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nogenetically reproducing animal species, polyploidy is 
observed relatively frequently [for reviews, see White, 
1973; Fujita and Moritz, 2009]. In sexually reproducing 
animals, however, polyploid species are rare. Possible 
barriers to polyploidization include the presence of sex 
chromosomes [Muller, 1925], the prevalence of cross-fer-
tilization [White, 1973], and the histological complexity 
of advanced animals [Stebbins, 1950]. These barriers may 
explain why polyploidy is much rarer in animals than in 
plants [Orr, 1990; Otto and Whitton, 2000].

  Bisexual polyploid species of amphibians continue to 
be discovered. In no other class of vertebrates indepen-
dently evolved polyploids are so prevalent. Unlike early 
chordates, including jawed vertebrates and teleost fish, 
where polyploidization has played a major role in ances-
tral evolutionary processes [Ohno, 1970, 1974; Furlong 
and Holland, 2002; McLysaght et al., 2002; Taylor and 
Raes, 2005; Mable et al., 2011] and in reptiles where poly-
ploids are parthenogenetic [Hall, 1970; Bogart, 1980; 
Moritz, 1983], the Amphibia are the only vertebrates that 
have related diploid and polyploid bisexual species or 
populations. Natural amphibian polyploids have evolved 
independently in multiple families [Mable et al., 2011].

  Autopolyploidy and Allopolyploidy 

 Polyploids originate by autopolyploidization (ge-
nome duplication within a species) and allopolyploidiza-
tion (genome duplication associated with hybridization 
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 Abstract 
 This review summarizes the current status of the known ex-
tant genuine polyploid anuran and urodelan species, as well 
as spontaneously originated and/or experimentally pro-
duced amphibian polyploids. The mechanisms by which 
polyploids can originate, the meiotic pairing configurations, 
the diploidization processes operating in polyploid ge-
nomes, the phenomenon of hybridogenesis, and the rela-
tionship between polyploidization and sex chromosome 
evolution are discussed. The polyploid systems in some im-
portant amphibian taxa are described in more detail. 

 © 2015 S. Karger AG, Basel 

 Frequent Occurrence of Bisexual Polyploid 
Amphibians 

 Polyploidization has been documented across a wide 
range of animal taxa. These include turbellarians, anne-
lids, mollusks, crustaceans, and insects [Gregory and 
Mable, 2005], teleost fishes [Schultz, 1980; Le Comber 
and Smith, 2004], reptiles [Gregory and Mable, 2005], 
and amphibians [Bogart, 1980; Kawamura, 1984; King, 
1990; Schmid et al., 2010; Evans et al., 2012]. In parthe-
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among species). Individuals with autotetraploid ge-
nomes can develop by fusion of 2 diploid gametes to 1 
tetraploid zygote, or by suppression of the first mitosis 
following fertilization. If this process is repeated, speci-
mens with auto-octoploid karyotypes could result. In
recently evolved autopolyploids, the homologous chro-
mosomes of a quartet or octet are expected to exhibit 
identical chromosome banding patterns in somatic 
metaphases and to form multivalent pairing configura-
tions in meiosis. In contrast, in an allopolyploid genome, 
if the karyotypes of the parent species are sufficiently dif-
ferent, then the classical banding techniques applied on 
the somatic metaphases should show exclusively pairs of 
homologous chromosomes, which all (or almost all) 
form bivalents in meiosis. A molecular cytogenetic ap-
proach, genomic in situ hybridization, can offer insight 
into a variety of interesting scenarios of allopolyploidiza-
tion. A labeled genomic DNA probe of one of the diploid 
parental species and an unlabeled ‘blocking’ DNA probe 
from the other diploid parental species, for example, can 
be hybridized in situ (in an appropriate ratio) to the 
metaphase chromosomes of polyploid individuals. This 
has resulted in the detection of unexpected intergenom-
ic exchanges in polyploid and unisexual individuals of 
the North American salamanders of the genus  Amby-
stoma  [Bi and Bogart, 2006; Bi et al., 2007a, b, 2008, 
2009]. Such intergenomic exchanges generate new com-
binations of genes in the chromosomes, which contrib-
utes to the genetic variation and evolutionary flexibility 
of the unisexual individuals.

