuristics for improving the robustness. In
order to obtain a precedence and resource-feasible schedule, in [33] the re-
source flow-dependent float factor heuristic which uses information coming
from the resource flow network in the calculation of the so-called activity
dependent float factor. In [62, 63] the above mentioned heuristic is modified
with the aim of preventing resource conflicts. In [64] multiple algorithms are
introduced to include time buffers in a given schedule, while a predefined
project due date remains respected. The virtual activity duration extension
heuristic, presented in [64], relies on the standard deviation of the activity
duration to compute a modified duration, whereas the starting time criti-
cality heuristic tries to combine information on activity weights and on the
probability that an activity cannot be started at its scheduled starting time.
A new procedure for generating a proactive baseline schedule, based on the
use of chance constraints, is presented in [44]. A branch-and-cut method
is also provided for solving a sample average approximation of the result-
ing problem. For an extensive review of research in this field, the reader is
referred to [25, 34, 35].

Even if related to some extent to our paper, the above mentioned lit-
erature is not in the realm of robust optimization, which is the aim of the
paper. To our knowledge, the only paper presenting a robust optimization
model for the RCPSP is [4]. Assuming that scenarios represent different
realizations of the activity durations, a minimax absolute-regret problem is
proposed to find a schedule that minimizes the maximum absolute differ-
ence between the makespan obtained by the robust solution and the scenario
dependent optimal solutions. To solve the problem, the authors proposed
both exact and heuristic methods and showed that, within a time limit of
30 minutes, 52 out of 120 randomly generated tests with 20 activities and 9
out of 120 with 30 activities could be exactly solved, whereas the heuristic
is able to produce good quality solutions in less time.

3 Problem Definition

The deterministic RCPSP can be described as follows. Let G = (V,E) be a
directed precedence graph defined over the node set V = {0, . . . , n+1}. The
dummy nodes 0 and n + 1 ∈ V represent the start and end of the project,
respectively. Each other node i ∈ V corresponds to an activity of the project
to be performed in a deterministic time duration di ∈ Z+.
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The set E collects the arcs representing the precedence relationships
among the activities. While it is processed, each non-dummy activity i ∈ V
requires an amount rik ∈ Z≥0 of resource k from a given set of resource
types K.

A solution to the RCPSP is a vector of non-negative starting times
S0, . . . , Sn+1 (referred to as schedule) satisfying the precedence constraints
induced by G and the resource constraints related to the presence of a finite
capacity Rk for each resource k ∈ K. In particular, a schedule is resource
feasible if, at any time and for each resource type, the amount of consumed
resource is less than its availability.

Let F ⊆ V be any subset of activities without precedence relations
between them such that

∑
i∈F rik > Rk, for at least one k ∈ K. The

set F is called forbidden since its activities cannot be executed in parallel,
because they generate a resource conflict.

A minimal forbidden set is a forbidden set such that each of its subsets is
not a forbidden set. Let F be the set of minimal forbidden sets. Any resource
conflict can be removed by adding a set of extra precedence constraints to
the original precedence graph in such a way that the makespan can be
determined by applying an early start policy on an extended graph.

Formally, following the Main Representation Theorem of Bartusch et
al. [9], the solution of the RCPSP can be reduced to the optimal selection
of the set X ⊆ (V × V ) \ E of extra precedences such that the extended
graph G′(V, (E ∪ X)) is acyclic and F(T (E ∪ X)) = ∅, where T (E ∪ X)
is the transitive closure of an extended set of precedence constraints. In
line with Balas [6], we can call the set X a sufficient selection. Once a
selection has been defined, and the extended set of precedence relations
induced by X is added, we can ignore the resource constraints and the
makespan can be simply computed by solving a critical-path problem on a
graph parameterized by X.

It should be noted that it is often possible to make different selections,
for the same schedule. Whilst this is irrelevant in the context of determinis-
tic scheduling, it becomes a compelling issue when uncertainty is explicitly
considered since this choice impacts on the performance of the schedule.

Let us consider the network of Figure 1 representing a project with 5
activities; the parameters di and d̂i are the deterministic duration and the
possible delay of activity i, respectively.

Now, let us consider two different sufficient selections, i.e., X1 = {(3, 5)}
(represented with a dashed edge) and X2 = {(3, 4)} (represented with a
dotted edge). For both selections, the deterministic makespan is equal to
18 and corresponds to the critical path composed by the activities 0, 1, 4,
6 (in bold). When we consider the delayed network, the makespan becomes
22 for the selection X1, and 30 for X2, respectively. This example highlights
the importance of making the right resource allocation decisions under un-
certainty. Since resources cannot be easily transferred between activities
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Figure 1: Network project.

at short notice, especially in multi-project environments, it is evident that
these decisions should be taken in advance.

On the other hand, whereas the selection is a static here-and-now deci-
sion, consistently with the real-world planning and operations of projects,
the starting times should adjust to the uncertain durations when they be-
come known.

With the aim of addressing this problem, we define the robust resource
constrained project scheduling problem as the following two-stage adjustable
robust optimisation problem (TSRCPSP). The objective is to find a suffi-
cient selection that minimizes the worst case makespan under uncertainty:

min
X∈X ,S(·)

max
θ∈Θ

Sn+1(θ) (1)

S0(θ) = 0 ∀θ ∈ Θ, (2)

Sj(θ)− Si(θ) ≥ θi ∀(i, j) ∈ E , ∀θ ∈ Θ. (3)

Here, we denote with X the set of sufficient selections and we assume that
the set of arcs E is amended with the extra precedences X ∈ X , leading to
the extended set of precedence relations E := E∪X. The uncertain duration
θi, ∀i ∈ V, is defined over the support Θ. Throughout the paper, we shall
assume that the support Θ is a nonempty and closed subset of Rn and is
polyhedral. Let W ∈ Rq×n and h ∈ Rq be an uncertain matrix and an
uncertain vector, respectively, the uncertain polyhedron may be represented
as follows Θ = {θ ∈ Rn

+ : Wθ ≤ h}.
The selection decisions X ∈ X represent first-stage decisions to be taken

before the activity durations are known, whereas Sj(θ) denotes the second-
stage variables representing the starting time of activity j, under the dura-
tion realization θ ∈ Θ. It is worthwhile noticing that the starting times also
depend on the selection X. The explicit dependency on X is omitted for
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the sake of brevity, since it is implicitly included in the set E . To highlight
this dependence we define S : (X × Θ) → Rn+2

≥0 as the vector of second
stage decisions that can be taken after the duration of all activities become
known.

It is worthwhile noticing that the robust precedence constraints maintain
the same structure of their deterministic counterpart, but they are param-
eterized in θ ∈ Θ.

Remark 1. The TSRCPSP is not equivalent to the static robust counterpart
of the RCPSP, which reads as

min
X∈X ,S

Sn+1 (4)

S0 = 0, (5)

Sj − Si ≥ θi ∀(i, j) ∈ E , ∀θ ∈ Θ. (6)

Intuitively, this problem determines a minimum makespan schedule that
is feasible for all anticipated realizations of the activity durations θ ∈ Θ
simultaneously since both first-stage and second-stage decisions are selected
before the activity durations are known. In other words, the TSRCPSP
allows the starting times to be chosen after the activity duration realization
is observed, whereas the robust static counterpart requires setting the starting
times before any uncertain realization is known.

Whilst the TSRCPSP is an optimistic model, the static counterpart is
a worst-case, over-conservative approach. Therefore, the optimal makespan
obtained by the solution of the adjustable TSRCPSP (zadj) is less conserva-
tive than the one obtained from the solution of the static robust counterpart
(zstatic) hence, in general we have zadj ≤ zstatic.

However, in some cases, the optimal solution of the TSRCPSP can be
obtained by solving an instance of the static robust RCPSP. Ben-Tal and
Nemirovski [12] showed that zadj = zstatic if the uncertainty set Θ is a
Cartesian product of independent compact convex sets. As a result, for in-
stance, solving the TSRCPSP over a hypercube is equivalent to solve the
deterministic RCPSP for the worst-case activity duration vector (See Ap-
pendix B for a formal proof). Even though computationally attractive, this
condition prevents any form of dependency among the activities. Bertsimas
and Goyal [17] showed that a static robust solution is a 2-approximation
to TSRCPSP if the uncertainty set is symmetric or positive, but the bound
can be arbitrarily large for general uncertainty sets.

In order to solve the two-stage problem with general asymmetric uncer-
tainty sets, allowing also correlation among different activities, we present
in the next Section an exact solution approach.
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4 Exact solution approach

The TSRCPSP presents a specific structure where the set of decision vari-
ables can be grouped into two sets, each with a distinctive impact on the
global problem. The first one encompasses variables related to the suffi-
cient selection decisions whereas the latter includes variables related to the
makespan evaluation.

This structure suggests to adopt a decomposition framework, in a spirit
similar to the Benders’ approach ([11]). The main idea is to decompose
the original problem into a master problem and a subproblem whose solu-
tion provides information for valid cuts to append to the Benders’ master
problem. After introducing the new cut, the master problem is resolved
and the algorithm is iterated continuously until the difference between the
lower bound and the best upper bound is small enough. Similar approaches
have been recently proposed for the solution of two-stage robust problems
([27, 65]). Before presenting the detailed scheme of the algorithm, we intro-
duce in the following subsections, the master problem and the subproblem
formulations along with the cut generation scheme adopted.

4.1 The master problem

The master problem should be able to determine sufficient selections. Fol-
lowing the resource-flow formulation (first presented in [3]), the master prob-
lem is formulated as a mixed integer program where resource flow variables
fijk are used to model the number of units of resource k directly trans-
ferred from activity i to activity j, whereas sequential binary variables yij
are defined to represent all the precedence relations between all the activi-
ties (including also the transitive closure T (E∪X)). Moreover, an auxiliary
variable η represents a lower bound on the optimal solution of the TSRCPSP.

