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A B S T R A C T

UV-B radiation (280–320 nm) is a component of sunlight and a natural environmental stimulus for
plants. The characterization of UVR8 (UV Resistance Locus 8) demonstrated that plants contain at least
one UV-B-specific photoreceptor and signaling pathway. In plants, DNA damage caused by UV-B and the
subsequent responses, historically, have often been considered general stress or non-photomorphogenic.
Other UV-B-specific signaling pathways that function independently of the UVR8 photoreceptor suggest
that multiple perception mechanisms exist in plants. Recently, however, plant perception of UV-B
radiation and the initiation of photomorphogenic responses outside of the UVR8 pathway have been
largely overlooked. Plant responses to UV-B are highly varied. Therefore, the existence of multiple
perception pathways seems logical. The objective of this review is to highlight that the absorption of
UV-B occurs through a variety of ways, for example through DNA, and induces photomorphogenic
responses specific to that absorption that are distinct from the UVR8 signaling pathway.

ã 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Plants are dependent on a wide array of environmental signals
to modulate growth and morphology and have evolved sophisti-
cated systems for perceiving and responding to such stimuli.
Among these is the perception of light signals through photo-
receptors that absorb light at specific wavelengths. UV-B radiation
(280–320 nm) is an especially important component of sunlight. It
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has the highest energy of the solar spectrum that reaches the
earth’s surface, making it a unique light stimulus. It can cause
damage to biomolecules such as DNA (Britt, 2004; Taylor, 2006),
but it also induces classic photomorphogenic responses like
hypocotyl growth inhibition (Ballaré et al., 1991; Kim et al., 1998;
Shinkle et al., 2004; Gardner et al., 2009), cotyledon expansion
(Boccalandro et al., 2001), and leaf development (Brown and
Jenkins, 2008; Wargent et al., 2009), among others (reviewed in
Frohnmeyer and Staiger, 2003; Ulm, 2006). Tremendous progress
has been made in defining UV-B-specific signaling pathways in
plants as well as possible perception mechanisms, and this
progress has been extensively reviewed elsewhere (Brosché and
Strid, 2003; Ulm, 2006; Jenkins, 2009; Heijde and Ulm, 2012;
Tilbrook et al., 2013; Ulm and Jenkins, 2015).

DNA damage caused by UV-B and the subsequent responses are
well known. Historically, these responses have been considered
non-photomorphogenic or as general responses in plants because
they are also activated by other stimuli (reviewed in Brosché and
Strid, 2003; Frohnmeyer and Staiger, 2003). Recently, the identity
of a UV-B photoreceptor in plants was revealed to be UVR8 (Rizzini
et al., 2011), a component that was known to function in UV-B-
specific signaling (Kliebenstein et al., 2002; Brown and Jenkins,
2008; Favory et al., 2009). This has paved the way for a wealth of
subsequent research concerned with elucidating the properties of
UVR8 and its mechanism as a photoreceptor, as well as more
thoroughly defining a UV-B photoreceptor pathway. However,
mechanisms by which plants can perceive UV-B radiation and
initiate photomorphogenic responses outside of the
UVR8 pathway have been largely overlooked. The existence of
several UV-B-specific signaling pathways in plants that are
independent of the UVR8 photoreceptor suggests that other
Fig. 1. Proposed UV-B perception pathways in etiolated Arabidopsis seedlings. UV-B is di
COP1 to induce expression of genes under the control of HY5/HYH. Concurrently, DNA 

excision repair (NER) and photoreactivation can efficiently repair photoproducts to a degr
directly or through double-strand breaks (DSBs) or stalled replication sites by 

photomorphogensis. (Image of NER pathway appears in Britt, 2004; structures of UVR
perception mechanisms exist (Brown and Jenkins, 2008; Wargent
et al., 2009; González Besteiro et al., 2011; Biever et al., 2014). They
are recognized to some extent in the literature, but are often ill-
defined by the categorical restrictions used to separate the
responses. The distinction between “photomorphogenic” and
“damage” responses may be helpful for describing the varied
effects of UV-B irradiation in plants, but they are perhaps not
entirely accurate. Photomorphogenesis is development mediated
by light (Briggs and Olney, 2001). Therefore, if signals originating
from DNA after absorption of UV-B ultimately converge to regulate
processes such as gene expression or the cell cycle, then
development or growth is affected and photomorphogenesis has
occurred. With that in mind, this review focuses on the initial
perception of UV-B radiation in plants that induces downstream
processes that ultimately affect growth. In particular, UV-B-
induced DNA damage and responses to that damage will be
discussed within the context of being a possible pathway for
regulating early photomorphogenesis in plants in response to UV-B
light (Fig. 1).

2. Historical UV-B research in plants

Although the impacts of solar UV on plant growth have
interested scientists for over a century (reviewed in Caldwell,
1971), a research focus on increased UV-B fluxes and their effects
on plants was prompted by concerns over decreasing stratospheric
ozone, initially discovered in the 1980s (Farman et al., 1985). This
was a concern because stratospheric ozone is the main barrier to
the earth’s surface of solar UV radiation. It is most efficient at
absorbing higher energy wavelengths (<290 nm), where UV-C is
essentially excluded along with a small portion of UV-B. UV-A and
rectly absorbed by the UVR8 photoreceptor. UVR8 monomerizes and interacts with
directly absorbs UV-B light to form photodimers. Repair processes like nucleotide
ee. Cell-cycle arrest is induced by unrepaired photodimers that are either recognized
the ATM/ATR-SOG1 signaling pathways. Both mechanisms ultimately affect

8 dimer and monomer appear in Heijde and Ulm, 2012).
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the remaining UV-B photons are transmitted through the ozone
layer; however, the UV-B wavelengths between 290 and 320 nm
are greatly reduced (Ulm, 2006). Therefore, as stratospheric ozone
levels decrease, the results are higher fluxes of those wavelengths
that already pass through, and the transmission of shorter
wavelength UV-B as well (Caldwell and Flint, 1994). It was known
from human based research and associated model systems that
DNA damage from UV-B is a primary source of skin cancer (Setlow,
1974). By extension, DNA damage caused by UV-B is a potential
issue for plants because it could inflict cellular damage and
decrease overall plant growth and productivity.