  Experimental Production of Amphibian Polyploids 

 It is well known that polyploidy is experimentally in-
ducible in amphibians under certain exceptional physical 
conditions. These conditions include temperature shock 
either by chilling or heat treatment of the eggs, punctur-
ing unfertilized eggs with a fine platinum needle, and hy-
drostatic compression of the eggs, both in Anura [Briggs, 
1947; Kawamura, 1951; Kawamura and Torkunaga, 1952; 
Dasgupta, 1962; Kawamura and Nishioka, 1963; Ni-
shioka and Ueda, 1983; Kashiwagi, 1993] and Urodela 
[Fankhauser and Griffiths, 1939; Griffiths, 1941; Fank-
hauser and Watson, 1942; Fankhauser et al., 1942; Fisch-
berg, 1944, 1945, 1948, 1958; Fankhauser and Humphrey, 
1950, 1959; Jaylet, 1972; Gaillard and Jaylet, 1975; Ferrier 
and Jaylet, 1978]. In Urodela, these treatments produced 
numerous triploid and pentaploid larvae in addition to a 
few tetraploid and aneuploid ones. The triploid and tet-

raploid larvae sometimes completed metamorphosis, 
whereas the aneuploid larvae were phenotypically abnor-
mal and died before or during metamorphosis. 
Fischberg [1945] was able to examine the effects of trip-
loidy and haploidy on the sexual differentiation of the 
newt  Ichthyosaura alpestris : of 27 triploid individuals, 13 
with normal testes exhibited intersexual features such as 
overdeveloped Müllerian ducts, unpigmented Wolffian 
ducts, and incomplete development of secondary sexual 
characteristics, while 14 animals had sterile ovaries with 
sporadic oocytes, but were normal females with respect to 
the remaining sexual characteristics.

  Experimentally produced amphibian triploids proba-
bly originate by inhibition of the formation or the release 
of the second polar body in the egg. After fertilization, the 
restitution nucleus is composed of 2 sets of maternal 
chromosomes and 1 set of paternal chromosomes. The 
mode of origin of the tetraploid and pentaploid individu-
als is unclear. In animals with a definite sex-determining 
mechanism, either XY ♂ /XX ♀  or ZZ ♂ /ZW ♀ , triploidy has 
a striking effect on sex determination and differentiation. 
While the homogametic sex is normal, the heterogametic 
sex is changed to an intersexual condition [Bridges, 1921; 
Goldschmidt, 1932].

  The Polyploid Amphibian Species 

 Previous reviews on amphibian polyploidy were pub-
lished by Bogart [1980], Schmid [1980], Kawamura 
[1984], King [1990], Schmid et al. [2010], and Evans et 
al. [2012]. A wealth of data on particular species or gen-
era and numerous references can be obtained in these 
reports. To the best of our knowledge, the present review 
contains the most complete compilation of polyploid 
amphibians discovered to date. Naturally occurring 
polyploid amphibians, including spontaneously origi-
nated and/or experimentally produced amphibian poly-
ploids are presented in  table  1 . In this list, changes of 
family and species names that were introduced after the 
publication of the ploidy data are incorporated. These 
changes are regularly updated in the electronic database 
of Frost [2014]. To date, natural polyploids and sponta-
neously originated individuals were found to occur in 15 
anuran families (Alsodidae, Arthroleptidae, Bufonidae, 
Ceratophryidae, Dicroglossidae, Hylidae, Leiopelmati-
dae, Leptodactylidae, Lymnodynastidae, Microhylidae, 
Odontophrynidae, Pipidae, Pyxicephalidae, Ranidae, 
and Strabomantidae), and in 4 urodelan families (Am-
bystomatidae, Plethodontidae, Salamandridae, and Sire-
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Order, family, species, species complexa Ploidy level Referencesn

Anura

Alsodidae
Eupsophus vertebralis 3n = 42j Formas, 1993

Arthroleptidae
Astylosternus diadematus 4n = 54 Bogart and Tandy, 1976, 1981

Bufonidae
Amietophrynus poweri 3n = 30j Schmid, 1978
Amietophrynus asmarae 4n = 40 Bogart and Tandy, 1976; Bogart, 1980; Tandy et al., 1982
Bufotes viridis complex 
prior to revision by Stöck et al., 2001b 3n = 33 Stöck et al., 1999, 2001a; Borkin et al., 2001; Cavallo et al., 2002
Bufotes viridis complex
prior to revision by Stöck et al., 2001b 4n = 44 Bogart, 1972; Mazik et al., 1976; Pisanets, 1978; Toktosunov, 1984; 

Borkin et al., 1986a, b, 2001; Orlova and Uteshev, 1986; Roth and 
Ráb, 1986, 1987; Wu and Zhao, 1987; Borkin and Kuzmin, 1988; 
Stöck, 1998; Stöck et al., 2001a, 2006

