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Abstract

In this paper, sliding mode control for discrete time systems with stochastic noise in their input channel
has been discussed. The idea of process control using control charts has influenced this new approach
towards dealing with systems with stochastic noise. The new approach approximates the stochastic noise as
a bounded uncertainty, similar to having bounds in the control charts for stochastic process control data.
For discrete time systems, this results in a bounded stability in probability of the quasi sliding mode, which
is referred to as the N-sigma bounded stability. The probability associated with the stability notions is not
fixed and the control engineer may desire lower or higher degrees of stability in terms of this probability.
Thus one has design flexibility while implementing the theory in practice, where one might have to adjust
the desired degree of stability due to hardware limitations.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Stochastic systems have been finding quite a lot of interest in the control community over the
years. Researchers have attempted to develop the theory and control for stabilization of such
systems in both continuous time and discrete time [1,2,4–8]. Several approaches have been taken
by researchers, which can be broadly separated into their dealing of the system dynamics using
ordinary difference [5–8] in case of discrete time systems and stochastic differential [1,2,4] in
case of continuous time systems. All of them have been able to achieve either a notion of stability
with certain probability [7,8] or have been able to assign the mean and covariance to them [6].
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Some have proposed mean square stability or stochastic stability of the system [1,2,5]. Such and
other stability ideas had been discussed in [13] in details.

Sliding mode control has generated a lot of interest starting from the works in [16–19]. They
have opened up considerable research opportunities in this area of control, whose most
prominent feature is rejection of disturbance in the sliding mode. However, most of the works
have considered only matched or unmatched bounded uncertainty in system dynamics even in
advanced development of the subject [21,23,24]. But in practice, a system is always corrupted by
stochastic noise, especially if the communication channel is long. Only few works on sliding
mode control consider stochastic noise in the system dynamics for analysis [3,7,9,8,10–12].
The approach in this paper to deal with stochastic noise is different to those in these preceding
works. It is mathematically less involved and can be readily understood from basic concepts of
probability, statistics and process control. The development of the stability notion and henceforth
application of the theory has been done to help readers with a basic understanding of sliding
mode and statistical analysis of signals to easily grasp the idea.

A new concept of stability is proposed in this paper for discrete systems, which is derived from
existing ideas of stability [13] of stochastic and deterministic systems. It serves a more practical
idea of stability in a probabilistic sense and is used to develop stability notions of the sliding
mode. The main work in this paper is to show that a sliding mode control designed to take care of
bounded disturbances in a system will bring the same system to these notions of stability in
probabilistic sense when the disturbance is not bounded but stochastic in nature.

For discrete systems, this idea of stability requires the sliding motion to be confined in a
certain band with a certain probability after it enters this band in finite steps. This is different to
the works in [3,7,9,8,10,11] as the probability associated with stability arises due to our
approximation of stochastic noise as bounded disturbance and thereafter propagates into the
stability notion. To the authors' knowledge, such approach to approximate stochastic noise as
bounded disturbance had not been considered in any preceding control and stability studies for
stochastic systems (Figs. 1–5).

The structure of the paper is as follows. In Section 2, we discuss the already known concepts
like stochastic signal statistics, with a more specific study of white Gaussian noise, whereby
several probability bands are discussed. Also we discuss bounded stability for discrete systems as
already existing in the literature. In Section 3, we modify the above mentioned stability idea to
Fig. 1. Sliding surface dynamics for actual and approximated system along with the ultimate band, for N¼2. (a) Sliding
surface for actual system. (b) Sliding surface for approximated system.



Fig. 2. Sliding surface dynamics for actual and approximated system along with the ultimate band, for N¼3. (a) Sliding
surface for actual system. (b) Sliding surface for approximated system.

Fig. 3. Sliding surface dynamics for actual and approximated system along with the ultimate band, for N¼4.5. (a) Sliding
surface for actual system. (b) Sliding surface for approximated system.
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incorporate a notion of probability in it. Henceforth, we put forward the idea of N-sigma stability
that we achieve for discrete time stochastic systems, when the stochastic noise is approximated
by a bounded uncertainty. In Section 4, we give simulation examples to illustrate our results for
discrete systems. Finally, we draw conclusions in Section 5.