Banning the use of chlorofluorocarbons (CFCs) has helped
alleviate the large loss of stratospheric ozone over Antarctica each
year (Crutzen and Oppenheimer, 2008), but global levels of
stratospheric ozone are in an overall decline (NASA, 1999; Forster
et al., 2011). Interactions with greenhouse gases and other
chemicals make it difficult to predict future levels and changes
in stratospheric ozone (Weatherhead and Andersen, 2006).
Therefore, increased UV-B radiation at the earth’s surface is still
a concern, and understanding how plants perceive UV-B is
additionally important, regardless of possible increased fluxes,
because it is an inherent component of sunlight and an
environmental stimulus for plants.

3. UV-B perception in plants and its effects

The effects of UV-B radiation in plants are varied. Direct
absorption of UV-B light by several cellular components leads to
downstream effects either directly through that absorption or
through indirect consequences. These early effects can manifest in
a variety of morphological responses where decreased plant height
and biomass accumulation are commonly observed (Jansen et al.,
1998; Kakani et al., 2003; Ballaré et al., 2011). The inhibition of
hypocotyl elongation is a classic photomorphogenic response
(Beggs et al., 1980) and is often used to gauge sensitivity to UV-B
light (Kim et al., 1998; Shinkle et al., 2004, 2005; Gardner et al.,
2009). UV-B light induces the expansion of cotyledons and can
cause curling in the cotyledon (Boccalandro et al., 2001). It also
alters leaf expansion and growth (Hopkins et al., 2002; Wargent
et al., 2009).

Several genes that encode enzymes in the phenylpropanoid
pathway are strongly induced after UV-B irradiation, and the
accumulation of flavonoids and anthocyanins helps plants shield
UV-B before reaching other cellular components (Robberecht and
Caldwell, 1978; Li et al., 1993; Stapleton and Walbot, 1994; Mazza
et al., 2000). For example, uvr8 mutants exhibited lower
photosynthetic efficiency due to increased photoinhibition from
UV-B irradiation, presumably because they lack flavonoids to
screen UV-B light and protect the photosynthetic apparatus. The
same uvr8 plants were severely dwarfed and necrotic compared to
wt (Davey et al., 2012). Therefore, increased levels of UV-B may
have a significant impact on plant growth, especially if they lack
sufficient screening compounds. Plant productivity was an initial
concern regarding potential increases in UV-B radiation because
irradiating plants with UV-B light mainly resulted in photosyn-
thetic damage, reactive oxygen species (ROS) production, and both
direct and indirect DNA damage (reviewed in Jansen et al., 1998).

Most of the UV-B irradiation effects in plants observed under
laboratory conditions are unlikely to occur in nature (e.g., UV-C
irradiation, artificially high UV-B fluences beyond projected
increases, etc.), and this has sparked debate as to what effects
are relevant to plants under natural environmental conditions
(reviewed in Hideg et al., 2013). For example, photosynthetic rates
in plants grown under natural conditions have not shown
significant differences under changes in UV-B radiation and do
not explain the observed plant growth decreases (Ballaré et al.,
2011). Studies using pea suggested that reductions in leaf area and
biomass after UV-B exposure were the result of a decrease in cell
divisions and smaller cell area (González et al., 1998; Nogués et al.,
1998), providing evidence that growth inhibition can occur
through alterations in cell cycle regulation.

Early hypotheses regarding the perception of UV-B light in
plants recognized the possibility of multiple pathways that were
likely linked to certain wavelengths due to the dependency of
biological responses to particular ranges of UV. When action
spectra were normalized to the most effective wavelengths, DNA
was the main potential chromophore for a majority of the
responses (Caldwell, 1971), and more recent work has provided
evidence that DNA could be a sensor for photomorphogenic UV-B
responses at shorter wavelengths (Shinkle et al., 2004; Shinkle
et al., 2005). However, shorter wavelengths of UV-B (�280–
300 nm) are typically regarded as “damaging” because of the
higher energy associated with them (Ulm, 2006), so the idea that
DNA could act as a specific sensor for UV-B light is not often
considered. This is because formation of ROS, DNA damage, or lipid
peroxidation by ROS are generally attributed to short wavelength
UV-B, and these effects can ultimately trigger pathways responsive
to other environmental stresses like wounding or pathogen attack
(reviewed in Frohnmeyer and Staiger, 2003; Brosché and Strid,
2003).

Specific UV-B effects that lead to photomorphogenic responses,
such as hypocotyl growth inhibition, cotyledon expansion, leaf
elongation, or flavonoid biosynthesis, are typically considered as
those induced by longer wavelengths (�300 nm). Because of this
distinction, most studies involving UV-B photomorphogenesis
now routinely filter out wavelengths lower than 300 nm, which
may provide a limited view of how plants actually respond to the
full, natural UV-B spectrum. In addition to wavelength depen-
dence, several studies have shown that certain responses are
fluence-dependent (Kim et al., 1998; Boccalandro et al., 2001;
Shinkle et al., 2004; Kalbina and Strid, 2006; Brown and Jenkins,
2008; Gardner et al., 2009), where responses to lower fluences are
photomorphogenic and responses to higher fluences are stress-
like. Regardless of specific categorizations of UV-B responses in
plants, it is clear that plants perceive UV-B signals via multiple
mechanisms either directly or indirectly, and the initial signal is
the absorption of UV-B radiation.