The following taxa are presently included in the Bufotes viridis complex
Bufotes baturae 3n = 33 Stöck et al., 1999, 2002, 2012; Betto-Colliard et al., 2015
Bufotes pseudoraddei 3n = 33k Stöck et al., 1999
Bufotes zugmayeri 3n = 33k Stöck et al., 2006
Bufotes oblongus danatensis 4n = 44 Stöck et al., 2001b, 2005
Bufotes oblongus oblongus 4n = 44 Stöck et al., 2001b, 2005
Bufotes pewzowi pewzowi 4n = 44 Stöck et al., 2001b, 2005, 2010; Betto-Colliard et al., 2015
Bufotes pewzowi strauchi 4n = 44 Stöck et al., 2001b, 2005, 2010
Bufotes pewzowi taxkorensis 4n = 44 Stöck et al., 2001b, 2005, 2010
Bufotes pewzowi unicolor 4n = 44 Stöck et al., 2001b, 2005, 2010

Ceratophryidae
Ceratophrys aurita 8n = 104 Beçak, 1967; Beçak et al., 1967
Ceratophrys ornata 8n = 104 Bogart, 1967; Barrio and Rinaldi de Chieri, 1970a; Bogart and 

Wasserman, 1972
Ceratophrys joazeirensis 8n = 104 Vieira et al., 2006

Dicroglossidae
Hoplobatrachus occipitalis 4n = 52 Bogart and Tandy, 1976, 1981

Hylidae
Hyla versicolor 4n = 48 Wasserman, 1970; Bogart and Wasserman, 1972; Bachmann and 

Bogart, 1975; Cash and Bogart, 1978; Wiley, 1982; Anderson, 
1986, 1991

Hyla versicolor × H. chrysoscelisb 3n = 36 Bogart and Bi, 2013
Phyllomedusa tetraploidea 4n = 52 Beçak et al., 1970b; Batistic et al., 1975; Pombal and Haddad, 

1992; Haddad et al., 1994

Leiopelmatidae
Leiopelma hochstetteri 3n = 33j Green et al., 1984

Leptodactylidae
Pleurodema bibroni 4n = 44 Barrio and Rinaldi de Chieri, 1970b; Kuramoto, 1972; Veloso et 

al., 1973
Pleurodema kriegi 4n = 44 Barrio and Rinaldi de Chieri, 1970b; Bogart and Wasserman, 1972 
Pleurodema cordobae 8n = 88 Valetti et al., 2009

Lymnodynastidae
Neobatrachus aquilonius 4n = 48 Mahony and Roberts, 1986
Neobatrachus centralis 4n = 48 Mahony and Roberts, 1986
Neobatrachus kunapalari 4n = 48 Mahony and Roberts, 1986
Neobatrachus sudelli 4n = 48 Mahony and Robinson, 1980; Mahony and Roberts, 1986

Microhylidae
Aphantophryne pansa 4n = 52 Kuramoto and Allison, 1989
Chiasmocleis leucosticta 4n = 48 Kasahara and Haddad, 1997
Scaphiophryne gottlebei 4n = 52 Vences et al., 2002

Table 1.  Occurrence of polyploidy in Amphibia

D
ow

nl
oa

de
d 

by
: 

19
8.

14
3.

60
.1

 - 
8/

30
/2

01
5 

3:
49

:3
8 

PM



 Schmid/Evans/Bogart

 

Cytogenet Genome Res 2015;145:315–330
DOI: 10.1159/000431388

318

Table 1 (continued)

Order, family, species, species complexa Ploidy level Referencesn

Odontophrynidae
Odontophrynus americanus 4n = 44 Beçak et al., 1966, 1967, 1970a; Bogart, 1967; Martino and Sinsch, 

2002

Pipidae
Species with Xenopus tropicalis-type karyotypes (Silurana group)

X. tropicalis 3n = 30j Schmid and Steinlein; this issue
X. epitropicalis 4n = 40 Tymowska and Fischberg, 1982; Tymowska, 1991
X. new tetraploid 1 4n = 40 Tymowska, 1991; Evans et al., 2004
X. new tetraploid 2 4n = 40 Evans et al., 2004

Species with Xenopus laevis-type karyotypes (Xenopus group)
X. borealis 4n = 36 Tymowska and Fischberg, 1973; Tymowska, 1976, 1977, 1991
X. clivii 4n = 36 Tymowska and Fischberg, 1973; Tymowska, 1977
X. fraseri 4n = 36 Tymowska and Fischberg, 1973; Tymowska, 1977
X. gilli 4n = 36 Tymowska and Fischberg, 1973; Tymowska, 1977, 1991
X. laevis 4n = 36 Wickbom, 1945; Weiler and Ohno, 1962; Morescalchi, 1963; 

Tymowska and Kobel, 1972; Tymowska, 1977, 1991
X. largeni 4n = 36 Tymowska, 1991
X. muelleri 4n = 36 Tymowska and Kobel, 1972; Tymowska and Fischberg, 1973; 