At a generic iteration t the formulation of the master problem is as
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follows:

min η (7)

yij = 1 ∀(i, j) ∈ E, (8)

yij + yji ≤ 1 ∀i, j ∈ V, i < j, (9)

yip ≥ yij + yjp − 1 ∀i, j, p ∈ V, i 
= j 
= p, (10)

fijk −min(r̃ik, r̃jk)yij ≤ 0 ∀i, j ∈ V, i 
= j, i 
= n+ 1, j 
= 0,

∀k ∈ K, (11)∑
j∈V \{i,0} fijk = r̃ik i ∈ V \ {n+ 1}, ∀k ∈ K, (12)∑

i∈V \{j,n+1} fijk = r̃jk j ∈ V \ {0}, ∀k ∈ K, (13)

η ≥ Ψ(y,M∗l) 0 ≤ l < t, (14)

fijk ≥ 0 ∀i, j ∈ V, i 
= j, i 
= n+ 1, j 
= 0,

∀k ∈ K, (15)

yij ∈ {0, 1} ∀i, j ∈ V, i 
= j. (16)

Here, r̃ik is defined as r̃ik =

{
Rk if i = 0, n+ 1

rik ∀i ∈ V \ {0, n+ 1} , ∀k ∈ K.

Preprocessing constraints (8) set the preexisting precedence constraints.
Constraints (9) and (10) are valid inequalities preventing cycles. Constraints
(11) are big-M constraints linking flow variables with precedence related vari-
ables. Constraints (12) and (13) are resource flow-conservation constraints.
Inequalities (14) are the optimality cuts that are a function Ψ of the vari-
ables y (y denotes a vector of variables) and of the optimal solution of the
subproblem at previous iterations l, 0 ≤ l < t denoted with M∗l. This value,
on the other hand, depends on the optimal solution of the master problem
at iteration l, y∗l. For the sake of brevity, this dependence is not explicitly
indicated. A detailed description of the cuts is presented in subsection 4.3.

Koné et al. [43], by comparing computationally different mathemati-
cal programming formulations for the RCPSP, showed that, although the
resource flow formulation produces bad relaxations due to the presence of
big-M constraints, it may be competitive with time-indexed formulations
for problems with a long time horizon (in this respect, it is worth remark-
ing that our master has less big-M constraints than the original flow based
formulation where also the precedence relations are formulated as big-M
constraints).

Beside this, another advantage of this formulation is the clear separation
between the sequencing and the scheduling subproblems, that enables a
time-independent formulation of the resource constraints. The incorporation
of uncertainty is then confined to the subproblem, where starting times can
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be easily determined since resource conflicts have been already resolved in
the master.

4.2 The subproblem

The optimal solution of the master problem at a generic iteration t deter-
mines an acyclic subgraph G′(V, E t) where E t := {(i, j) ∈ V × V : y∗tij > 0};
Xt is accordingly set.

Then, a feasible solution for the problem (1) – (3) can be determined by
solving the following subproblem

min
S(·)

max
θ∈Θ

Sn+1(θ) (17)

S0(θ) = 0, (18)

Sj(θ)− Si(θ) ≥ θi ∀(i, j) ∈ E t, ∀θ ∈ Θ. (19)

The subproblem at iteration t can be recast in the following equivalent
form:

max
θ∈Θ

min
S∈Ω(Xt,θ)

Sn+1, (20)

where

Ω(Xt, θ) = {S ∈ Rn+2
+ : S0 = 0, Sj − Si ≥ θi ∀(i, j) ∈ E t}.

Therefore, (20) is a worst case makespan minimization problem with a
max-min form, where minS∈Ω(Xt,θ) Sn+1 determines the makespan over a
subgraph defined by the fixed selection Xt and a given θ ∈ Θ, which is then
maximized over the uncertain set Θ.

Invoking a strong duality result, we can obtain the optimal solution of
the robust makespan problem by solving the optimistic counterpart of its
dual problem [10, 58]. Loosely speaking, this result states that optimizing
under the worst case in the primal is the same as optimizing under the best
case in the dual. This strong duality always holds for uncertain polyhedral
convex programming problems, where the uncertainty set is a polytope [39].

The dual of the worst-case makespan problem, at a generic iteration t, is
the following longest path problem, where the best case criterion is applied.
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M∗t = max
θ∈Θ,α

∑
(i,j)∈Et

θiαij (21)

∑
(i,n+1)∈Et

αin+1 = 1, (22)

∑
(0,i)∈Et

α0i = 1, (23)

∑
(i,j)∈Et

αji −
∑

(j,i)∈Et

αij = 0 ∀i ∈ V \ {0, n+ 1}, (24)

αij ∈ {0, 1} ∀(i, j) ∈ E t. (25)

The optimal α values define the longest path π∗t of length M∗t.
The exact solution of (21) – (25) could be determined by solving with

off-the-shelf softwares a mixed-integer linear program obtained by lineariz-
ing every bilinear term θiαij with standard techniques. Whilst optimally
solving the subproblem is NP-complete in general, in Section 5, we investi-
gate a polynomially solvable case, for which a tailored solution approach is
presented.

4.3 Optimality Cuts

Once the subproblem (21) – (25) is solved, a valid cut can be added to the
master problem formulation.

Proposition 1. Given a finite global lower bound L of the problem (1) –
(3), and the optimal subproblem solution y∗t, M∗t the constraint

η ≥ (M∗t − L)
∑

(i,j)∈Xt

yij − [(M∗t − L)(|Xt| − 1)− L] (26)

is a valid optimality cut. Since there is a finite number of such cuts the
algorithm converges to an optimal solution to the TSRCPSP.

Proof. The quantity
∑

(i,j)∈Xt yij is always less than or equal to |Xt|, taking
exactly the value |Xt| when y = y∗t component-wise.
In this case

∑
(i,j)∈Xt yij − |Xt| = 0 and the right-hand side takes the value

M∗t, otherwise the right-hand side takes a value less than or equal to L.
Since the first stage decision variables y are binary, there is only a finite
number of feasible first stage solutions and therefore, the number of cuts
that can be added to the master is finite.
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This cut can be strengthened to

η ≥ (M∗t − L)
∑

(i,j)∈π∗t
yij − [(M∗t − L)(|π∗t| − 1)− L]. (27)

In fact, the set of arcs belonging to π∗t defines the smallest set of arcs
that might influence the makespan.

The general form of (26) is similar to the cut used in the Integer L-shaped
algorithm [48] for solving two-stage stochastic programming problems with
first stage binary variables. We further notice that, for L = 0, the cut resem-
bles the logic cuts used in Logic-based Benders decomposition for scheduling
problems [36]. In particular, the optimality cut reads as follows:

η ≥ M∗t[1− (|Xt| −
∑

(i,j)∈Xt

yij)].

This relation asserts that the makespan of the subproblem in the succes-
sive iterations cannot be less than M∗t, unless at least one extra precedence
is removed from Xt.

4.4 Algorithm enhancements

In this Section, we study how to improve the computational performance
of the basic method by including a subproblem relaxation in the master
problem.

We employed two relaxations within the master problem, since they seem
to have somewhat complementary strength. A straightforward relaxation of
the subproblem can be obtained by considering the following valid inequal-
ities involving not only the master variables, but also a new set of variables
s

sj − si ≥ dLBi −Bij(1− yij) ∀i, j ∈ V, i 
= j,

η ≥ sn+1,

where dLBi is a suitable lower bound on the random activity duration, Bij

is a sufficiently large number.
We would like to remark that these constraints are written for a given

duration vector and, as such, do not depend on the uncertainty set.
These inequalities state that, whenever a precedence is introduced through

the variables yij between activities i and j, the starting time of j should be
at least equal to the starting time of the predecessor i plus the activity du-
ration.

Since lower bounds on the activity durations are used, these constraints
represent a relaxation of the precedence constraints in the TSRCPSP. In-
stead of considering the inequalities for all the activity pairs in the network,
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it is computationally advantageous to use only a subset of the constraints. In
this respect, we have considered a clusterization of the activities in disjoints
subsets

C1, . . . , CNC :
⋃

c=1,...,NC

Cc = V, Cc ∩ Cc′ = ∅ c′ > c c, c′ = 1, . . . , NC.

These clusters follow the topological ordering of the activities in the
network in such a way that to a cluster Cc belong smaller numbered activ-
ities than activities in Cc+1. In each cluster we have considered only one
representative activity nCc = argmaxi∈Ccd

LB
i , c = 1, . . . , NC.

Thus, we have amended the master problem with this set of constraints:

snCc′
− snCc

≥
(dLBnCc

+ dLBnCc′ )

2
−BnCcnCc′

(1− ynCcnCc′
),

c, c′ = 1, . . . NC : c′ > c, (28)

η ≥ snCNC
. (29)

The second relaxation is based on the following idea. The makespan
is obviously greater than or equal to the length of the longest path ob-
tained considering the activity durations equal to their lower bound. Since
enumerating all the paths is not viable, we consider an equivalent poly-
nomial size formulation by introducing a flow variable φij for each pair
(i, j) ∈ {V × V, i 
= j}, and by amending the master with the following
constraints set:

η ≥
∑
i∈V

∑
j∈V

dLBi φij (30)

∑
i∈V

φij −
∑
j∈V

φij = 0 ∀i ∈ V \ {0, n+ 1}, (31)

∑
j∈V

φ0j = 1, (32)

∑
j∈V

φjn+1 = 1, (33)

φij ≤ yij ∀i, j ∈ V, i 
= j, (34)∑
(i,j)/∈E

φij ≥ 1, (35)

φij ≥ 0 ∀i, j ∈ V, i 
= j. (36)

While equations (31) – (33) are flow conservation constraints, constraints
(34) impose that the path should involve only links corresponding to actual
or established extra precedence relations in the network. Constraint (35)
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enforces the condition that the flow should traverse at least one arc cor-
responding to an extra precedence. We notice that, beside preventing the
lower bound to be zero, this is not restrictive because if any extra prece-
dence is involved the problem turns out to be a critical path problem without
resources providing a very weak bound.

4.5 The Benders’ algorithm

The Benders’ Decomposition algorithm is reported below.