2. Review of available literature

2.1. Stochastic signal statistics

Any stochastic signal X(t) takes random values x(t) at time t. In most cases investigated in
control systems, this stochastic signal X(t) is a continuous random variable since it is the
stochastic noise entering through the input channel and can take any value within a given range,



Fig. 4. States x1 and x2 of actual system, for different values of N. (a) State x1 for N¼2. (b) State x2 for N¼2. (c) State x1
for N¼3. (d) State x2 for N¼3. (e) State x1 for N¼4.5. (f) State x2 for N¼4.5.

Fig. 5. Control input for actual system, for different values of N. (a) Control input for N¼2. (b) Control input for N¼3.
(c) Control input for N¼4.5.
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determined by the noise profile or noise distribution. For such continuous random variables, we
get a probability density function (pdf) f(x), which gives the probability of the random variable X
(t) to assume a value between a and b ðaobÞ as P½a≤XðtÞ≤b� ¼ R b

a f ðxÞ dx, which is the area
under the pdf between a and b.

Given the pdf, the expected value or mean and the variance of the stochastic signal can be
easily calculated from well-known formulas as
(1)
 μ¼ E½X� ¼ R∞
−∞ xf ðxÞ dxR
(2)
 E½X2� ¼ ∞
−∞ x2f ðxÞ dx
(3)
 s2 ¼ Var½X� ¼ E½X2�−E2½X�
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The mean μ gives the most likely value x(t) to be taken up by X(t) at any given time t.
The variance indicates the spread of the random variable around the mean. Square root of

variance is the standard deviation and denoted by s.
We may want to know the probability of X(t) taking values within the bounds a and b which

are equidistant from the mean μ. If the distance be d, then let the probability be p(d) which is
pðdÞ ¼ R μþd

μ−d f ðxÞ dx.
We can always write d¼ Ns, where N is non-negative. So the probability p(d) will now

change to p(N) relative to the bounds 7Ns about the mean μ.
It is obviously understood that p(N) is increasing and pð0Þ ¼ 0. Thus we become more sure

that X(t) takes values within the bounds 7Ns about μ as we increase the bounds, i.e., as we
increase N.
Most of the engineering system models approximate the noise entering in input channel as a

zero-mean white Gaussian noise, which follows a pdf f gðxÞ ¼ ð1s ffiffiffiffiffi
2π

p Þ=e−x2=2s2 at any time
instant t and the value taken at any instant is uncorrelated to the values at other instants.
The values for the probabilities pðNÞ ¼ pgðNÞ for different values of N for such a pdf are

widely known and a few are given below:
�
 pð1Þ ¼ 0:6826

�
 pð2Þ ¼ 0:9544

�
 pð3Þ ¼ 0:9974

�
 pð4Þ ¼ 0:9999
with precision up to four decimal places. If we extend our bounds to N¼4.5, then the probability
of noise signal being outside the bounds 7Ns is as less as 3.4 parts per million. The famous six
sigma methodology of process quality control [15] assumes N¼6 in designing their quality
control bounds for process control, assuming Gaussian distribution of the data, wherein the
probability of defects escaping the bounds comes down to 0.002 parts per million. With N¼6
taken for their processes, they also have a tolerance incorporated in their design for any future
deviation of the mean. The tolerance is 1:5s, which if the process deviates from the mean in the
course of time, will still guarantee N¼4.5 level of quality control.

2.2. Ultimately bounded stability with probability one

In [13], there had been much discussion on stability concepts for stochastic systems. For a
discrete process

ykþ1 ¼ gkðykÞ ð1Þ
the stability concept that interest us is the ultimately bounded stability with probability one and
bound m, which is defined below [13]. We shall modify it in the following section to suit our
needs of stability of discrete time systems in a probabilistic sense.