3.1. Direct UV-B absorption in plants

A number of components in the cell, including proteins and
nucleic acids, directly absorb UV-B radiation (Britt, 2004). It is
important to emphasize that the direct absorption referred to in
this review is the absorption of wavelength-specific UV-B photons
that causes the excitation of electrons resulting in rearrangements
of molecules (Clayton,1970). This includes conformational changes
in proteins that can be reversed and is distinct from UV-C and
ionizing radiation, like gamma or X-rays, which have enough
energy to release electrons from molecules, usually resulting in
permanent changes.

The direct absorption of UV-B light by DNA is especially critical
due to the formation of photodimers (discussed in more detail
below) that create distortions in the DNA strand that block
transcription and replication. Unrepaired photodimers can lead to
mutations that threaten genome integrity as well as overall plant
growth (Ries et al., 2000b). Consequences of damage products
produced in RNA or through the direct absorption of UV-B light by
cellular proteins are largely unknown and are not an extensively
studied area. This is distinct from the identification of the
UVR8 protein as a UV-B photoreceptor in plants (Rizzini et al.,
2011) that absorbs UV-B directly and controls the transcriptional
induction of genes involved in the production of flavonoids and
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other genes regulated by the transcription factor HY5 (Brown et al.,
2005). Flavonoids produced in the epidermis of leaves in response
to UV radiation presumably absorb UV-B light directly, as well, to
screen the radiation before it can damage cellular components in
deeper layers (Robberecht and Caldwell, 1978; Li et al., 1993;
Stapleton and Walbot, 1994). Flavonoid absorption per se is not
thought to be informational, in that the energy from the absorbed
UV-B photon is captured within the molecule (Edreva, 2005) and is
not known to affect downstream processes or growth.

UV radiation can also activate cell membrane receptors
involved in apoptosis in human cells (Kulms and Schwarz,
2002). Evidence suggesting a similar activation in plants has
demonstrated the initiation of mitogen-activated protein kinase
(MAPK) signals by UV-B (Stratmann, 2003; Holley et al., 2003; Ulm
et al., 2004). More recently, the MKP1-regulated MAPK pathway
was shown to operate independently of UVR8 (González Besteiro
et al., 2011). This further demonstrates the involvement of
mechanisms for UV-B perception in plants directly activated
through UV-B absorption that are not limited to absorption by
UVR8.

3.2. Indirect effects of UV-B absorption in plants

Perception of UV-B light also occurs indirectly. In addition to
direct absorption of UV-B by photosynthetic components, disrup-
tion of photosynthetic processes is a common indirect effect of UV-
B light exposure (Bornman, 1989; Day and Vogelmann, 1995; A.-H.-
Mackerness et al., 1997). Photosynthetic electron transport is
mainly inhibited through degradation of the D1 and D2 proteins of
photosystem II (PSII) after UV-B irradiation (Jansen et al., 1996;
Vass et al., 1996). However, photoinhibition can also occur through
damage to PSI (Powles, 1984) and has been implicated as a
potential source of ROS (Takahashi and Murata, 2008). ROS
production is a common observation after UV-B irradiation in
light-grown plants (Dai et al., 1997; A.-H.-Mackerness et al., 1998).
ROS mainly affects membranes through lipid peroxidation, but ROS
can also oxidize proteins, RNA, and DNA, and critical levels of the
oxidation products will eventually lead to cell death (Mittler,
2002). ROS can function as systemic signals for several environ-
mental stimuli, but this signal has not been documented in
response to UV-B irradiation directly (Miller et al., 2009). Due to
several links between ROS and gene expression changes (Krizek
et al., 1993; Rao et al., 1996; Surplus et al., 1998; Kalbina and Strid,
2006), it is likely that a UV-B-induced systemic signaling pathway
for ROS does exist in plants (A.-H.-Mackerness, 2000).

Chalcone synthase (CHS) catalyzes the first reaction devoted to
flavonoid biosynthesis, and its gene expression is strongly up-
regulated by UV-B irradiation. Accumulation of flavonoids and
anthocyanins is a common response to UV-B exposure in plants. A
suite of phenylpropanoid compounds accumulates in response to
several environmental stresses such as herbivory, pathogen attack,
or low temperatures (Dixon and Paiva,1995). Although there is UV-
B-specific flavonoid and anthocyanin production, synthesis of
these molecules occurs after visible light exposure as well, as
evidenced by CHS induction by blue and red light (Frohnmeyer
et al., 1992; Christie and Jenkins, 1996). UVR8 is required for the
synthesis of flavonoids specifically after UV-B irradiation through
the transcriptional induction of CHS and other biosynthetic genes
involved in the phenylpropanoid pathway (Brown et al., 2005).

DNA repair mechanisms are ultimately activated to eliminate
photodimers created by the direct absorption of UV-B light and
oxidation products due to interactions with ROS formed as the
result of UV-B irradiation. Photodimers can be directly reversed
through photoreactivation with exposure to blue/UV-A light
(Sancar, 1994), which is a process unique to this type of DNA
damage. There are also general mechanisms like nucleotide
excision repair (NER) or homologous recombination (HR) that
repair all types of DNA damage. An accumulation of any unrepaired
lesions will trigger DNA damage signaling pathways mediated by
ATM and/or ATR that recognize double-strand breaks or blocked
replication and transcription sites (discussed in more detail
below). The consequence of DNA damage accumulation after
UV-B exposure is mostly blocked replication (Culligan et al., 2004).
The induction of DNA damage repair transcripts after UV-B reflects
those mostly related to homologous recombination and, to a lesser
extent, double-strand breaks (Missirian et al., 2014). NER
components are involved in other processes and found in most
plant tissues at low levels without much induction after UV-B
irradiation (Mannuss et al., 2012).