• Set LB := −∞; UB := +∞ t = 0, π∗0 = {∅}, M∗0 = null.

• while UB > LB do

– Solve the master problem (7) – (13), (15) – (16), (27) – (36).

– Assign to LB the optimal objective function value of the master
problem.

– Solve the subproblem (21) – (25) and let M∗t be the optimal
makespan and π∗t the corresponding longest path.

– Update UB = min(UB,M∗t).

– Add the cut (27) with L = LB and update t := t+ 1.

– end while

• Return LB

We notice that the value of the lower bound L in the cut (27) can assume
in each iteration the value LB. In fact, given the peculiar structure of the
problem in which the objective function does not include any information
related to first stage variables, the optimal solution of the master problem
constitutes a global lower bound for the problem (1) – (3).

5 The cardinality constrained uncertainty set

In this section, we focus on a specific dependency structure, inspired by the
budget of uncertainty proposed in [18] and used to model uncertain parame-
ters in several combinatorial optimization problems (see, e.g., [1]). This de-
pendency approach provides an intuitive interpretation of uncertainty for a
risk averse decision maker who might flexibly adjust the level of risk aversion
by tuning the so called budget of uncertainty, representing the cardinality
of the activities simultaneously experiencing a delay. It is important to note
that this representation of the uncertainty is general enough to account for
interactions among activities and can be easily interpreted by the project
managers.

16



Formally, we assume that each activity duration lies between its mean
value θ̄i and its peak value θ̄i + θ̂i. In practical settings, it is unlikely that
all the activities exhibit longer durations than expected. To control the
degree of robustness and conservatism we allow only some of the uncertain
parameters to simultaneously deviate from their nominal values.

As a consequence, the uncertainty polytope Θ contains all the durations
where at most Γ activities can reach their peak values simultaneously. Hence,

Θ = {θi|i ∈ V, θi = θ̄i + δiθ̂i, 0 ≤ δi ≤ 1,
∑
i∈V

δi ≤ Γ}.

Note that Γ lies within the range [0, |V |]. In particular, when Γ = 0 the
uncertainty is disregarded, whereas different values can be used to analyze
the impact of different levels of uncertainty in the system.

Under this assumption, the subproblem (20) can be written as:

max∑
i∈V δi≤Γ
0≤δi≤1

min
S∈ΩBS(Xt,θ)

Sn+1 (37)

where θ represents the vector of the activity durations θi and

ΩBS(X
t, θ) = {S ∈ Rn+2

≥0 : S0 = 0, Sj − Si ≥ θ̄i + δiθ̂i ∀(i, j) ∈ E t}.

The dual version of problem (37) can be rewritten as:

max
α,δ

∑
(i,j)∈Et

(θ̄i + δiθ̂i)αij (38)

(22)− (24), (39)∑
i∈V

δi ≤ Γ, (40)

αij ∈ {0, 1} ∀(i, j) ∈ E t, (41)

0 ≤ δi ≤ 1 ∀i ∈ V. (42)

Proposition 2. Problem (38) – (42) is a disjoint program over a polyhedron
where the linear constraints concerning the variables α and those represent-
ing Θ are disjoint. Hence, there exists an optimal solution that is at the
extreme points of the disjoint polyhedra ([37]).

The model can be linearized as follows.
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max
α,δ,w

∑
(i,j)∈Et

(θ̄iαij + θ̂iwij) (43)

(22)− (24), (44)

wij ≤ δi ∀(i, j) ∈ E t, (45)

wij ≤ αij ∀(i, j) ∈ E t, (46)

0 ≤ δi ≤ 1 ∀i ∈ V, (47)∑
i∈V

δi ≤ Γ, (48)

αij ∈ {0, 1} ∀(i, j) ∈ E t, (49)

wij ≥ 0 ∀(i, j) ∈ E t. (50)

Proposition 3. Problem (43) – (50) is equivalent to problem (38)–(42).

Proof. We need first to prove that wij = δiαij at any optimum.
If δi = 0 then, in any feasible solution for the constraints (45) wij = 0.
Hence the equivalence holds.
If δi = 1 we have two possible cases.
If αij = 0 then, in any feasible solution for the constraints (46) wij = 0.
Hence the equivalence holds.
If αij = 1 then from the constraints (46) wij ≤ 1. Since we are maximizing
w in any optimal solution wij will be exactly 1. Hence the equivalence holds.
It is worth observing the classic linearization constraints wij ≥ δi + αij − 1
have been omitted.

Nonetheless, since problem (43) – (50) maximizes
∑

(i,j)∈Et θ̂iwij and

θ̂i ≥ 0, wij = 1 at any optimum. Moreover,
∑

(i,j):αij=1wij ≤ Γ.

Proposition 4. Problem (43) – (50) is polynomially solvable.

Even though this result is intuitive (see Proposition 2), a formal proof
is provided in the Appendix B.

Although (43) – (50) could be solved as a linear problem, when Γ is
integer, we have designed a tailored solution approach that relies on the
dynamic programming paradigm. The proposed algorithm is based on the
following consideration. For each node i of the graph, the algorithm keeps
at most Γ paths, starting from the source node 0 and ending at i. Since
we are looking for a longest path in the optimistic case, the path with the
highest makespan is retained for each node. Each path πγ

i , γ = 0, . . . ,Γ
from 0 to i is characterized by the presence of exactly γ delayed activities.
From a given path πγ

i , all the possible extensions to any adjacent node j are
evaluated. In particular, if the successor activity shows a delay, the path
πγ+1
j is generated to be compared with the existing one, otherwise the path
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πγ
j is considered for comparison. The previous considerations are at the

basis of the developed recursive algorithm, formally stated below.
Let ST (j, γ) be a state associated with node j at level γ, where exactly γ

activities exhibit delay. We denote as C(ST (j, γ)) the cost associated with
state ST (j, γ). The dynamic programming recursion follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(ST (0, 0)) = 0,

C(ST (j, γ)) = maxi:(i,j)∈Et{
max

(
C(ST (i, γ)) + θ̄i, C(ST (i, γ − 1)) + θ̄i + θ̂i

)}
,

∀j ∈ V \ {0}, γ = 1, . . . ,Γ,

C(ST (j, 0)) = maxi:(i,j)∈Et

{
C(ST (i, 0)) + θ̄i

}
,

∀j ∈ V \ {0}.
(51)

The number of states in equation (51) is equal to Γn and the computation
of each state involves, in the worst case, m = |E| operations. Therefore, the
complexity of the algorithm is O(Γnm). For the sake of comprehension,
the pseudo-code of the dynamic programming recursion (51) is reported in
Appendix C.

Example 1. The purpose of this example is to illustrate the application of
the decomposition approach and the generation of the cuts. Let us consider
the 9 nodes network represented in Figure 2, where the resource consumption
ri, the nominal duration θ̄i and the deviation θ̂i are associated with each
node. We consider one resource with R1 = 4 and Γ = 2.

0

5; 0; 0

1

2; 4; 2

2

3; 2; 1

3

1; 5; 3

4

4; 3; 2

5

2; 2; 1

6

3; 1; 1

7

4; 2; 1

8

5; 0; 0

i

ri; θ̄i; θ̂i

Figure 2: Network example

We show the solution of the subproblem in term of path π∗t and makespan
and the cut added for each iteration t.
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Figure 3: Network represented the selection X∗0

• First iteration t = 0. The Master is solved. The subgraph G′(V, E0) is
represented in Figure 3, where the extra precedence relationships are
represented in dashed lines. The optimal objective function is η∗0 = 9.
Hence, LB = 9.

– The solution of the sub-problem on the network defined by X∗0 is

π∗0 =< 0, 1, 4, 5, 7, 6, 8 > with M∗0 = 16. Then, UB = 16

– Add the cut η ≥ (16−9)(y01+y14+y45+y57+y76+y68)− [(16−
9)(6− 1)− 9]

• Second iteration t = 1. The subgraph G′(V, E1) is represented in Figure
4. The optimal objective function is η∗1 = 11, hence LB = 11.

0

1

2

3

4

5

6

7

8

Figure 4: Network represented the selection X∗1

– The solution of the sub-problem on the network defined by X∗1 is

π∗1 =< 0, 1, 3, 6, 7, 8 > with M∗1 = 17, UB = 16

– Add cut η ≥ (17− 11)(y01+ y13+ y36+ y67+ y78)− [(17− 11)(5−
1)− 11]

• Third iteration t = 2. The solution of the master problem is η∗2 = 16,
then LB = 16. Stop UB = LB = 16
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6 Computational experiments

The aim of this section is to assess the computational behavior of the exact
solution approach in terms of both efficiency and effectiveness. The proposed
algorithm has been coded in Java and the master problem has been solved
by CPLEX 12.5.1. The experiments have been carried out on an Intel Core
i7-470HQ CPU 2.50 GHz RAM 16 GB, under the Windows 8 operation
system.

6.1 Instances

The computational results have been collected on problems generated from
the 30 activities benchmark instances of the PSPLIB
(http://www.om-db.wi.tum.de/psplib). We refer the interested readers to [42]
for a detailed description of the test problems. The instances differ essen-
tially for three main parameters, namely

NC = {1.5, 1.8, 2.1} (Network complexity); representing the network
complexity, i.e., the average number of non-redundant arcs per nodes
including the dummy activities;

RF = {0.25, 0.5, 0.75, 1} (Resource factor); measuring how many dif-
ferent resources are used on average by the activities; an instance with
a RF equal to 0 is trivial, since no resources are requested. On the
other hand, if the RF is 1 all activities request all resource types.

RS = {0.2, 0.5, 0.7, 1} (Resource strength); measuring the size of re-
source conflicts. It computes the ratio of the resource capacity to the
highest peak resource usage on a single resource. If the RS is 0 at least
one of the activities uses all the amount available of a resource. On
the other hand, a RS equal to 1 means that the instance is trivial.

Starting from the 480 deterministic instances we have considered three
different values for Γ in the set {3, 5, 7}, thus generating 1440 robust counter-
parts. The nominal value θ̄ is equal to the deterministic duration, whereas,
θ̂ := 0.5 θ̄. A time limit of 20 minutes has been imposed to the Benders’
algorithm.