Definition 1. A process as in Eq. (1) is ultimately bounded with probability one and with bound
m if and only if, for each y0 in a neighborhood E of the origin, there is a finite-valued random
instant Kðy0Þ such that

P sup
∞4k≥Kðy0Þ

∥yk∥≤m

( )
¼ 1 ð2Þ
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3. N-sigma stability

In this section, we formulate the new concepts of stability in probabilistic sense which we will
try to attain for discrete stochastic systems using a sliding mode controller. We shall eventually
arrive at the concept of N-sigma stability which owes its name to the approximation approach
adopted in this work to deal with stochastic noises acting in the input channel of the systems as
bounded matched uncertainties.

Sliding mode control for discrete time systems was developed by discretization of the reaching
laws in continuous systems [18]. It was seen that one cannot reach the sliding mode sðxÞ ¼ 0
because of the finite sampling time, but can only achieve to remain within a quasi-sliding band
[18] about sðxÞ ¼ 0. In the works [19,21], new approaches toward discrete sliding mode control
had been discussed which would bring the surface s(x) to zero, i.e., sliding mode would be
reached, when there is no disturbance present in the system. But with the presence of
disturbance, sliding mode can never be reached and one arrives at the concept of quasi-sliding
mode and quasi-sliding mode band as proposed in [18].

Hence we need a notion of finite time bounded stability in probability for the designed stable
sliding surface s(x). We modify Definition 1 by relaxing it in terms of probability and making it
stronger in the sense of generalizing to any sample yk inside the bound m.

Definition 2. The process as in Eq. (1) is ultimately bounded with probability ρ and with bound
m if and only if, for each y0 in a neighborhood E of the origin, there is a finite-valued random
instant Kðy0Þ such that

Pf∥yk∥≤mg ¼ ρ ∀ ∞4k≥Kðy0Þ ð3Þ

This means once the random variable yk enters the bound m, which it does at some finite
sampling instant Kðy0Þ, the chances of it coming out of the bound m is ð1−ρÞ. We will use this
concept of stability for our surface variable s(x) and will show how our approach brings it inside
a desired ultimate band and thereafter keeps it inside the band with probability as high as we
design.

Note that no probability is attached with the finite sampling instant Kðy0Þ. This is because we
always expect a finite Kðy0Þ such that yk enters the bound m. This Kðy0Þ may not be same for
repetitions of the experiment to bring yk to finite time bounded stability using the same controller
u, but we are always sure to have a finite Kðy0Þ. This will change from one experiment to another,
but always influenced by the initial condition y0. Our only concern is Eq. (2), which may not be
achievable with absolute certainty (probability 1), and hence we incorporate a probability ρ to the
occurrence of this event as in Eq. (3).

Let us have a discrete time system

xkþ1 ¼ akðxkÞ þ bkðxkÞuþ wk ð4Þ
where u is the sliding mode controller and wk is a stochastic noise acting in the input channel.

The main idea of this paper is to approximate the stochastic noise present in the input channel
as a bounded uncertainty. If we do that in Eq. (4), we get the deterministic system

xkþ1 ¼ akðxkÞ þ bkðxkÞuþ dk ð5Þ
where dk is a bounded matched uncertainty. Sliding mode controllers for such systems can be
readily designed which will bring the sliding motion inside an ultimate band in finite time and
henceforth keep it inside that band.
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Theorem 1. Let wk be a white Gaussian noise with zero mean and variance s2 acting in the
input channel of the discrete time system (4) and u be a sliding mode controller designed for
the system (Eq. 5) with a matched uncertainty dk with bounds 7Ns. Then the dynamics of the
sliding variable swðxkÞ for system (4) will match the dynamics of the sliding variable sdðxkÞ for
system (5) with a probability pg(N).