Tymowska, 1991
X. petersiic, d 4n = 36 Tymowska and Fischberg, 1973; Tymowska, 1977, 1991
X. powerid 4n = 36 Tymowska, 1991
X. pygmaeus 4n = 36 Loumont, 1986
X. sp. nov. VIe 4n = 36 Tymowska, 1991
X. victorianusd 4n = 36 Tymowska and Fischberg, 1973; Tymowska, 1977, 1991
X. amieti 8n = 72 Kobel et al., 1980
X. andrei 8n = 72 Loumont, 1983
X. boumbaensis 8n = 72 Loumont, 1983
X. itombwensisf 8n = 72 Evans et al., 2008
X. lenduensis 8n = 72 Evans et al., 2011
X. vestitus 8n = 72 Tymowska, 1976; Tymowska et al., 1977
X. wittei 8n = 72 Tymowska, 1976; Tymowska and Fischberg, 1980
X. sp. nov. X 8n = 72 Tymowska, 1991
X. longipes 12n = 108 Loumont and Kobel, 1991
X. ruwenzoriensis 12n = 108 Tymowska and Fischberg, 1973; Tymowska, 1991
X. cf. boumbaensis 12n = 108 Evans, 2007
X. sp. nov. VIIIg 12n = 108 Tymowska, 1991

Pyxicephalidae
Tomopterna tandyi 4n = 52 Bogart and Tandy, 1976, 1981; Channing and Bogart, 1996

Ranidae
Glandirana rugosa 3n = 39l Kashiwagi, 1993
Lithobates pipiens 3n = 39l Briggs, 1947
Lithobates chiricahuensis × L. pipiensb 3n = 39 Green and Delisle, 1985
Pelophylax esculentush 3n = 39 Uzzell and Berger, 1975; Heppich, 1978; Heppich and Tunner, 

1979
Pelophylax esculentush 4n = 52j Borkin et al., 2004
Pelophylax esculentush 5n = 65j Hermaniuk et al., 2013
Pelohylax nigromaculatus 3n = 39l Kawamura, 1951
Pelohylax nigromaculatus 4n = 52l Kawamura, 1939
Pelohylax nigromaculatus 6n = 78l Kawamura, 1939
Rana japonica 3n = 39l Kawamura and Tokunaga, 1952

Strabomantidae
Holoaden luederwaldti 3n = 27j Campos et al., 2012
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Order, family, species, species complexa Ploidy level Referencesn

Urodela

Ambystomatidaei

Ambystoma mexicanum 3n = 42l Fankhauser and Humphrey, 1950, 1959
Ambystoma mexicanum 4n = 56l Fankhauser and Humphrey, 1959
Ambystoma nothagenes (unisexual LTTi) 3n = 42 Kraus, 1985
Ambystoma platineum (unisexual LJJ) 3n = 42 Uzzell, 1963, 1964; Sessions, 1982
Ambystoma tremblayi (unisexual LLJ) 3n = 42 Uzzell, 1963, 1964; Sessions, 1982
Ambystoma (unisexual LLT) 3n = 42 Bogart et al., 1985
Ambystoma (unisexual LTT) 3n = 42 Downs, 1978
Ambystoma (unisexual LLLT) 4n = 56 Bogart and Licht, 1986
Ambystoma (unisexual LLTT) 4n = 56 Bogart and Licht, 1986
Ambystoma (unisexual LTTT) 4n = 56 Bogart and Licht, 1986
Ambystoma (unisexual LLLJ) 4n = 56 Bogart and Klemens, 1997
Ambystoma (unisexual LLJJ) 4n = 56 Bogart and Klemens, 1997
Ambystoma (unisexual LJJJ) 4n = 56 Morris and Brandon, 1984
Ambystoma (unisexual LJJB) 4n = 56 Bogart et al., 2009
Ambystoma (unisexual LTJTi) 4n = 56 Bogart, 2003
Ambystoma (unisexual LTTTi) 4n = 56 Bogart et al., 1987
Ambystoma (unisexual LLLLJ) 5n = 70 Lowcock and Murphy, 1991

Plethodontidae
Eurycea bislineata 3n = 42j Fankhauser, 1939
Eurycea bislineata 4n = 56j Fankhauser, 1939

Salamandridae
Cynops pyrrhogaster 3n = 36j, l Fankhauser et al., 1942
Ichthyosaura alpestris 3n = 36l Fischberg, 1944, 1945, 1948, 1958
Lissotriton vulgaris 3n = 36j Böök, 1940; Litvinchuk et al., 1998
Notophthalmus viridescens 3n = 36j, l Fankhauser and Griffiths; 1939; Fankhauser, 1941; Griffiths, 1941; 