6.2 Computational results

The numerical results are collected in Tables A.1–A.8 of Appendix A.
The behavior of the proposed solution approach is strongly related to

the characteristics of the instances. In particular, the parameters RF and
RS have a strong impact on the performance of the proposed strategy.

The higher the value of the RF , the harder are the instances. This
confirms the behavior observed in the deterministic case, since when very
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few resource types are required by the activities (low values for RF ) it is
easy to take good resource allocation decisions. An opposite trend can be
observed for the parameter RS . In fact, high RS values result in less sharp
resource constraints whereas low values correspond to problems with very
scarce resources. We notice that this has a direct impact on the master
problem, where a high number of extra precedence relations need to be
added in order to solve the frequent resource conflicts.

Figure 5 shows the percentage of solved instances to optimality by vary-
ing the parameters RF and RS .

Figure 5: Average percentage of solved instances for different values of RF
and RS .

The NC value does not exhibit a strong influence on the number of in-
stances solved to optimality. Indeed, the proposed solution approach is able
to solve 191, 211, and 226 instances for value of NC equal to 1.50, 1.80, and
2.10, respectively. The average computational effort is, on average, 173.35
seconds and the proposed solution approach performs 127.43 iterations (see
column #iter of Table A.1), considering the instances solved within the
imposed time limit.

The dynamic programming scheme is very efficient and solves the sub-
problem in 0.07 seconds on average, finding the optimal solution in the first
79% of the iterations. In addition, on average, the upper bound is updated
5.89 times.

For the instances that are not solved to optimality within the fixed time
limit, the average optimality gap is 38% (see Table A.5). These are difficult
instances, since the proposed approach performs half of the total number of
iterations (49.79%) without improving the upper bound values. Nonetheless,
we should notice that the initial upper bound is finally improved (20.8%).

In the foregoing, we present a detailed analysis of the computational
performance of the proposed approach as a function of the network charac-
teristics and of the degree of uncertainty.
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Analysis based on the parameter NC The first part is devoted to
the analysis of the impact of the network complexity on the performance
of the solution method. Table 1 shows the average results over all solved
instances as a function of NC. The total computational time, the average
time per iteration and the average time spent for solving the subproblems
are indicated in the Table with headers time, time

iter and timeSP , respectively.

NC time time
iter timeSP

1.50 134.81 2.00 0.03
1.80 198.93 1.60 0.07
2.10 179.91 0.97 0.10

Table 1: Average computational results over all the instances solved within
the time limit as a function of NC .

The analysis of the results shows that, on average, the higher the value
of NC , the higher the number of instances solved within the time limit (see
Table A.1 of the Appendix A). This behavior can be explained by observing
that the inclusion of precedence relations between activities reduces the
number of feasible schedules and, thus, the size of the solution space. Indeed,
for NC = 2.10, the proposed solution approach requires on average 0.97
seconds per iteration (see Table 1). This value is 1.64 and 2.05 times lower
than the average time per iteration for problems with NC equal to 1.80 and
1.50, respectively. The same behavior has been observed for each value of Γ
(see Figure 6).

Figure 6: Average execution time per iteration over all the instances solved
within the time limit for different values of NC and Γ.

The higher the value of NC , the higher the computational burden for
solving the recourse problem. This is an expected trend. Indeed, the behav-
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ior of the dynamic programming approach is strongly related to the density
of the network, since the higher the number of arcs incident to the nodes, the
higher the number of possible paths for each node. The average execution
time is 0.03, 0.07 and 0.10 for the instances with NC equal to 1.50, 1.80,
and 2.10, respectively.

Analysis based on the parameter RF Parameter RF strongly influ-
ences the behavior of the proposed solution approach. Indeed, the number
of instances with RF = 0.25 solved to optimality is 5.36 times higher than
the number of instances with RF = 1.00. This performance is justified by
the execution time per iteration (see Table 2).

RF time time
iter timeSP

0.25 51.74 0.85 0.03
0.50 246.77 1.13 0.13
0.75 297.84 1.55 0.09
1.00 223.28 2.94 0.04

Table 2: Average computational results over the instances solved within the
time limit as a function of RF .

Figure 7 shows the execution time as a function of the parameter RF .
The performance of the algorithm is similar for each value of Γ considering
RF equal to 0.25 and 0.5. It is worth noting that the worst performance is
shown for Γ = 7.

Figure 7: Average total execution time over all the instances solved within
the time limit for different values of RF and Γ.

As already observed, increasing the RF value produces a severe dete-
rioration of the algorithmic performance in terms of execution time per
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iteration (see Figure 8).

Figure 8: Average execution time per iteration over all the instances solved
within the time limit for different values of RF and Γ.

In addition, Figure 8 shows that the execution time per iteration is not
influenced by the values of Γ except for a peak with Γ equal to 3 for the
harder instances.

Analysis based on the parameter RS The last part of this Section
is devoted to the analysis of the impact of the resource strength on the
performance of the proposed approach. As shown in Figure 5, the higher
the value of RS, the higher the number of instances solved to optimality,
revealing the difficulty of the instances with lower values of RS. The average
results are reported in Table 3.

RS time time
iter timeSP

0.20 156.45 0.95 0.07
0.50 105.46 0.94 0.06
0.70 246.51 1.49 0.08
1.00 144.91 1.57 0.05

Table 3: Average computational results over the instances solved within the
time limit as a function of RS.

The analysis of the results shows that the most time consuming instances
are those withRS = 0.70, whereas the computational cost is almost the same
for RS = 0.20 and RS = 1.00. The CPU time required by the solution of
the instances with RS = 0.50 is 2.34 times less than that needed for solving
the instances with RS = 0.70.
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Table 3 shows a relation among the parameter RS and the computational
effort per iteration. Similar values are observed for RS = 0.20 and RS = 0.50
and for RS = 0.70 and RS = 1.00 (see Figure 9). The average execution
time of the latter is 1.67 times higher than the former. In general, the higher
RS , the higher the time per iteration.

Figure 9: Average execution time per iteration over all the instances solved
within the time limit for different values of RS and Γ.

The efficiency of the dynamic programming approach is not influenced
by RS (see column timeSP of Table 3).

Analysis based on the parameter Γ The value of Γ does not influence
the performance of the proposed solution approach. Indeed, the number
of iterations performed is almost equal for each value of Γ. This is not a
surprising result. The parameter Γ is an input of the dynamic programming
approach defined to solve the robust makespan problem. Indeed, its execu-
tion time increases when Γ increases (see column timeSP of Table 4). Since
the time spent for the subproblem is very limited, slight variations in the
execution time for higher values of Γ do not influence the performance of
the proposed solution strategy.

In order to investigate the sensitivity of the model to different values of
Γ, Table 4 reports the average makespan computed over all the instances of
the corresponding Γ parameter setting.

Different Γ values correspond to different levels of robustness. As ex-
pected, there is a monotone increase of the objective function value when
the value of Γ is incremented as well. The relative extended makespan can
be interpreted as the level of protection provided by the robust model.

In particular, when Γ is increased from 3 to 5 the makespan increases by
around 10.76%, whereas a further increase of Γ to 7 produces a makespan
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Γ Makespan time #iter timeSP

7 81.73 118.78 105.58 0.063
5 76.43 117.19 105.13 0.056
3 69.03 124.31 105.59 0.046

Table 4: Average computational results over the instances solved to opti-
mality for each value of Γ.

growth of 6.87%. These two figures highlight the capability of the model
to produce different robust solutions for different levels of conservatism,
according to the risk perception of the decision maker and providing, at the
same time, a guarantee of protection of the schedule.

7 Conclusions

In this paper we have studied the robust RCPSP under polyhedral uncer-
tainty. To address this case, we have proposed an adjustable robust opti-
mization approach, where resource allocation decisions are taken in advance,
whereas the starting times can be adjusted to face uncertainty.

A specific decomposition algorithm has been designed. It isolates the
resource allocation decisions from the scheduling decisions. The algorithm
has been tested on a set of instances generated from the 30 activities de-
terministic benchmark counterparts. The analysis of the collected results
suggests that the algorithmic performance strongly depends on the model
parameters. In particular, for RF ranging from 0.5 to 1 and RS = 0.2, 0.5
most of the instances cannot be solved within the time limit of 20 minutes.
On the other hand, the average computational effort for the solved instances
is quite low.

As possible directions for future work, we plan to improve the running
times of the master problem solution, using tailored solution approaches,
such has branch-and-cut algorithm, and to develop tailored heuristic ap-
proaches for solving the hardest instances.