Proof. Let us denote the events of finite time reaching and quasi sliding of swðxkÞ as Rw and Sw,
respectively, and that of sdðxkÞ as Rd and Sd, respectively. Now, we can always design a sliding
mode control u to make the events Rd and Sd occur. Such a control u takes care of the disturbance
dk with bounds 7Ns. The disturbance dk can be of any nature but with bounds 7Ns.
The same control u is now given to the system (4) which has input noise wk. For any instant k,

if wk takes value inside the bounds 7Ns, u will be able to take care of wk and the events Rw and
Sw will occur. So, we can say that the events Rw and Sw are both equivalent to the event
ðwk∈7NsÞ. Therefore,
PðRwÞ ¼ ðwk∈7NsÞ ¼ pgðNÞ
⇒ Rw will follow Rd with a probability pg(N)
Similarly, PðSwÞ ¼ Pðwk∈7NsÞ ¼ pgðNÞ
⇒ Sw will follow Sd with a probability pg(N)
Overall, the dynamics of the sliding variable swðxkÞ for system (4) will match the dynamics of

the sliding variable sdðxkÞ for system (5) with a probability pg(N). □

Since the stability of the system (4) using this approximation approach is directly related to the
bounds7Ns and the associated probability pg(N), we may call this as N-sigma bounded stability
of the quasi sliding mode. The stability notion is exactly similar as that proposed in Definition 2
at the beginning of this subsection, only given a different name which is peculiar to the
approximation approach taken in this work.

Remark 1. From the discussion in Section 2.1, it is obvious that higher the N value chosen,
higher is the probability that our approximated system dynamics will match the exact system
dynamics using the same sliding mode controller. Hence, with higher N, N-sigma bounded
stability for discrete time systems can be achieved with a stronger probability as per Theorem 1.

Remark 2. It may be noted here that the optimum value of N that may be chosen can be taken
from the famous industrial quality control strategy of six sigma as N¼6, which will not only
guarantee almost sure matching of the approximated system dynamics with the actual system
dynamics in the short term, but also in a long term as it takes care of a shifting of the noise mean
from zero to an amount up to 1:5s and still guaranteeing almost same level of performance [15].
In our simulation, however, we choose only up to N¼4.5 considering no mean shifting effect.

4. Simulation example

In this section, we take a second order discrete LTI system

xkþ1 ¼Φxk þ Γuk þ Γwk ð6Þ

where xk∈Rn, uk∈R, and wk is a zero-mean white Gaussian noise with variance s2 acting in the
input channel.
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Using our approximation theory, the approximated deterministic system will be

xkþ1 ¼Φxk þ Γuk þ Γdk ð7Þ
where dk is taken as a zero-mean uncertainty with bounds 7Ns, where we can choose N as per
our requirement of the degree of stability in terms of probability.

We use the controller as designed in [20] for a linear sliding surface

s¼Gxk ð8Þ
where s∈R and designed to be stable by proper choice of G [22].

The controller is [20]

uk ¼ −ðGΓÞ−1½GAxk−Gxk þ μτGxk þ ϵτsgnðGxkÞ� ð9Þ
where

μτ¼ 2 ~d1

δ
−1 ð10Þ

and

ϵτ¼ −μτδ ð11Þ
with τ as the sampling period and the ultimate band value δ chosen such that ~d1oδo2 ~d1 and
~d1 ¼GΓNs [20].
We use the same controller (9) for the stochastic system (6) and perform simulations for three

different choices of N, viz., N¼2, N¼3 and N¼4.5. The sliding variable is plotted for the
approximated system (7) as well for easy comparison between actual and approximated surface
dynamics. It is seen that among the three values chosen, N¼4.5 yields the best approximation,
and N¼2 gives the worst approximation. This is as predicted by the theory in Section 3.

We consider an example system as below, which is inherently unstable, with a white Gaussian
noise at its input channel with variance 0.01, i.e., s¼ 0:1.

xðk þ 1Þ ¼ 0 1

3 −0:5

� �
xðkÞ þ 0

1

� �
uðkÞ þ 0

1

� �
wðkÞ ð12Þ

A stable sliding surface for this system is

sðkÞ ¼GxðkÞ ¼ ½−0:8 1�xðkÞ ð13Þ
We now replace the noise w(k) with bounded uncertainty in terms of N. We consider three N
values N¼2, N¼3 and N¼4.5 in the simulation results. We shall see that for N¼2 and N¼3,
the sliding motion comes out of the ultimate band at a few instants, but with N¼4.5, it always
remains within the ultimate band for the chosen sample range of time instants k.