4. UV-B induced DNA damage

When DNA absorbs UV-B light directly, energy from the
photons causes covalent linkages between adjacent pyrimidine
bases creating two main photoproducts, cyclobutane pyrimidine
dimers (CPDs) and pyrimidine-6,4-pyrimidinone dimers (6,4PPs).
Further exposure to UV irradiation causes photoisomeration of
6,4PPs into the Dewar photoproduct (Mitchell 1988; Takeuchi
et al., 1998). In humans, DNA is the primary molecule that absorbs
UV-B radiation, and DNA damage is the source of several
downstream effects such as sunburn and skin cancer (Kulms
and Schwarz, 2002). Plants do not develop cancer (Doonan and
Sablowski, 2010), but disruption of the cell cycle can occur in
response to UV-B-specific DNA damage (Jiang et al., 2011; Biever
et al., 2014), and programmed cell death can be activated if DNA
damage accumulates to a critical level in certain plant tissues
(Fulcher and Sablowski, 2009; Furukawa et al., 2010).

CPDs are by far the most abundant dimers and are produced
�10� more efficiently than 6,4PPs (Taylor, 2006). UV-C radiation
can reverse CPDs, but CPDs do not absorb UV-B, which make them
fairly stable in natural light conditions (Taylor, 2006) and may be
the reason why they are preferentially repaired in the light (Britt
et al.,1993). On the other hand, 6,4PPs absorb maximally at 325 nm
and are much less stable in sunlight (Taylor, 2006). Conversion of
the 6,4PP to the Dewar photoisomer efficiently occurs by UV light
at 325 nm, and both photodimers are rapidly removed by
photoreactivation or NER (Mitchell, 1988; Takeuchi et al., 1998).
6,4PP repair was shown to be more rapid in the dark (Britt et al.,
1993), possibly because of its more labile presence in the light.

4.1. Repair of photodimers

Plants are well equipped to cope with DNA damage and have
evolved efficient repair mechanisms because they cannot simply
move to avoid harmful radiation from the sun. They have two main
repair mechanisms for photodimers: (a) photoreactivation and (b)
nucleotide excision repair (NER). Photoreactivation occurs only for
UV-B photodimers. CPD- or 6,4PP-specific photolyases reverse
photodimer formation and restore the original bases using energy
from UV-A or blue light (Sancar, 1994). This direct binding and
reversal of photodimers is largely why plants are so efficient at
repairing photodimers, making photoreactivation the more favor-
able for photodimer repair because an error that may result in a
mutation is less likely to occur. Plants contain two different
photolyases that specifically bind either CPDs or 6,4PPs but not
both. At this time, an enzyme specific for Dewar photoproducts has
not been identified. Expression of the CPD photolyase (PHR1) is
induced by white light or UV-B, but the 6,4PP photolyase (UVR3) is
constitutively expressed (Chen et al., 1994; Waterworth et al.,
2002). The CPD photolyase appears to be regulated by HY5, under
the control of the UVR8 photoreceptor signaling pathway (Brown
et al., 2005; Brown and Jenkins, 2008; Li et al., 2015). Recent work
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has shown that both photolyase genes are under transcriptional
control by HY5/HYH and induced upon light exposure (Castells
et al., 2010), but the requirement for UVR8 was not tested. There is
little repair of CPD photodimers in the dark (Britt et al., 1993), and
light-dependent repair seems to be the dominant pathway for
their removal (Chen et al., 1994). In contrast, 6,4PPs are more
efficiently removed in the dark via NER, rather than through
photoreactivation (Britt et al., 1993). However, this may not be the
case for all plant species (Hada et al., 1996). Why CPD and 6,4PP
repair may be favored by one repair mechanism over another is
unclear. 6,4PPs cause more of a disruption to the DNA strand
(Taylor, 2006), which may be more of a problem for transcription
and replication processes and could explain why NER is so efficient
at removing this photodimer in plants (Britt et al., 1993; Mitchell
et al., 1985). CPD formation is more efficient during light exposure,
so photoreactivation, a light-dependent process, may be more
necessary than the light-independent NER mechanism for CPD
repair.

Nucleotide excision repair (NER) is a more universal mechanism
that repairs other DNA damage products in addition to UV-B
photodimers. It functions without the need for light energy, and
several enzymes are involved (Table 1), resulting in the excision of
a small strand of bases flanking, and including, the photodimer. The
remaining gap is filled through the normal replication process. This
method of repair is considered to be more “error-prone” because it
must refill a gap of about 30 nucleotides and disrupts more of the
original DNA strand. It can occur throughout the genome as global
genomic repair (GGR) or as a more directed process coupled with
transcription (TCR; Britt, 2002). Most of the information regarding
the mechanism of NER has been worked out in human cell cultures,
Escherichia coli, or yeast (Sancar and Smith, 1989; Sugasawa et al.,
2001; Volker et al., 2001; Wang et al., 1993; You et al., 2003), and
the knowledge regarding the specific biochemistry of the NER
pathway in plants remains limited (Li et al., 2002).

Both photoreactivation and NER contribute to a plant’s
tolerance to UV-B radiation. Arabidopsis mutants of the photolyases
and NER enzymes are hypersensitive when irradiated with UV-B or
UV-C by displaying necrosis and decreased growth (Britt et al.,
1993; Harlow et al., 1994; Jiang et al., 1997; Landry et al., 1997; Liu
et al., 2000, 2001). Mutations in the 50- and 30-endonucleases
involved in NER, in particular, seem to have the most dramatic
effect on Arabidopsis growth under UV-B (Britt et al., 1993; Harlow
et al., 1994; Gardner et al., 2009; Biever et al., 2014). Because NER
components ultimately recognize single-stranded DNA at stalled
Table 1
Arabidopsis genes involved in nucleotide excision repair (NER) and photoreactivation: a no
early steps of NER.