Fankhauser and Watson, 1942
Pleurodeles waltl 3n = 36l Jaylet, 1972; Gaillard and Jaylet, 1975; Ferrier and Jaylet, 1978

Sirenidae
Pseudobranchus striatus 4n = 48m Morescalchi et al., 1986
Pseudobranchus striatus 6n = 64m Morescalchi and Olmo, 1974; Morescalchi et al., 1986
Siren intermedia 4n = 46 Morescalchi and Olmo, 1974; Morescalchi et al., 1986
Siren lacertina 4n = 52 Morescalchi and Olmo, 1974; Morescalchi, 1975

Included are the naturally occurring polyploid species and spontaneously originated and/or experimentally produced poly-
ploid individuals.

 a Changes of family and species names introduced after publication of the ploidy data were taken into consideration and are 
regularly updated in the electronic database of Frost [2014].

b Natural allotriploid hybrids.
c Species called X. sp. nov. IX by Tymowska [1991].
d For nomenclature, see Furman et al. [2015].
e Species called ‘X. new tetraploid’ by Evans et al. [2004].
f In the review of Schmid et al. [2010], this species is erroneously listed as dodecaploid.
g According to Evans et al. [2012], this dodecaploid species status may be the same as X. cf. boumbaensis; however, unpublished 

data [B.J. Evans] indicates that these 2 dodecaploid species are in fact each a distinct species.
h Pelophylax esculentus is a hybrid of Pelohylax lessonae and Pelohylax ridibundus.
i Unisexual, all-female salamanders in the North American genus Ambystoma are mostly polyploid and contain nuclear ge-

nomes of 2 – 4 different species that can include Ambystoma laterale (L), A. jeffersonianum (J), A. texanum (T), A. tigrinum (Ti), 
or A. barbouri (B). The unisexuals all have a similar mtDNA and always include at least 1 L genome in their nuclei. The various 
genomic combinations and the reproductive system used by unisexual Ambystoma are described by Bogart [2003] and Bogart et 
al. [2007, 2009].

j Spontaneously originated polyploid individual(s) found in wild populations.
k Unclarified whether the entire taxon is polyploid or only many individuals in the population.
l Experimentally obtained polyploid individuals.
m Results not supported by analyses of Moler and Kezer [1993].
n Only the relevant initial cytogenetic studies, revisions and reviews are listed.

Table 1 (continued)

D
ow

nl
oa

de
d 

by
: 

19
8.

14
3.

60
.1

 - 
8/

30
/2

01
5 

3:
49

:3
8 

PM



 Schmid/Evans/Bogart

 

Cytogenet Genome Res 2015;145:315–330
DOI: 10.1159/000431388

320

nidae). It seems that polyploidy is a widespread phe-
nomenon in the orders Anura and Urodela, that has 
played a role in speciation and evolution. No polyploids 
have yet been found in species of the order Gymnophi-
ona, but compared to anurans and urodelans, relatively 
low numbers of individuals have been cytogenetically 
analyzed.

   Bufotes viridis  Complex 

 Palearctic toads of the  Bufotes viridis  complex ( table 1 ) 
form a monophyletic radiation of at least 12 major mito-
chondrial DNA haplotype groups [Stöck et al., 2006]. 
There are several cases of range overlap and interactions 
through hybridization and polyploidization [Colliard et 
al., 2010; Dufresnes et al., 2014]. This radiation includes 
bisexually reproducing diploid (2n = 22), triploid (3n = 
33) and tetraploid (4n = 44) species, all of which occur in 
Central Asia [Stöck et al., 2010]. Of particular interest was 
the discovery of the all-triploid anuran species  Bufotes ba-
turae  ( table 1 ) [Stöck et al., 1999, 2002, 2012; Betto-Col-
liard et al., 2015]. This toad species maintains a pure trip-
loid status by an exceptional mechanism that modifies 
meiosis in males and females in such a way that both par-
ents contribute unequal amounts of their genomes (n ♂  + 
2n ♀ ) to their triploid offspring [Stöck et al., 2002, 2012; 
Betto-Colliard et al., 2015]. In other vertebrates, the very 
rare occurrence of triploidy is coupled with infertility or 
unisexuality, or requires the coexistence of individuals 
with different degrees of ploidy in the reproductive com-
munity.