Our investigation led to identify a polynomially solvable case, while
strong NP-hardness characterizes the general case of polyhedral uncertainty
sets ([50]). The identification of other polynomially solvable cases might rep-
resent an interesting direction for future research. Finally, future research
efforts should be focused on extensions that consider ellipsoidal uncertainty
sets.
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[51] Möhring RH and Stork F (2000) Linear preselective strategies for
stochastic project scheduling. Mathematical Methods of Operations
Research 52(3): 501–515

[52] Pich MT, Loch CH and De Meyer A (2002) On Uncertainty, Ambiguity,
and Complexity in Project Management. Management Science 48(8):
1008–1023

[53] Policella N, Cesta A, Oddi A, Smith S (2009) Solve-and-robustify. Jour-
nal of Scheduling 12: 299–314

31



[54] Rabbani M, Fatemi Ghomi SMT, Jolai F, Lahiji NS (2007) A new
heuristic for resource-constrained project scheduling in stochastic net-
works using critical chain concept. European Journal of Operational
Research 176: 794–808

[55] Schwindt C, Trautmann N (2003) Scheduling the production of rolling
ingots: Industrial context, model, and solution method. International
Transactions in Operational Research 10: 547-563

[56] Radermacher FJ (1981) Optimale Strategien für stochastische
Scheduling–Probleme. Habilitationsschrift, RWTH Aachen. In:
Schriften zur Informatik und angewandten Mathematik 98, RWTH
Aachen

[57] Rom WO, Tukel OI, Muscatello JR (2002) MRP in a job shop environ-
ment using a resource constrained project scheduling model. Omega,
30: 275–286

[58] Soyster AL, Murphy FH (2013) A unifying framework for duality and
modeling in robust linear programs. Omega, 41: 984–997

[59] Stork F (2001) Stochastic resource-constrained project scheduling.
PhD Dissertation, Technische Universität Berlin, Berlin, Germany

[60] Tavares LV, Ferreira JAA, Coelho JS (1998) On the optimal manage-
ment of project risk. European Journal of Operational Research 107:
451-69

[61] Tsai YW, Gemmil DD (1998) Using tabu search to schedule activi-
ties of stochastic resource-constrained projects. European Journal of
Operational Research 111: 129–141

[62] Van de Vonder S, Demeulemeester E, Herroelen W, Leus R (2005) The
use of buffers in project management: the trade-off between stability
and makespan. International Journal of Production Economics 97: 227-
40

[63] Van De Vonder S, Demeulemeester E, Herroelen W, Leus R (2006)
The trade-off between stability and makespan in resource-constrained
project scheduling. International Journal of Production Research 44(2):
215-36

[64] Van de Vonder S, Demeulemeester E, Herroelen W (2008) Proactive
heuristic procedures for robust project scheduling: an experimental
analysis. European Journal of Operational Research 189: 723-33

[65] Zeng B, Zhao L (2013) Solving two-stage robust optimization prob-
lems using a column-and-constraint generation method. Operations
Research Letters 41(5): 457-461

32



[66] Zhu G, Bard JF, Yu G (2007) A two-stage stochastic programming ap-
proach for project planning with uncertain activity durations. Journal
of Scheduling 10: 167–180

33



Appendix A - Numerical results

Tables A.1 – A.4 report the average computational results for the in-
stances solved to optimality within the time limit. Each row of Table
A.1 reports the average results over 30 instances with the same value
of NC , RF , and RS . Tables A.2, A.3, and A.4 show average results
over ten instances with Γ equal to 7, 5, and 3, respectively.
Column time gives the CPU time in seconds, column #iter reports the
number of cuts added during the execution of the algorithm, column
1stUB indicates the optimal solution of the subproblem at the first
iteration, #Impr reports how many times the values of the UB has
been improved, column itUbest shows the iteration in which the best
value of UB is obtained. timeSP reports the time in seconds required
by the dynamic programming algorithm for solving the subproblem,
column #solv shows the number of instances solved within the time
limit.
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NC RF RS time #iter 1stUB #impr itUbest timeSP #solv

1.50 0.25 0.20 275.78 171.79 91.00 6.63 89.29 0.08 24
1.50 0.25 0.50 68.53 61.17 85.00 6.03 44.27 0.02 30
1.50 0.25 0.70 12.68 17.23 98.90 4.10 10.67 0.01 30
1.50 0.25 1.00 10.42 16.60 85.80 4.23 12.33 0.01 30
1.50 0.50 0.20 0
1.50 0.50 0.50 0
1.50 0.50 0.70 384.94 183.17 76.17 5.83 78.50 0.09 6
1.50 0.50 1.00 109.87 69.43 94.97 6.90 49.80 0.03 30
1.50 0.75 0.20 0
1.50 0.75 0.50 0
1.50 0.75 0.70 0
1.50 0.75 1.00 187.21 49.50 97.36 5.57 41.14 0.02 14
1.50 1.00 0.20 0
1.50 1.00 0.50 0
1.50 1.00 0.70 52.87 10.67 87.00 6.67 8.67 0.00 3
1.50 1.00 1.00 110.96 27.33 73.71 3.79 21.71 0.01 24
1.80 0.25 0.20 129.89 166.30 100.63 6.63 87.70 0.07 30
1.80 0.25 0.50 19.66 38.07 91.03 5.30 22.67 0.01 30
1.80 0.25 0.70 16.41 30.43 89.63 5.10 18.70 0.01 30
1.80 0.25 1.00 4.40 11.13 88.03 3.97 9.03 0.00 30
1.80 0.50 0.20 0
1.80 0.50 0.50 84.30 45.67 138.67 9.00 34.00 0.04 3
1.80 0.50 0.70 498.83 432.93 111.33 9.87 339.53 0.25 15
1.80 0.50 1.00 228.79 208.70 94.70 7.77 166.87 0.11 30
1.80 0.75 0.20 0
1.80 0.75 0.50 0
1.80 0.75 0.70 204.85 93.17 89.17 3.67 66.67 0.05 6
1.80 0.75 1.00 201.25 95.95 94.20 5.20 91.65 0.05 20
1.80 1.00 0.20 0
1.80 1.00 0.50 0
1.80 1.00 0.70 389.44 83.67 89.67 3.00 81.67 0.06 3
1.80 1.00 1.00 410.46 164.07 82.64 5.50 160.00 0.08 14
2.10 0.25 0.20 63.67 158.57 101.83 5.90 105.83 0.07 30
2.10 0.25 0.50 11.57 32.90 92.53 4.57 22.93 0.01 30
2.10 0.25 0.70 4.92 15.53 104.07 5.33 11.57 0.01 30
2.10 0.25 1.00 2.95 11.00 90.40 3.87 8.73 0.01 30
2.10 0.50 0.20 0
2.10 0.50 0.50 343.21 381.00 115.67 12.00 343.33 0.23 3
2.10 0.50 0.70 238.76 319.78 104.39 8.30 270.43 0.19 23
2.10 0.50 1.00 85.43 109.43 103.37 7.13 86.40 0.06 30
2.10 0.75 0.20 0
2.10 0.75 0.50 0
2.10 0.75 0.70 661.37 472.50 68.50 4.00 396.00 0.25 2
2.10 0.75 1.00 234.52 251.46 92.92 7.04 222.19 0.15 26
2.10 1.00 0.20 0
2.10 1.00 0.50 0
2.10 1.00 0.70 0
2.10 1.00 1.00 152.69 93.77 87.09 3.73 82.18 0.06 22

avg 173.35 127.43 94.01 5.89 99.48 0.07
tot 628

Table A.1: Average computational results for the instances solved to opti-
mality.
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NC RF RS time #iter 1stUB #impr itUbest timeSP #solv

1.50 0.25 0.20 217.19 152.13 98.00 7.13 85.63 0.08 8
1.50 0.25 0.50 64.69 53.80 91.60 5.70 44.90 0.02 10
1.50 0.25 0.70 11.82 14.60 106.50 4.00 8.30 0.01 10
1.50 0.25 1.00 9.41 15.20 92.50 4.50 12.00 0.01 10
1.50 0.50 0.20 0
1.50 0.50 0.50 0
1.50 0.50 0.70 504.24 250.50 82.00 7.50 73.00 0.14 2
1.50 0.50 1.00 91.59 61.00 102.30 7.00 53.30 0.03 10
1.50 0.75 0.20 0
1.50 0.75 0.50 0
1.50 0.75 0.70 0
1.50 0.75 1.00 245.85 61.80 106.40 6.40 50.60 0.03 5
1.50 1.00 0.20 0
1.50 1.00 0.50 0
1.50 1.00 0.70 41.58 9.00 95.00 6.00 7.00 0.00 1
1.50 1.00 1.00 109.85 29.63 79.50 3.75 24.00 0.01 8
1.80 0.25 0.20 135.64 175.60 108.50 7.50 119.60 0.09 10
1.80 0.25 0.50 18.24 35.50 97.70 5.10 22.00 0.02 10
1.80 0.25 0.70 13.62 26.70 96.20 4.70 14.00 0.01 10
1.80 0.25 1.00 4.77 11.60 94.50 3.80 9.60 0.00 10
1.80 0.50 0.20 0
1.80 0.50 0.50 65.68 42.00 148.00 5.00 11.00 0.04 1
1.80 0.50 0.70 436.50 393.00 120.00 9.80 336.60 0.26 5
1.80 0.50 1.00 222.07 204.00 101.90 8.10 153.20 0.12 10
1.80 0.75 0.20 0
1.80 0.75 0.50 0
1.80 0.75 0.70 242.76 108.00 96.00 4.00 46.00 0.07 2
1.80 0.75 1.00 190.37 92.71 102.14 5.00 88.71 0.06 7
1.80 1.00 0.20 0
1.80 1.00 0.50 0
1.80 1.00 0.70 442.35 94.00 97.00 2.00 92.00 0.08 1
1.80 1.00 1.00 341.55 159.25 90.00 5.50 157.25 0.10 4
2.10 0.25 0.20 61.38 155.20 109.70 5.50 102.00 0.08 10
2.10 0.25 0.50 11.56 31.80 99.90 5.20 22.50 0.02 10
2.10 0.25 0.70 4.53 15.50 111.60 5.80 11.20 0.01 10
2.10 0.25 1.00 2.45 9.50 97.50 3.70 7.50 0.00 10
2.10 0.50 0.20 0
2.10 0.50 0.50 448.45 494.00 124.00 11.00 492.00 0.32 1
2.10 0.50 0.70 266.22 365.00 111.75 8.25 305.63 0.25 8
2.10 0.50 1.00 64.82 83.70 111.20 7.10 67.80 0.06 10
2.10 0.75 0.20 0
2.10 0.75 0.50 0
2.10 0.75 0.70 769.43 543.00 70.00 4.00 541.00 0.31 1
2.10 0.75 1.00 212.02 229.88 98.38 6.88 214.38 0.15 8
2.10 1.00 0.20 0
2.10 1.00 0.50 0
2.10 1.00 0.70 0
2.10 1.00 1.00 202.00 120.00 94.25 3.88 110.00 0.08 8

Table A.2: Average computational results for the instances solved to opti-
mality with Γ = 7.
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NC RF RS time #iter 1stUB #impr itUbest timeSP #solv