Gene name and designation Description/fu

UVH3/UVR1 (At3g28030) XPG/RAD2 ho
UVH1/XPF (At5g41150) XPF/RAD1 hom

functions with
UVR7/ERCC1 (At3g15620) ERCC1/RAD10

functions with
UVH6 (At1g03190) XPD/RAD3 ho
UVR2/PHR1 (At1g12370) PHR1, CPD ph

UVR3 (At3g15620) 6,4PP photoly

CENTRIN2 (At4g37010; At3g50360) Modulates NE
directly with 

XPC (At5g16630) RAD4 homolo

RAD23 (At1g79650; At1g16190; At3g02540; At5g38740; At5g16090) HR23A,B hom

RPA (At4g19130; At5g45400; At2g06510; At5g61000; At5g08020;
At2g24490; At3g02920)

Replication pr
replication or transcription sites or the other proteins involved in
those processes, they usually have roles in other types of damage
repair (Kunz et al., 2005). This means that mutations of NER
components may lead to general growth consequences, so when
plants are exposed to UV-B, it is not surprising that those mutants
are especially sensitive.

Homologous recombination (HR) seems to, in part, be
responsible for the removal of CPDs (Ries et al., 2000a,b), but
not 6,4PPs. UV-stimulated homologous recombination (HR)
activity was proportional to the amount of CPDs formed and
dependent on photosynthetically active radiation but independent
of the CPD photolyase (Ries et al., 2000b). CPD formation occurs at
a much higher frequency than 6,4PPs, and this may be the reason
that CPDs are the main photodimer targeted for HR (Ries et al.,
2000b). However, a lack of data linking HR events to 6,4PPs cannot
exclude HR as a possible repair mechanism for this photodimer as
well. HR is likely a more secondary process for removal of
photodimers. A study using a mutant lacking the
CENTRIN2 protein, which stabilizes the photodimer recognition
complex involved in NER, showed increased HR (Molinier et al.,
2004), indicating that HR is more prominent only when other
repair processes are inhibited.

5. DNA damage response signaling pathways

The detection of DNA damage is an important process for
resistance and tolerance to environmental factors causing damage,
in particular UV-B radiation (Culligan et al., 2004). An elaborate
network of proteins is employed to recognize the damage and
initiate a signaling cascade that inhibits progression of the cell
cycle to limit the proliferation of potential mutations. This network
is a conserved response among several organisms (Melo and
Toczyski, 2002) and activated through the recognition of double-
strand breaks or single-stranded DNA at replication forks by the
protein kinases ATAXIA-TELANGIECTASIA MUTATED (ATM) and
ATM AND RAD3-RELATED (ATR), respectively (Garcia et al., 2003;
Culligan et al., 2004). As previously mentioned, the accumulation
of unrepaired UV-B-photodimers results in stalled replication sites
and, to a lesser extent, double strand breaks (Molinier et al., 2004),
both of which activate DNA damage responses. SUPPRESSOR OF
GAMMA 1 (SOG1) is a plant-specific transcription factor in this
pathway and could be analogous to p53 in mammalian systems
(Yoshiyama et al., 2009). SOG1 is necessary for downstream
signaling from ATM and ATR and is required for transcriptional
n-comprehensive list of the major components involved in damage recognition and

nction Reference

molog; 30 DNA-specific endonuclease involved in NER Liu et al. (2001)
olog; 50 DNA-specific endonuclease involved in NER,

 ERCC1/RAD10
Liu et al. (2000)

 homolog; 50 DNA-specific endonuclease involved in NER,
 XPF/RAD1

Hefner et al.
(2003)

molog; DNA helicase involved in NER Lui et al. (2003)
otolyase Ahmad et al.

(1997)
ase Nakajima et al.

(1998)
R and homologous recombination (HR) pathways; interacts
RAD4

Molinier et al.
(2004)

g; interacts with CEN2 and RAD23 in DNA damage recognition Liang et al.
(2006)

olog; stabilizes DNA damage recognition complex (XPC) in NER Farmer et al.
(2010)

otein A; binds and stabilizes single-stranded DNA Kunz et al.
(2005)
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responses after gamma irradiation (Preuss and Britt, 2003;
Yoshiyama et al., 2009). It may also function independently of
ATM and ATR pathways in UV-B-specific DNA damage signaling
(Biever et al., 2014).

Recently, Biever et al. (2014) showed that hypocotyl growth
inhibition induced by UV-B light in etiolated Arabidopsis seedlings
is influenced by signals originating from UV-B absorption by DNA
that eventually trigger cell-cycle arrest. The authors used
Arabidopsis mutants of the NER endonucleases xpf-3 and uvr1-1
that showed hypersensitivity to UV-B in terms of hypocotyl growth
inhibition. What was striking about the hypersensitivity in these
mutants was that it occurred at relatively lower fluences (3000–10,
000 mmol m�2 s�1) compared to the wild type (Biever et al., 2014),
which indicated that UV-B induced photodimer formation could be
responsible for a photomorphogenic response (e.g., hypocotyl
growth inhibition) in etiolated seedlings. This idea was further
tested using the suppressor of gamma 1 (sog1-1) mutant (Preuss and
Britt, 2003) that lacks a transcription factor responsible for gene
induction and cell-cycle arrest after gamma irradiation in xpf
mutants. UV-B-induced hypocotyl growth inhibition in the sog1-1
mutant was similar to wild type, but the xpf sog1-1 double mutant
did not exhibit the hypersensitivity of xpf, showing that DNA
damage response signaling governed by SOG1 was likely activated
by UV-B-specific DNA damage accumulation (i.e., photodimers).
The ultimate effect of DNA damage responses is cell-cycle arrest.
This was measured directly using a Col wt line containing a
CYCB1;1-GUS reporter construct (Colon-Carmona et al., 1999). The
accumulation of CYCB1;1-GUS after UV-B irradiation was apparent
and consistent with the timeline for hypocotyl growth inhibition
(Biever et al., 2014). In addition, the process initiated by DNA
damage occurred independently of UVR8 and its signaling pathway
responsible for CHS induction. The xpf-3 mutant showed CHS
induction that was similar to wt. Hypocotyl growth inhibition by
UV-B light in etiolated uvr8 mutants was not different from wt, but
a lack of CHS induction in these mutants was maintained. This
work adds to the limited literature that provides evidence for a
photomorphogenic pathway that is triggered by UV-B-induced
photodimer formation and is independent of a known UV-B
photoreceptor. It further shows that DNA damage can induce
specific UV-B responses that are not simply those initiated by
general plant stress.