  Genera  Ceratophrys ,  Odontophrynus  and  Pleurodema  

 South American frogs belonging to the families Cera-
tophryidae, Odontophrynidae and Leptodactylidae were 
among the first naturally occurring polyploid species 
found in vertebrates ( table 1 ). Saez and Brum [1960] ob-
served high chromosome numbers in  Odontophrynus 
americanus  and  Ceratophrys ornata  but did not realize 
their polyploid nature. Few years later, Beçak et al. [1966] 
recognized the tetraploid status of  O. americanus . Exten-
sive studies on many populations of  O. americanus  in 
Brazil, Uruguay and Argentina showed that this species 
consists of diploid (2n = 22) and tetraploid (4n = 44) pop-
ulations [Beçak et al., 1967, 1970a; Bogart, 1967; Barrio 
and Rinaldi de Chieri, 1970a; Barrio and Pistol de Rubel, 
1972]. The tetraploid  O. americanus  is now considered to 

be included in a complex of species that contain diploid 
members [Rosset et al., 2006; Grenat et al., 2009]. Beçak 
et al. [1967] demonstrated that the Brazilian  Ceratophrys 
dorsata  (now  C. aurita ) is an octoploid species (8n = 104) 
probably derived from diploid ceratophryidids with 2n = 
26 chromosomes. In  C. ornata , another species of this ge-
nus from Argentina, both octoploid as well as diploid 
populations were discovered [Bogart, 1967; Bianchi and 
Molina, 1968; Barrio and Rinaldi de Chieri, 1970a; Bogart 
and Wasserman, 1972]. Later, the diploid  C. ornata  was 
described as a distinct species,  C. cranwelli , by Barrio 
[1980], and a third octoploid species,  C. joazeirensis , was 
reported by Mercadal de Barrio [1986]. Clearly, many of 
the previously recognized diploid-polyploid populations 
are, in reality, diploid and polyploid cryptic species, which 
detract from the notion that polyploidy may arise spon-
taneously as an artifact in populations of diploid individ-
uals. To better understand the evolution of ploidy levels 
in this group, it will be useful to know if the 3 species of 
 Ceratophrys  had an octoploid common ancestor or if they 
evolved independently from diploids, tetraploids, or per-
haps hexaploids.

  Comparative meiotic analyses in male and female in-
dividuals of diploid (2n = 22) and tetraploid (2n = 44)  O. 
americanus , diploid  C. cranwelli  (2n = 26) and octoploid 
 C. ornata  (2n = 104) showed that diploid females form 
more chiasmata in the paired chromosome arms than 
diploid males and polyploids of both sexes [Rahn and 
Martínez, 1983].

  It has been assumed that the polyploid populations of 
the South American  Odontophrynus  and  Ceratophrys  
evolved recently by autopolyploidization [Beçak et al., 
1967, 1970a, b; Bogart, 1980]. Their conventionally 
stained karyotypes show homogeneity within the chro-
mosome groups, and the homologous chromosomes still 
pair as multivalents in meiosis. In accordance with this, 
electrophoretic analyses on 9 enzyme systems yielded no 
detectable polymorphisms in tetraploid  O. americanus  
[Schwantes, 1974]. However, the results obtained by C-
banding show that distinct heterogeneities exist in the 
banding patterns in the quartets 1–4, 6 and 11 of  O. ame-
ricanus  and the octets 2, 4 and 5 of  C. ornata  [Schmid et 
al., 1985]. In the chromosomes of the quartets 3 and 4 of 
 O. americanus , there are even slight differences in the 
arm ratios, which are visible in conventionally stained 
preparations. Ruiz et al. [1981] performed an extensive 
cytogenetic study on several diploid and tetraploid popu-
lations in the  O. americanus  complex from Brazil and 
Uruguay. These authors also found a tetraploid individ-
ual in which 2 of the chromosomes of the quartet 4 can 
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be differentiated from the 2 other homologues by the po-
sition of constitutively heterochromatic regions. It is re-
markable that C-banding subdivides each of the quartets 
3, 4 and 11 of  O. americanus  into exactly 2 pairs of ho-
mologous chromosomes and each of the octets 2, 4 and 
5 of  C. ornata  into 2 quartets of homologues. The conclu-
sion could be drawn that these frogs are not autopoly-
ploids as was previously assumed, but rather are of hy-
brid (allopolyploid) origin. But, the high frequency of 
meiotic multivalent pairing configurations in  O. ameri-
canus  and  C. ornata , which are characteristic for auto-
polyploid organisms, brings this inference into question. 
The alternative explanation is that the differences in the 
banding patterns within the quartets and octets in ques-
tion developed gradually after autopolyploidization. It is 
known that polyploid genomes generally become func-
tionally diploid in the course of evolution (diploidiza-
tion, see below).