1.50 0.25 0.20 307.57 187.75 91.63 5.88 79.75 0.09 8
1.50 0.25 0.50 59.24 56.80 85.70 6.20 31.50 0.02 10
1.50 0.25 0.70 14.04 20.90 99.40 4.30 13.70 0.01 10
1.50 0.25 1.00 10.35 16.20 86.30 4.30 12.00 0.01 10
1.50 0.50 0.20 0
1.50 0.50 0.50 0
1.50 0.50 0.70 271.93 130.50 76.50 5.00 65.50 0.06 2
1.50 0.50 1.00 131.31 86.30 95.50 6.70 39.10 0.04 10
1.50 0.75 0.20 0
1.50 0.75 0.50 0
1.50 0.75 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0
1.50 0.75 1.00 180.81 45.80 99.60 5.60 39.80 0.02 5
1.50 1.00 0.20 0
1.50 1.00 0.50 0
1.50 1.00 0.70 61.81 12.00 87.00 7.00 10.00 0.01 1
1.50 1.00 1.00 131.36 28.00 74.25 3.63 22.88 0.01 8
1.80 0.25 0.20 124.40 156.70 101.00 5.60 56.60 0.07 10
1.80 0.25 0.50 19.00 36.20 91.60 5.20 15.60 0.01 10
1.80 0.25 0.70 17.89 30.10 90.30 5.40 20.30 0.01 10
1.80 0.25 1.00 4.01 10.50 88.60 4.10 8.50 0.00 10
1.80 0.50 0.20 0
1.80 0.50 0.50 150.50 71.00 139.00 11.00 69.00 0.06 1
1.80 0.50 0.70 459.18 421.20 112.40 10.00 279.00 0.24 5
1.80 0.50 1.00 222.61 204.60 95.20 7.10 164.20 0.11 10
1.80 0.75 0.20 0
1.80 0.75 0.50 0
1.80 0.75 0.70 238.49 108.00 89.50 4.00 106.00 0.06 2
1.80 0.75 1.00 133.63 65.50 93.17 5.00 59.50 0.03 6
1.80 1.00 0.20 0
1.80 1.00 0.50 0
1.80 1.00 0.70 39.52 8.00 90.00 4.00 6.00 0.00 1
1.80 1.00 1.00 491.69 185.00 84.00 5.80 180.00 0.10 5
2.10 0.25 0.20 66.09 164.70 102.20 5.90 106.50 0.08 10
2.10 0.25 0.50 11.56 34.00 92.90 4.70 23.10 0.02 10
2.10 0.25 0.70 5.05 14.80 104.60 5.20 11.00 0.01 10
2.10 0.25 1.00 2.66 10.20 90.90 3.80 7.70 0.01 10
2.10 0.50 0.20 0
2.10 0.50 0.50 368.54 401.00 116.00 13.00 356.00 0.25 1
2.10 0.50 0.70 232.13 317.50 104.50 7.75 288.75 0.19 8
2.10 0.50 1.00 42.70 65.40 103.70 7.70 60.90 0.04 10
2.10 0.75 0.20 0
2.10 0.75 0.50 0
2.10 0.75 0.70 553.31 402.00 67.00 4.00 251.00 0.20 1
2.10 0.75 1.00 259.91 289.20 93.80 7.40 243.80 0.19 10
2.10 1.00 0.20 0
2.10 1.00 0.50 0
2.10 1.00 0.70 0
2.10 1.00 1.00 94.12 62.29 86.86 3.71 57.29 0.04 7

Table A.3: Average computational results for the instances solved to opti-
mality with Γ = 5.
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NC RF RS time #iter 1stUB #impr itUbest timeSP #solv

1.50 0.25 0.20 302.58 175.50 83.38 6.88 102.50 0.07 8
1.50 0.25 0.50 81.67 72.90 77.70 6.20 56.40 0.02 10
1.50 0.25 0.70 12.17 16.20 90.80 4.00 10.00 0.01 10
1.50 0.25 1.00 11.49 18.40 78.60 3.90 13.00 0.01 10
1.50 0.50 0.20 0
1.50 0.50 0.50 0
1.50 0.50 0.70 378.64 168.50 70.00 5.00 97.00 0.07 2
1.50 0.50 1.00 106.72 61.00 87.10 7.00 57.00 0.02 10
1.50 0.75 0.20 0
1.50 0.75 0.50 0
1.50 0.75 0.70 0
1.50 0.75 1.00 121.91 38.75 83.25 4.50 31.00 0.02 4
1.50 1.00 0.20 0
1.50 1.00 0.50 0
1.50 1.00 0.70 55.22 11.00 79.00 7.00 9.00 0.00 1
1.50 1.00 1.00 91.68 24.38 67.38 4.00 18.25 0.01 8
1.80 0.25 0.20 129.63 166.60 92.40 6.80 86.90 0.05 10
1.80 0.25 0.50 21.74 42.50 83.80 5.60 30.40 0.01 10
1.80 0.25 0.70 17.72 34.50 82.40 5.20 21.80 0.01 10
1.80 0.25 1.00 4.43 11.30 81.00 4.00 9.00 0.00 10
1.80 0.50 0.20 0
1.80 0.50 0.50 36.73 24.00 129.00 11.00 22.00 0.01 1
1.80 0.50 0.70 600.80 484.60 101.60 9.80 403.00 0.25 5
1.80 0.50 1.00 241.70 217.50 87.00 8.10 183.20 0.09 10
1.80 0.75 0.20 0
1.80 0.75 0.50 0
1.80 0.75 0.70 133.30 63.50 82.00 3.00 48.00 0.03 2
1.80 0.75 1.00 270.09 125.29 87.14 5.57 122.14 0.06 7
1.80 1.00 0.20 0
1.80 1.00 0.50 0
1.80 1.00 0.70 686.43 149.00 82.00 3.00 147.00 0.09 1
1.80 1.00 1.00 384.35 147.00 75.40 5.20 142.20 0.06 5
2.10 0.25 0.20 63.55 155.80 93.60 6.30 109.00 0.06 10
2.10 0.25 0.50 11.60 32.90 84.80 3.80 23.20 0.01 10
2.10 0.25 0.70 5.19 16.30 96.00 5.00 12.50 0.00 10
2.10 0.25 1.00 3.73 13.30 82.80 4.10 11.00 0.00 10
2.10 0.50 0.20 0
2.10 0.50 0.50 212.65 248.00 107.00 12.00 182.00 0.13 1
2.10 0.50 0.70 214.97 270.71 95.86 9.00 209.29 0.13 7
2.10 0.50 1.00 148.77 179.20 95.20 6.60 130.50 0.09 10
2.10 0.75 0.20 0
2.10 0.75 0.50 0
2.10 0.75 0.70 0
2.10 0.75 1.00 225.27 225.88 86.38 6.75 203.00 0.11 8
2.10 1.00 0.20 0
2.10 1.00 0.50 0
2.10 1.00 0.70 0
2.10 1.00 1.00 154.89 95.29 79.14 3.57 75.29 0.04 7

Table A.4: Average computational results for the instances solved to opti-
mality with Γ = 3.
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Tables A.5 – A.8 collect the average results related to the instances not
solved to optimality. In particular, we show the value of the UB at the
end of the computation, the optimality gap given by (UB − LB)/UB
under column gap, and column #!solv gives the number of instances
not solved within the time limit.
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NC RF RS UB #iter 1stUB #impr itUbest timeSP gap #!solv

1.50 0.25 0.20 63.00 964.83 82.67 9.83 459.67 0.39 0.25 6
1.50 0.25 0.50 0
1.50 0.25 0.70 0
1.50 0.25 1.00 0
1.50 0.50 0.20 107.60 354.83 143.83 7.87 126.87 0.29 0.37 30
1.50 0.50 0.50 80.53 528.07 105.57 7.53 231.70 0.33 0.38 30
1.50 0.50 0.70 71.17 574.79 89.63 7.21 366.67 0.32 0.32 24
1.50 0.50 1.00 0
1.50 0.75 0.20 131.93 192.43 162.30 7.10 89.03 0.19 0.43 30
1.50 0.75 0.50 90.93 231.17 111.23 5.07 102.93 0.20 0.45 30
1.50 0.75 0.70 90.00 268.67 123.67 7.40 142.27 0.18 0.39 30
1.50 0.75 1.00 73.19 286.69 89.25 6.63 154.75 0.15 0.35 16
1.50 1.00 0.20 145.13 94.20 173.60 6.63 46.83 0.16 0.51 30
1.50 1.00 0.50 108.60 148.33 131.03 5.40 51.00 0.19 0.53 30
1.50 1.00 0.70 96.67 167.85 120.59 6.26 66.26 0.14 0.44 27
1.50 1.00 1.00 74.00 180.50 86.50 4.17 82.67 0.13 0.33 6
1.80 0.25 0.20 0
1.80 0.25 0.50 0
1.80 0.25 0.70 0
1.80 0.25 1.00 0
1.80 0.50 0.20 106.57 709.77 138.53 8.57 266.83 0.60 0.36 30
1.80 0.50 0.50 80.63 795.70 112.48 8.30 328.74 0.47 0.35 27
1.80 0.50 0.70 78.20 904.40 113.33 10.60 592.93 0.53 0.31 15
1.80 0.50 1.00 0
1.80 0.75 0.20 131.13 286.60 162.17 7.43 152.00 0.30 0.42 30
1.80 0.75 0.50 94.53 373.97 128.33 7.80 151.87 0.31 0.40 30
1.80 0.75 0.70 86.92 468.50 103.75 5.38 199.50 0.34 0.36 24
1.80 0.75 1.00 80.40 553.40 123.10 9.50 324.30 0.36 0.33 10
1.80 1.00 0.20 163.07 154.47 186.03 5.93 71.87 0.18 0.46 30
1.80 1.00 0.50 113.00 226.53 130.17 4.20 80.43 0.22 0.51 30
1.80 1.00 0.70 93.74 257.30 106.26 3.89 99.07 0.23 0.43 27
1.80 1.00 1.00 87.56 310.31 109.31 5.25 138.56 0.23 0.35 16
2.10 0.25 0.20 0
2.10 0.25 0.50 0
2.10 0.25 0.70 0
2.10 0.25 1.00 0
2.10 0.50 0.20 110.60 1107.37 143.23 9.27 425.70 944.70 0.30 30
2.10 0.50 0.50 88.33 1381.22 120.89 9.74 841.22 929.48 0.31 27
2.10 0.50 0.70 83.86 1287.00 132.29 12.43 698.57 725.86 0.28 7
2.10 0.50 1.00 0
2.10 0.75 0.20 141.93 505.57 172.67 9.27 277.70 570.90 0.36 30
2.10 0.75 0.50 103.10 637.63 133.17 7.10 280.90 573.70 0.40 30
2.10 0.75 0.70 93.61 774.32 134.57 8.32 323.21 647.71 0.37 28
2.10 0.75 1.00 74.50 1275.00 95.25 8.75 1050.75 916.25 0.28 4
2.10 1.00 0.20 157.40 329.50 182.30 7.27 151.50 415.33 0.39 30
2.10 1.00 0.50 113.63 398.00 127.53 3.50 91.17 413.87 0.48 30
2.10 1.00 0.70 97.77 524.93 106.97 3.67 180.07 556.60 0.42 30
2.10 1.00 1.00 85.50 609.75 111.63 5.88 229.50 411.38 0.32 8