Most DNA damage response (DDR) pathways in plants have
been determined by studies using gamma irradiation to inflict
damage, and the ultimate effect of DNA damage signaling is growth
arrest through alteration of the cell cycle. UV-B induced the same
signaling pathways that lead to programmed cell death in the root
apical meristem after gamma irradiation (Furukawa et al., 2010).
Gamma irradiation also initiated these pathways in the shoot
primordia (Fulcher and Sablowski, 2009), but UV-B-induced DNA
damage, specifically, was not studied. However, the existence of
these signaling pathways shows that UV-B-induced DNA damage
could affect plant growth in this way. Instead of cell-cycle arrest,
DDR can cause cells to enter endoreduplication cycles (Adachi
et al., 2011). Endoreduplication may be important for UV-B
tolerance in certain plant tissues, but the involvement of the full
suite of DDR components is unknown. UV-B irradiation stimulated
endoreduplication rather than cell-cycle arrest in Arabidopsis
leaves and was dependent on UVR8 (Wargent et al., 2009). The uvi4
mutant isolated in Arabidopsis was less sensitive to UV-B
irradiation than the wt because of additional endoreduplication
rounds in the hypocotyl (Hase et al., 2006).

6. Perception of UV-B by UVR8

The UV-B specific signaling pathway regulated by UV RESIS-
TANCE LOCUS 8 (UVR8) is probably the most characterized
mechanism regarding photomorphogenic responses to UV-B in
plants. The uvr8-1 mutant was originally isolated as being more
sensitive to UV-B than the wild type when grown in the light
(Kliebenstein et al., 2002). uvr8 mutants are deficient in UV-B
specific CHS induction and also show increased levels of PR1 and
PR5 (Kliebenstein et al., 2002; Brown and Jenkins, 2008), proteins
involved in responses such as defense against pathogens. In
addition, UVR8 regulates expression of the transcription factors
ELONGATED HYPOCOTYL5 (HY5) and its homolog HYH (Brown
et al., 2005; Brown and Jenkins, 2008) by directly interacting with
CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) during UV-B
exposure. This interaction inhibits a repressor of UVR8 that is
associated with HY5/HYH chromatin and allows activation of these
transcription factors and subsequent genes under their control
(Favory et al., 2009). The HY5 interaction with promoters of its
target genes is enhanced by UV-B and requires UVR8 (Binkert et al.,
2014).

Accumulation of UVR8 in the nucleus occurs shortly after UV-B
irradiation (Kaiserli and Jenkins, 2007). The mechanism for
UVR8 translocation into the nucleus has yet to be determined,
but UVR8 also, constitutively and independently of UV-B radiation,
binds to chromatin (Cloix and Jenkins, 2008). UVR8 is mainly
located in the cytoplasm, but there is at least a small pool of
UVR8 that already exists in the nucleus (Kaiserli and Jenkins,
2007). However, expression of genes regulated by UVR8 requires
UV-B exposure (O’Hara and Jenkins, 2012). UVR8 itself is not
induced by UV-B and protein levels remain constant in dark grown
compared to light grown plants (Kaiserli and Jenkins, 2007; Rizzini
et al., 2011; O’Hara and Jenkins, 2012).

6.1. Mechanism for UV-B perception by UVR8

UVR8 was recently demonstrated to act as a UV-B photorecep-
tor in vitro (Rizzini et al., 2011). Early characterization of UVR8
showed it was homologous to the human gene REGULATOR OF
CHROMATIN CONDENSATION (RCC1), which is a guanine nucleotide
exchange factor for the G-protein Ran (Kliebenstein et al., 2002),
but this activity has not been observed in plants. UVR8 interacts
with itself to form a dimer that monomerizes upon UV-B
irradiation in vitro (Rizzini et al., 2011). Biochemical analyses
demonstrated that specific tryptophan residues were required for
dimer formation and formed the chromophore for UV-B absorp-
tion (Christie et al., 2012; Wu et al., 2012). Specifically, a
“tryptophan pyramid” forms between UVR8 monomers and is
surrounded by charged and other aromatic residues that create salt
bridges at the dimer interface. Monomerization occurs when the
cross-dimer salt bridges are disrupted through UV-B light
absorption by the tryptophan pyramid (Christie et al., 2012;
Miyamori et al., 2015). The monomer is the active form and binds
to COP1 to regulate downstream gene expression (Fig. 1) (Favory
et al., 2009; Rizzini et al., 2011). UVR8 contains a b-propeller
domain that is necessary for UV-B dependent interaction with
COP1, but UV-B-specific signaling and regulation requires a
separate domain found in the C-terminus of UVR8 (Cloix et al.,
2012; Yin et al., 2015).