4.1. With N¼2

For N¼2, the sigma bounds are 70:2. We choose the ultimate band slightly more than
~d1 ¼ 0:2 as per the theory. With ultimate band chosen as δ¼ 0:201, the controller settings are
calculated as μ¼ 9:9005 and ϵ¼−1:99 for a sampling time of τ¼ 0:1 s, from relations (10) and (11).
The initial state ½1 0�T is taken in the example.

The simulation plots for sliding variable for actual and approximated systems are shown
together, which clearly shows the mismatch between the actual and approximated dynamics in
this case.
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It is observed from the simulation plots that 419 samples out of 10,000 are out of our ultimate
band. Thus sliding variable values are inside the ultimate band with 0.9581 probability, which is
almost same as predicted by the theory, but might not be desirable from a control perspective.
The maximum and minimum values of the sliding variable are 0.4109 and −0.3286 which are
also a bit away from the ultimate band.
The simulation plots of the individual states are also presented which clearly show that they

too are bounded in nature. The control input plot is also shown.
4.2. With N¼3

For N¼3, the sigma bounds are 70:3. We choose the ultimate band slightly more than
~d1 ¼ 0:3 as per the theory. With ultimate band chosen as δ¼ 0:301, the controller settings are
calculated as μ¼ 9:9336 and ϵ¼ −2:99 for a sampling time of τ¼ 0:1 s, from relations (10) and (11).
The initial state ½1 0�T is taken in the example.
The simulation plots for sliding variable for actual and approximated systems are shown

together, which clearly shows the mismatch between the actual and approximated dynamics in
this case. This mismatch is less than that for N¼2, but still identifiable.
It is observed from the simulation plots that only 21 samples out of 10,000 are out of our

ultimate band. Thus sliding variable values are inside the ultimate band with 0.9979 probability,
which is almost same as predicted by the theory. The maximum and minimum values of the
sliding variable are 0.4109 and −0.3287 which are not too astray from the ultimate band as well.
The simulation plots of the individual states are also presented which clearly show that they

too are bounded in nature. The control input plot is also shown.
4.3. With N¼4.5

For N¼4.5, the sigma bounds are 70:45. We choose the ultimate band slightly more than
~d1 ¼ 0:45 as per the theory. With ultimate band chosen as δ¼ 0:451, the controller settings are
calculated as μ¼ 9:9557 and ϵ¼ −4:49 for a sampling time of τ¼ 0:1 s, from relations (10) and
(11). The initial state ½1 0�T is taken in the example.
The simulation plots for sliding variable for actual and approximated systems are shown

together, which clearly shows the strong resemblance between the actual and approximated
dynamics in this case.
It is observed from the simulation plots that no samples out of 10,000 came out of our ultimate

band. However, there is always a probability that a sample may come out (which is 3 or 4 per
million). If we had increased our sampling instants to a million, then we would observe some
samples coming out of the ultimate band. From the plot of 10,000 samples it is observed that the
maximum and minimum values of the sliding variable are 0.4109 and −0.3288 which are well
within our ultimate band.
The simulation plots of the individual states are also presented which clearly show that they

too are bounded in nature. The control input plot is also shown.
We could go on increasing N which would yield even lesser probability of the sliding variable

to come outside the ultimate band. However, that would result in an increased ultimate band.
Hence there is a trade-off in the choice of N for a desired ultimate band size as well as a high
probability of the sliding variable to be contained inside the ultimate band.
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5. Conclusions

In this work, a new and simpler approach towards dealing with systems subjected to stochastic
noise in input channel is proposed, wherein the stochastic signal is approximated as a bounded
uncertainty of appropriate bounds as per stability requirement. Practical notion of stability in
probability is proposed and something called N-sigma stability is arrived by the approximation
approach. It is shown through simulations that the sliding motion becomes N-sigma bounded
stable for discrete systems as desired and predicted by the approximation theory. An optimum
probability level for the stability is also suggested, referring the widely accepted and celebrated
methodology of six sigma used in process quality control. The work as in this paper can be
readily applied by design engineers to discrete stochastic systems taking the bounds of
uncertainty as required for their desired degree of stability in terms of probability.
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