avg 99.96 525.40 126.29 7.15 261.09 209.18 0.38
tot 812

Table A.5: Average computational results for the instances not solved within
the time limit.
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NC RF RS UB #iter 1stUB #impr itUbest timeSP gap #!solv

1.50 0.25 0.20 67.00 979.00 89.00 11.50 812.50 0.44 0.34 2
1.50 0.25 0.50 0
1.50 0.25 0.70 0
1.50 0.25 1.00 0
1.50 0.50 0.20 115.20 355.90 152.60 7.60 110.90 0.35 0.41 10
1.50 0.50 0.50 87.00 538.00 113.30 7.20 319.30 0.39 0.43 10
1.50 0.50 0.70 76.88 558.75 96.38 6.75 365.38 0.37 0.35 8
1.50 0.50 1.00 0
1.50 0.75 0.20 138.70 192.20 169.30 7.20 90.00 0.22 0.46 10
1.50 0.75 0.50 96.70 231.30 117.90 4.80 68.80 0.19 0.49 10
1.50 0.75 0.70 96.70 269.90 130.30 6.60 150.80 0.22 0.44 10
1.50 0.75 1.00 78.80 289.80 95.40 7.20 157.40 0.18 0.40 5
1.50 1.00 0.20 151.60 94.60 182.60 6.90 43.50 0.13 0.53 10
1.50 1.00 0.50 116.80 147.80 139.30 5.10 55.00 0.16 0.56 10
1.50 1.00 0.70 105.22 169.56 128.44 5.67 46.67 0.17 0.48 9
1.50 1.00 1.00 80.00 190.00 93.50 4.50 87.00 0.17 0.38 2
1.80 0.25 0.20 0
1.80 0.25 0.50 0
1.80 0.25 0.70 0
1.80 0.25 1.00 0
1.80 0.50 0.20 113.20 710.30 147.10 8.40 361.40 0.69 0.40 10
1.80 0.50 0.50 87.44 797.33 120.33 8.56 179.56 0.56 0.41 9
1.80 0.50 0.70 84.40 889.00 121.20 10.60 669.40 0.61 0.36 5
1.80 0.50 1.00 0
1.80 0.75 0.20 138.40 286.00 170.00 7.40 150.40 0.34 0.45 10
1.80 0.75 0.50 101.80 370.30 133.40 7.10 127.60 0.36 0.45 10
1.80 0.75 0.70 93.88 470.00 111.63 5.88 169.13 0.39 0.41 8
1.80 0.75 1.00 84.33 552.33 132.67 8.67 328.33 0.42 0.38 3
1.80 1.00 0.20 170.10 155.10 195.60 6.20 90.10 0.21 0.49 10
1.80 1.00 0.50 121.30 226.00 138.80 4.00 76.60 0.25 0.54 10
1.80 1.00 0.70 100.00 256.89 113.89 3.89 91.22 0.26 0.47 9
1.80 1.00 1.00 93.67 322.33 113.83 5.00 114.50 0.28 0.40 6
2.10 0.25 0.20 0
2.10 0.25 0.50 0
2.10 0.25 0.70 0
2.10 0.25 1.00 0
2.10 0.50 0.20 119.30 1116.90 151.70 9.60 424.10 1.11 0.36 10
2.10 0.50 0.50 95.11 1383.11 129.00 9.78 770.89 1.12 0.36 9
2.10 0.50 0.70 92.00 1245.50 148.50 14.50 490.50 0.86 0.34 2
2.10 0.50 1.00 0
2.10 0.75 0.20 150.70 506.60 181.90 9.70 314.30 0.65 0.39 10
2.10 0.75 0.50 112.20 638.80 141.80 6.20 185.10 0.68 0.45 10
2.10 0.75 0.70 102.67 769.67 146.11 8.67 298.78 0.79 0.42 9
2.10 0.75 1.00 81.00 1232.00 108.00 9.50 903.00 1.07 0.34 2
2.10 1.00 0.20 165.60 330.30 191.30 7.10 174.70 0.48 0.42 10
2.10 1.00 0.50 121.30 396.60 136.10 3.50 83.90 0.47 0.51 10
2.10 1.00 0.70 105.20 525.20 114.80 3.70 191.70 0.52 0.47 10
2.10 1.00 1.00 93.00 587.00 127.00 6.50 233.00 0.51 0.38 2

Table A.6: Average computational results for the instances not solved within
the time limit with Γ = 7.
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NC RF RS UB #iter 1stUB #impr itUbest timeSP gap #!solv

1.50 0.25 0.20 64.00 1047.00 83.00 9.50 410.00 0.42 0.31 2
1.50 0.25 0.50 0
1.50 0.25 0.70 0
1.50 0.25 1.00 0
1.50 0.50 0.20 109.20 352.40 144.20 7.50 81.00 0.29 0.38 10
1.50 0.50 0.50 80.80 521.30 105.80 7.50 169.30 0.33 0.38 10
1.50 0.50 0.70 71.63 579.63 90.13 7.75 376.50 0.32 0.35 8
1.50 0.50 1.00 0
1.50 0.75 0.20 134.60 194.60 163.10 7.00 85.10 0.19 0.45 10
1.50 0.75 0.50 91.40 231.30 114.40 5.50 102.30 0.28 0.46 10
1.50 0.75 0.70 89.90 265.10 127.30 7.90 145.40 0.17 0.39 10
1.50 0.75 1.00 73.60 289.20 87.40 6.00 215.80 0.15 0.36 5
1.50 1.00 0.20 145.20 93.90 173.90 6.80 45.10 0.24 0.51 10
1.50 1.00 0.50 108.40 149.10 131.30 5.80 52.60 0.14 0.53 10
1.50 1.00 0.70 96.89 168.56 121.00 6.33 59.33 0.15 0.44 9
1.50 1.00 1.00 74.50 180.50 87.00 4.50 81.00 0.14 0.34 2
1.80 0.25 0.20 0
1.80 0.25 0.50 0
1.80 0.25 0.70 0
1.80 0.25 1.00 0
1.80 0.50 0.20 107.20 719.70 138.90 8.20 198.80 0.61 0.36 10
1.80 0.50 0.50 80.89 799.00 113.00 8.22 325.11 0.47 0.36 9
1.80 0.50 0.70 78.20 896.00 113.00 9.40 416.00 0.53 0.31 5
1.80 0.50 1.00 0
1.80 0.75 0.20 132.50 288.40 162.40 7.30 149.80 0.30 0.43 10
1.80 0.75 0.50 94.60 371.20 131.60 8.10 123.30 0.30 0.41 10
1.80 0.75 0.70 87.63 466.88 104.88 5.63 225.63 0.33 0.37 8
1.80 0.75 1.00 84.00 548.75 121.00 9.25 290.50 0.37 0.33 4
1.80 1.00 0.20 164.30 153.50 186.20 5.60 44.50 0.18 0.47 10
1.80 1.00 0.50 112.40 226.70 130.40 4.50 89.90 0.22 0.51 10
1.80 1.00 0.70 92.89 257.11 106.56 4.33 124.44 0.23 0.42 9
1.80 1.00 1.00 86.40 305.60 111.00 5.40 179.20 0.23 0.34 5
2.10 0.25 0.20 0
2.10 0.25 0.50 0
2.10 0.25 0.70 0
2.10 0.25 1.00 0
2.10 0.50 0.20 111.20 1113.50 143.50 9.20 356.50 0.93 0.31 10
2.10 0.50 0.50 89.00 1378.78 121.44 9.89 856.33 0.91 0.32 9
2.10 0.50 0.70 87.50 1237.00 139.00 14.00 828.00 0.74 0.31 2
2.10 0.50 1.00 0
2.10 0.75 0.20 141.50 503.30 172.90 9.20 258.00 0.57 0.35 10
2.10 0.75 0.50 102.80 638.70 133.70 7.10 326.00 0.56 0.40 10
2.10 0.75 0.70 95.22 773.22 137.67 7.78 323.78 0.66 0.38 9
2.10 0.75 1.00 0
2.10 1.00 0.20 157.90 329.70 182.60 7.30 125.70 0.42 0.39 10
2.10 1.00 0.50 114.20 398.40 127.80 3.90 122.10 0.41 0.48 10
2.10 1.00 0.70 98.70 524.10 107.50 3.60 191.60 0.78 0.43 10
2.10 1.00 1.00 89.67 611.67 111.33 5.00 147.00 0.41 0.35 3

Table A.7: Average computational results for the instances not solved within
the time limit with Γ = 5.