The unique cluster of tryptophans at the center of the protein
was originally hypothesized to be required for dimerization and
interaction with COP1 because two of the tryptophans that were
mutated to alanine lost the ability to form dimers but retained
their interaction with COP1 (Rizzini et al., 2011). One particular
mutation, UVR8W285A, constitutively interacted with COP1, but did
not form dimers. UVR8W285F did form dimers but was unrespon-
sive to UV-B and showed no interaction with COP1 (Rizzini et al.,
2011). It would seem that the UVR8W285A would show constitutive
responses to UV-B that are regulated by UVR8 such as expression of
HY5 or CHS, but interestingly, in vivo experiments showed that
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these mutants were phenotypically similar to uvr8 mutants by
lacking HY5 and CHS expression and hypocotyl growth inhibition
after UV-B irradiation (O’Hara and Jenkins, 2012). Biochemical
analysis demonstrated that the UVR8W285A mutant was structur-
ally very similar to the wt UVR8 dimer (Christie et al., 2012), which
would explain the lack of downstream responses initiated by
UVR8W285A after UV-B exposure previously reported (O’Hara and
Jenkins, 2012). More recently, however, UVR8W285A showed
constitutive photomorphogenic responses to UV-B (Heijde et al.,
2013). Responses, such as constitutive expression of HY5 and CHS
would be expected to some degree, as well, based on the results
mentioned above regarding UVR8 binding to chromatin indepen-
dent of UV-B. Whether it was the dimer or monomer that was
constitutively bound to chromatin, however, was not specified
(Cloix and Jenkins, 2008). Jenkins (2014) has provided a thorough
review of UVR8 structure and function.

6.2. UVR8-independent responses specific to UV-B

There are documented UV-B-specific responses that occur
independently of UVR8, demonstrating that UV-B perception in
plants must occur via multiple mechanisms. Brown and Jenkins
(2008) described a high-fluence rate response in Arabidopsis leaves
that induced gene expression specifically in response to UV-B
irradiation but did not require UVR8. The three genes identified in
this category were WRKY30 (At5g24110), UDPgtfp (At1g05680), and
FAD oxred (At1g26380). Both UDPgtfp and FAD oxred are known to
be up-regulated by H2O2 (Inzé et al., 2011). Not much is known
about WRKY30 specifically, but WRKY transcription factors, in
general, regulate a wide range of plant processes, and they function
most notably in plant immunity, defense, and leaf senescence
(Pandey and Somssich, 2009; Besseau et al., 2012). Because of the
implicated functions of these genes and the fact that their
expression was observed after irradiation with the highest UV-B
fluences tested, it was concluded that this response likely overlaps
with oxidative stress or wound signaling pathways (Brown and
Jenkins, 2008). The overlap of UV-B-specific signaling with such
pathways has been the subject of many studies (reviewed in
Brosché and Strid, 2003; Frohnmeyer and Staiger, 2003).

Signal transduction from several different stress responses
converge by activating mitogen-activated protein kinase (MAPK)
networks (Holley et al., 2003). The signaling network involving MAP
kinase phosphatase 1 (MKP1), in particular, is activated by UV-B
irradiation and is independent of UVR8 (Holley et al., 2003; Kalbina
and Strid,2006;GonzálezBesteiroetal.,2011).The mkp1 mutant was
originally identified by its hypersensitivity in terms of root growth
to genotoxic stress caused by UV-C irradiation (Ulm et al., 2001).
Whether MAPK pathways are activated by UV-induced DNA
damage directly, by ROS, or by other signals is unknown.

7. Regulation of UV-B light perception and responses

Plant responses to signals from the environment are ultimately
regulated by downstream components that control gene expres-
sion or other aspects of growth. The E3 ubiquitin ligase, COP1, is a
main regulator of photomorphogenesis, specifically (Deng et al.,
1991), along with DE-ETIOLATED 1 (DET1; Chory et al., 1989) that
targets other proteins for degradation. COP1/DET1 are negative
regulators of light-mediated development because both mutants
display light-grown phenotypes when grown in the dark. COP1's
regulation of UV-B photomorphogenesis is different from other
types of light as it typically degrades the transcription factor HY5 in
the dark and, upon light exposure, is inhibited allowing HY5 to
induce transcription of genes under its control (Oravecz et al.,
2006; Favory et al., 2009). The photoreceptor UVR8 interacts
directly with COP1 to promote UV-B photomorphogenesis in
plants through transcriptional induction of HY5 and, subsequently,
the induction of genes that require HY5 (Favory et al., 2009).

Negative regulation of the UVR8-mediated UV-B signaling
pathway is controlled by RUP1 and RUP2 (Gruber et al., 2010). The
REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins are
highly homologous to one another and contain WD40-repeats
similar to COP1. Transcription is induced for each one by UV-B light
and dependent on UVR8-COP1 interaction and HY5. However,
other types of light induce RUP1 and RUP2, so they may have a more
general role in light responses (Gruber et al., 2010). Induction of
CHS after UV-B irradiation is much higher in the rup2 mutant and is
basically abolished in overexpression lines (Gruber et al., 2010).
rup1rup2 hypocotyl growth inhibition after UV-B light exposure is
much more severe than wild type, but these plants seem to be
more readily acclimated to UV-B (Gruber et al., 2010). RUP1 and
RUP2 could physically facilitate UVR8 redimerization after UV-B-
induced monomerization, which “turns off” UVR8-controlled
photomorphogenesis (Heijde and Ulm, 2013). The RUP1 and
RUP2 proteins bind the C27 domain of UVR8, and this happens in
the absence of UV-B light (Cloix et al., 2012). Although the UVR8-
signaling pathway is activated by UV-B irradiation, it appears that
its regulation by RUP1/RUP2 is not.

DNA repair proteins are also under regulatory control by
DET1 and COP1. Both DET1 and COP1 regulate the expression of the
photolyase genes PHR1 and UVR3 by degrading HY5/HYH in the
dark. det1 mutants were more tolerant to UV-C irradiation due to a
combined effect of increased expression of the photolyase genes
and genes involved in the phenylpropanoid pathway (Castells et al.,
2010). DET1 is also required for proper nucleotide excision repair
through associations with the photodimer recognition factors
DDB2 and CSA that detect conformational changes in the DNA
strand or stalled RNA polymerases, respectively (Castells et al.,
2011). Both proteins interact with CUL4-DDB1 complexes, which
associate with DET1 during normal Arabidopsis development and
are necessary for UV tolerance (Al Khateeb and Schroeder, 2007,
2009; Biedermann and Hellmann, 2010). The CUL4-DDB1-mediat-
ed degradation of DDB2 required ATR, indicating that
DDB2 regulation is also linked to checkpoint responses (Molinier
et al., 2008). The results of these studies are important because
they provide evidence that DNA repair processes and DNA damage
signaling are necessary for proper plant development and are
under control of DET1 and COP1, major components that regulate
photomorphogenesis.