  Genus  Xenopus  

 Polyploid species of the African clawed frogs of the 
genus  Xenopus  ( table 1 ) are thought to have an entirely 
(or almost entirely) hybrid (allopolyploid) origin [for re-
view, see Evans, 2008]. Amazingly, polyploid species ap-
pear to have originated independently by allopolyploidi-
zation on multiple occasions, with tetraploids arising 
twice (once in the  Silurana  group and once in the  Xeno-
pus  group as defined by Kobel et al. [1996]), octoploids 
arising at least 3 times, and dodecaploids arising at least 
3 times [Evans, 2007]. Unpublished data (B.J. Evans) has 
identified additional dodecaploid species and suggests 
that the actual number of independent polyploidization 
events is even higher than this. In these species, the anal-
yses of male meiosis demonstrate almost exclusively bi-
valents [Tymowska, 1991]. The rare multivalent pairing 
configurations probably have modest genomic reper-
cussions in terms of crossover events between the dupli-
cated pairs of homologous chromosomes per genera-
tion, and are not more frequent than in experimentally 
produced hybrids [Müller, 1977]. Analyses of the con-
ventionally stained tetraploid karyotype of  X. epitropica-
lis  have shown that the chromosomes can be grouped 
into sets of 4 chromosomes (quartets). But, C-banding 
revealed heterogeneity of the constitutive heterochro-
matin within all quartets, dividing each of them into 2 
pairs of homologous chromosomes [Tymowska and
Fischberg, 1982]. In contrast to C-banding, high-resolu-
tion BrdU/dT-replication bands in metaphase chromo-

somes of diploid  X. tropicalis  (2n = 20) and both tetra-
ploid  X. epitropicalis  and  X.  new tetraploid 1 (4n = 40) 
showed the existence of perfect replication homoeolo-
gies in all 10 chromosome pairs and quartets of the 3 
species; no apparent replication asynchronies could be 
detected [Schmid and Steinlein, this issue]. Considering 
the allopolyploid origin of  X. epitropicalis  and  X.  new 
tetraploid 1, this observation supports the conclusion 
that the 2 ancestral diploid parental species were closely 
related with extremely similar, if not identical, karyo-
types. The replication banding patterns in their euchro-
matic chromosome regions were still the same, whereas 
the fast-evolving and genetically inert constitutive het-
erochromatin had already diverged.

   Hyla versicolor  –  H. chrysoscelis  Complex 

 Tetraploid  Hyla versicolor  ( table  1 ) and diploid  H. 
chrysoscelis  are cryptic species that are widely distributed 
in eastern North America [Bogart, 1980]. The 2 species 
cannot be distinguished by morphology, but they have 
distinctly different vocalizations that were originally used 
to differentiate them [Johnson, 1966] prior to their iden-
tification as a diploid  (H .  chrysoscelis)  and tetraploid  (H. 
versicolor)  species pair [Wasserman, 1970; Bogart and 
Wasserman, 1972]. Based on mitochondrial sequences 
[Ptacek et al., 1994],  H. versicolor  arose at least 3 times, 
twice from  H. chrysoscelis  and once from an unknown 
maternal ancestor. Using mitochondrial and nuclear 
markers, Holloway et al. [2006] also suggested that tetra-
ploids arose multiple times from  H. chrysoscelis  and from 
2 other extinct lineages. Rather than tetraploidy arising de 
novo from diploid ancestors, the available mitochondrial 
data would also support a ‘triploid bridge hypothesis’ 
[Ralin and Selander, 1979; Bogart and Bi, 2013] where 
new tetraploids arise from triploid hybrids.