42



NC RF RS UB #iter 1stUB #impr itUbest timeSP gap #!solv

1.50 0.25 0.20 58.00 868.50 76.00 8.50 156.50 0.31 0.11 2
1.50 0.25 0.50 0
1.50 0.25 0.70 0
1.50 0.25 1.00 0
1.50 0.50 0.20 98.40 356.20 134.70 8.50 188.70 0.25 0.31 10
1.50 0.50 0.50 73.80 524.90 97.60 7.90 206.50 0.28 0.32 10
1.50 0.50 0.70 65.00 586.00 82.38 7.13 358.13 0.27 0.28 8
1.50 0.50 1.00 0
1.50 0.75 0.20 122.50 190.50 154.50 7.10 92.00 0.16 0.39 10
1.50 0.75 0.50 84.70 230.90 101.40 4.90 137.70 0.14 0.41 10
1.50 0.75 0.70 83.40 271.00 113.40 7.70 130.60 0.15 0.35 10
1.50 0.75 1.00 68.17 282.00 85.67 6.67 101.67 0.13 0.29 6
1.50 1.00 0.20 138.60 94.10 164.30 6.20 51.90 0.10 0.49 10
1.50 1.00 0.50 100.60 148.10 122.50 5.30 45.40 0.26 0.49 10
1.50 1.00 0.70 87.89 165.44 112.33 6.78 92.78 0.12 0.38 9
1.50 1.00 1.00 67.50 171.00 79.00 3.50 80.00 0.09 0.27 2
1.80 0.25 0.20 0
1.80 0.25 0.50 0
1.80 0.25 0.70 0
1.80 0.25 1.00 0
1.80 0.50 0.20 99.30 699.30 129.60 9.10 240.30 0.50 0.31 10
1.80 0.50 0.50 73.56 790.78 104.11 8.11 481.56 0.39 0.30 9
1.80 0.50 0.70 72.00 928.20 105.80 11.80 693.40 0.43 0.24 5
1.80 0.50 1.00 0
1.80 0.75 0.20 122.50 285.40 154.10 7.60 155.80 0.25 0.38 10
1.80 0.75 0.50 87.20 380.40 120.00 8.20 204.70 0.27 0.36 10
1.80 0.75 0.70 79.25 468.63 94.75 4.63 203.75 0.28 0.30 8
1.80 0.75 1.00 71.67 560.67 116.33 10.67 365.33 0.31 0.27 3
1.80 1.00 0.20 154.80 154.80 176.30 6.00 81.00 0.16 0.44 10
1.80 1.00 0.50 105.30 226.90 121.30 4.10 74.80 0.19 0.47 10
1.80 1.00 0.70 88.33 257.89 98.33 3.44 81.56 0.19 0.39 9
1.80 1.00 1.00 81.40 300.60 102.20 5.40 126.80 0.19 0.30 5
2.10 0.25 0.20 0
2.10 0.25 0.50 0
2.10 0.25 0.70 0
2.10 0.25 1.00 0
2.10 0.50 0.20 101.30 1091.70 134.50 9.00 496.50 0.79 0.24 10
2.10 0.50 0.50 80.89 1381.78 112.22 9.56 896.44 0.76 0.25 9
2.10 0.50 0.70 76.00 1348.00 117.00 10.00 751.00 0.62 0.23 3
2.10 0.50 1.00 0
2.10 0.75 0.20 133.60 506.80 163.20 8.90 260.80 0.49 0.32 10
2.10 0.75 0.50 94.30 635.40 124.00 8.00 331.60 0.48 0.35 10
2.10 0.75 0.70 84.00 779.50 121.40 8.50 344.70 0.51 0.31 10
2.10 0.75 1.00 68.00 1318.00 82.50 8.00 1198.50 0.76 0.22 2
2.10 1.00 0.20 148.70 328.50 173.00 7.40 154.10 0.35 0.35 10
2.10 1.00 0.50 105.40 399.00 118.70 3.10 67.50 0.36 0.44 10
2.10 1.00 0.70 89.40 525.50 98.60 3.70 156.90 0.38 0.37 10
2.10 1.00 1.00 76.33 623.00 101.67 6.33 309.67 0.35 0.24 3

Table A.8: Average computational results for the instances not solved within
the time limit with Γ = 3.
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Appendix B - Formal proofs

The case with hypercube uncertainty set

If the uncertainty set is an hypercube, zadj ≥ zstatic. As a corollary this
implies that zadj = zstatic.

Proof. We have seen that the static solution is an upper bound on
the optimal value of the adjustable robust problem. Therefore, zadj ≤
zstatic.
We would like to show that, if the uncertainty set is an hypercube,
zadj ≥ zstatic. As a corollary this implies that zadj = zstatic.

zadj = min
X∈X ,S(·)

max
θ∈Θ

Sn+1(θ) (52)

S0(θ) = 0, (53)

Sj(θ)− Si(θ) ≥ θi ∀(i, j) ∈ E , ∀θ ∈ Θ. (54)

Let Θ be a hypercube, i.e.,

Θ = [l1, u1]× [l2, u2]×, . . . ,×[ln, un],

where li and ui, ∀i ∈ V \{0, n+1} represent, respectively, lower bounds
and upper bounds for the activity durations, respectively.
Suppose that (X∗, S∗) is an optimal solution for the static robust
RCPSP defined as follows:

zstatic = min
x∈X ,S

Sn+1 (55)

S0 = 0, (56)

Sj − Si ≥ θi ∀(i, j) ∈ E , ∀θ ∈ Θ. (57)

Therefore, the solution X = X∗, S(θ) = S∗, ∀θ ∈ Θ is a feasible
solution for the TSRCPSP, which implies

zadj ≤ max
θ∈Θ

S∗
n+1(θ).

Now consider X̂ and Ŝ(θ), ∀θ ∈ Θ an optimal fully adjustable solu-
tion for the TSRCPSP and consider the following realization of the
uncertain parameters:

θi,max = max
θ∈Θ

θi = max[li, ui] = ui, ∀i ∈ V \ {0, n+ 1}.

We denote the corresponding vector with θmax. Clearly,

zadj = max
θ∈Θ

Ŝn+1(θ) ≥ Ŝn+1(θmax).
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The solution X̂, Ŝn+1(θmax) is a feasible solution for the static robust
problem. In fact,

Ŝj(θmax)− Ŝi(θmax) ≥ θi,max ≥ θi ∀(i, j) ∈ E , ∀θ ∈ Θ.

This follows from the feasibility of X̂ and Ŝ(θmax) for the scenario θmax

and from the fact that θmax ≥ θ, for all θ ∈ Θ.
Therefore,

zstatic ≤ Ŝn+1(θmax).

Since

zadj ≥ Ŝn+1(θmax),

zstatic ≤ zadj .

Therefore, the fact that

zstatic ≥ zadj

implies

zstatic = zadj .

Complexity of problem (43) – (50)

Problem (43) – (50) is polinomially solvable.

Proof. We may express the constraint (44) – (48) in a matrix-vector
notation: where A is a |E| × |V | arc-node incidence matrix, B is a

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

α w δ
Group 1 A 0 0
Group 2 0 IE −B
Group 3 −IE IE 0
Group 4 0 0 IV
Group 5 0 0 eTV

|E|× |V | matrix where each element corresponding let say to row (i, j)
and column i is equal to 1, indicating whether or not the arc (i, j)
leaves the node i. IV and IE are identity matrix of dimension |V | and
|E|, respectively and eTV is a |V | × 1 vector with all elements being
unity.
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The rows in the Group 1 correspond to constraints (44), the rows in
the Group 2 and 3 to constraints (45) and (46), respectively. The rows
in the last two groups are concerned with constraints (47) and (48),
respectively.
Ghouila-Houri [28] showed that a matrix is totally unimodular if and
only if for any subset of rows there exists a partition such that for each
column the sum of the row elements belong to one partition minus
the sum of the row elements belonging to the other partition is in
{0, 1,−1}.
For any collection of rows of the above constraint matrix, we can con-
struct two partitions such that the sum of rows in one partition minus
the sum of rows in the other partition has only -1, 0, +1 in each column.
Now, if the rows belonging to the Group 2 are absent, it is sufficient for
any combination of rows to multiply the rows of Group 4, if present,
by -1.
In order to obtain a similar partition when the Group 2 is present, it is
necessary to split them into two sub-classes C1 and C2. In particular,
for each column i of the matrix B we should consider the rows whose
indexes correspond to the outgoing edges of i, so that the difference
between the rows in C1 and C2 is {0, 1,−1}. We notice that each col-
umn i of the matrix B may have an even or odd number of nonzero
entries, depending on the cardinality of the forward star related to the
node i. Then, if the number of these rows is even, we can evenly split
the rows into C1 and C2, otherwise we can put half of the rows plus
one in C1 and the remaining ones in C2.
If a collection of rows of Group 2 is present and the Group 3 is absent,
if we multiply (-1) to the rows belonging to the Group C2 and 4, the
current sum of rows belongs to {0, 1,−1}.
If a collection of rows from both Groups 2 and 3 are present, we can
appropriately multiply the rows of Group 3 and 4, to keep {0, 1,−1}
in each column of the sum of rows.
Therefore, the constraint matrix is totally unimodular.
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Appendix C - Pseudo-code of Dynamic Pro-
gramming (51)

Let L be the list of nodes to be processed. The steps of the dynamic
programming are depicted in Algorithm 1.

Algorithm 1 . DP scheme
Step 0 (Initialization Phase)
Set: L = {0}, mod = false.

Step 1 (Node Selection)
Select and delete from L a node i.
Set mod = false.

Step 2 (State Generation)
for all j : (i, j) ∈ Et do

Set mod = false.

Set α = max
{
(C(ST (i, γ)) + θ̄i, C(ST (i, γ − 1)) + θ̄i + θ̂i

}
, γ = 1, . . . ,Γ.

if C(ST (j, γ)) < α then
Set C(ST (j, γ)) = α.
Set mod = true.

end if
Set β = C(ST (i, 0)) + θ̄i.
if C(ST (j, 0)) < β then

Set C(ST (j, 0)) = β.
Set mod = true.

end if
if mod then

Add node j to L.
end if

end for

Step 3 (Termination check)
if L = ∅ then

STOP
else

Go to Step 1.
end if
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