8. Conclusions and future directions

Research leading to knowledge regarding how plants perceive
and respond to UV-B radiation has made substantial progress in
the last few years, especially with the characterization of UVR8 as a
UV-B photoreceptor and further definition of its signaling pathway
(Jenkins, 2014). While UVR8 no doubt plays a major role in UV-B
photoperception (Christie et al., 2012), it cannot explain nor
account for all UV-B responses observed in plants (Gardner et al.,
2009; Wargent et al., 2009; González Besteiro et al., 2011; Biever
et al., 2014). Plant responses to UV-B radiation are highly varied,
and the existence of multiple perception pathways seems logical.
While this idea is accepted to some degree, previous categorization
of plant UV-B responses limits room for interpretation regarding
“damage-like” or “photomorphogenic” effects. It seems naive to
assume that plants would contain a single photoreceptor system
for UV-B light, when plants have redundant or homologous
photoreceptors for other light qualities. As highlighted throughout
this review, the absorption of UV-B occurs through a variety of
processes and induces responses specific to that absorption,
including induction of photomorphogenic responses through
perception mechanisms other than the UVR8 signaling pathway.



96 J.J. Biever, G. Gardner / Environmental and Experimental Botany 124 (2016) 89–99
As discussed in Section 5, there is evidence that photomorpho-
genic responses, such as the inhibition of hypocotyl growth in
etiolated Arabidopsis seedlings, are influenced by UV-B-specific
DNA damage and do not require UVR8. This evidence reinforces the
idea that multiple UV-B perception mechanisms exist in plants
that could be more analogous to UV-B perception in human cells.
The parallels to UV-B perception in humans were how initial UV-B
perception hypotheses were formed for plants (Caldwell, 1971).
More importantly, results from Shinkle et al. (2005) and Biever
et al. (2014) suggest the possibility that a UV-B perception pathway
initiated by UV-B-specific DNA damage can influence photomor-
phogenic growth in plants, rather than being a general stress
response that is not necessarily specific to UV-B or part of UV-B-
specific signaling.

In initial plant development, a germinating seedling extending
out of the soil will have minimal synthesis of flavonoids due to the
lack of prior light exposure and little protection from the first
sunlight exposure making it more vulnerable to UV-B light. The
UV-B light present in solar radiation is likely absorbed more readily
by DNA at this stage leading to photodimer formation. If the
recognition of photodimers occurs by DNA repair enzymes
involved in either NER or photoreactivation, then downstream
processes that require ATM, ATR, or the transcription factor SOG1,
which eventually lead to growth inhibition through cell-cycle
arrest, might be activated. UVR8 is required for UV-B-dependent
production of flavonoids and, as the plant continues to grow, is
important for protection from UV-B light. However, the UV-B
perception pathway initiated through direct absorption by DNA is
still relevant because some UV-B light would continue to pass
through the leaf and reach the inner cellular components. These
two pathways are distinct UV-B perception mechanisms, operating
in tandem, to influence plant growth.

To fully determine how UV-B-induced photodimer formation
influences plant growth, more sophisticated techniques for
detecting and quantifying photodimers are needed, such as
previously developed LC-MS methods (Douki et al., 2000). Despite
the growing body of literature describing DNA repair processes in
plants, there remains a lot left to decipher in terms of biochemistry
and sequence of events. The endonucleases involved in NER also
have documented functions in other DNA repair processes
(Bardwell et al., 1994; Gallego et al., 2000). It could be that these
enzymes are important for recognition and initiating DNA damage
signaling downstream. Even though these enzymes may function
in more general growth responses, they seem to have specific
responses to UV-B light. The core proteins that are required for
initial recognition of DNA damage based on studies in yeast and
humans are XPC, Rad23B, XPA, RPA, TFIIH, and CENTRIN2
(reviewed in Kunz et al., 2005). Analysis of their functions in
plants will help provide a comprehensive view of the exact steps
from direct photodimer detection to cell-cycle arrest or other
downstream effects. Plants contain genetic homologs of all of the
listed proteins except XPA. There has been limited research on their
biochemical functions in plants to determine whether they play a
similar role to that in other systems. More work is necessary to help
fully understand the involvement of ATM and ATR in UV-B-specific
DNA damage signaling. Because the persistence of photodimers
mostly leads to replication blocks, ATR is likely the major
component. Focus on its role should help determine the specific
link between UV-B-specific DNA damage recognition and ultimate
downstream consequences. The ultimate regulation or influence
on the cell cycle is a particularly interesting outcome of DNA
damage signaling. Inhibition of auxin transport could also be a
contributing factor to hypocotyl growth inhibition after UV-B
irradiation. Since auxin also influences the cell cycle, measuring
auxin transport could provide more insight into the regulation of
the UV-B-induced hypocotyl growth response through possible
interference from flavonoids (Stenlid, 1976; Jacobs and Rubery,
1988; Gardner and Sanborn,1989; Brown et al., 2001; Hectors et al.,
2012) or direct effects on the cell cycle. Exploration into how more
precisely UV-B or other environmental stimuli control the cell
cycle and the other components involved is an area for future
research.

Characterizing plant perception of UV-B and subsequent
responses is an important part in understanding how plants
respond to their light environment in general. The understanding
gained from this work may help researchers better predict how
changes in the light environment, such as potential increased
fluxes of UV-B, will affect plant growth to better determine how
plants will respond overall and adapt to a changing environment.
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