  Terraranan Frogs 

 The unranked anuran taxon Terrarana is an immense 
group of frogs that includes the 5 families Brachycepha-
lidae, Ceuthomantidae, Craugastoridae, Eleutherodacty-
lidae, and Strabomantidae [Hedges et al., 2008; Heinicke 
et al., 2009] and nearly 1,000 recognized species, which is 
one sixth of the 5,984 known species of anurans [Am-
phibiaWeb, 2015]. New species of terraranans are being 
discovered and described at an extraordinary rate of 
about 15–25 species per year. In a monograph on terra-
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ranan frogs, 2,548 specimens belonging to 227 species of 
Terrarana were cytogenetically examined [Schmid et al., 
2010]. Furthermore, all the previously published cytoge-
netic analyses on at least 1,673 terraranan specimens of 
138 species were reevaluated (many of the early reports 
do not indicate the number of specimens examined). It 
came as a surprise that all data accumulated in 2010 in-
dicated that polyploidy seems to be absent in the huge 
taxon Terrarana. Not a single polyploid individual was 
found among a total of at least 4,221 cytogenetically ex-
amined terraranan specimens. The only terraranan spe-
cies in which the existence of polyploidy had ever been 
discussed is the complex case of  Haddadus binotatus  
from Brazil [Beçak and Beçak, 1974]. This craugastorid 
has a moderate diploid chromosome number of 2n = 22, 
but its chromosomes are by far the largest (in terms of 
length, width and degree of condensation) of all terra-
ranan species so far examined. Concomitantly, the ge-
nome size of this species (27 pg DNA/nucleus) is the larg-
est in the taxon, the nuclear volume in erythrocytes is 
distinctly larger than in the other terraranans, and mul-
tivalent ring configurations (up to dodecavalents) are fre-
quently formed in male meiosis. These observations led 
Beçak and Beçak [1974] to consider the possibility that 
the karyotype of  H. binotatus  originated by polyploidiza-
tion combined with intercalary duplications. Subse-
quently, the chromosome number was reduced by non-
reciprocal translocations as indicated by the multiple 
meiotic multivalent ring configurations. But all the ex-
amined species of the family Craugastoridae possess dip-
loid chromosome numbers in the range of 2n = 18 to
2n = 24 and fundamental numbers in the range of FN = 
32 to FN = 44, which are very similar values to those of 
 H. binotatus  (2n = 22, FN = 38). Therefore, it is unlikely 
that the  H. binotatus  karyotype was derived from a poly-
ploid ancestor that experienced a series of multiple non-
reciprocal translocations. It is more conceivable that the 
unusually large genome of  H. binotatus  is the result of 
considerable intercalary amplification of middle repeti-
tive DNA sequences, as has already been demonstrated 
to exist in other Amphibia. An experimental approach to 
test this possibility is to subject  H. binotatus  DNA to re-
association kinetic experiments [Baldari and Amaldi, 
1976]. Nevertheless, as has been shown by Siqueira et al. 
[2004] and Schmid et al. [2010], a translocation hetero-
zygosity involving 2 chromosome pairs exists in the  H. 
binotatus  population. This reciprocal translocation, how-
ever, only accounts for the meiotic ring quadrivalents and 
not for multivalents with more than 4 involved chromo-
somes. Therefore, it has been suggested [Siqueira et al., 

2004] that multiple reciprocal and terminal transloca-
tions between non-homologous chromosomes are pres-
ent in the  H. binotatus  karyotype. Such small reciprocal 
translocations between terminal chromosome regions 
have also been proposed for explaining the multivalent 
configurations in male meiosis of the frog  Physalaemus 
petersi  [Lourenço et al., 2000]. More recently, meiotic 
ring multivalents, with the participation of nucleolus or-
ganizer region (NOR)-bearing chromosomes, have been 
described for the Brazilian hylid frogs  Aplastodiscus albo-
frenatus  and  A. arildae , which were again traced back to 
multiple terminal translocations [Carvalho et al., 2009]. 
An alternative and simple explanation for such terminal 
meiotic associations between non-homologous bivalents 
is non-chiasmatic ectopic pairing between heterochro-
matic telomeric regions. Such terminal associations are 
common in many animal species as has been shown by 
Drets and Stoll [1974] and John and King [1982, 1985]. 
Furthermore, Callan [1991] has demonstrated that the 
telomeres of homologous, but also of non-homologous 
chromosomes, are frequently fused to one another, but 
dissociate by first meiotic metaphase in meiosis of diploid 
urodelan and anuran species. Despite the presumption 
that polyploidy may be absent in terraranans, Campos et 
al. [2012] reported the first spontaneous triploid individ-
ual in the strabomantid  Holoaden luederwaldti  ( table 1 ). 
Among 7 individuals (5 ♂ , 2 ♀ ) collected in the Atlantic 
Forests of Brazil (Campos de Jordão municipality), 6 
were diploid (2n = 18) and 1 male was triploid (3n = 27) 
in all somatic tissues analyzed. The preparations obtained 
from testes showed few unidentifiable meiotic stages. No 
morphological difference between the diploid specimens 
and the triploid animal was apparent. Taking together 
the sampling numbers in Schmid et al. [2010] and the 
finding of Campos et al. [2012], the proportion of spon-
taneous polyploids in natural terraranan populations un-
der normal environmental conditions is approximately
1:   4,200 ( ∼ 0.025%). This proportion has limited exten-
sion to other amphibians that inhabit temperate zones of 
the northern hemisphere and develop during spring 
when temperatures can drop abruptly to temperatures 
below 0   °   C. As described above, chilling of amphibian 
eggs can induce polyploidy. Therefore, the rate of spon-
taneously developing polyploids in these species can be 
distinctly higher than in the neotropical Terrarana. Thus, 
Richards and Nace [1977] detected varying and occasion-
ally large numbers of unreduced diploid eggs laid by in-
dividual female specimens of the frog  Lithobates pipiens  
and concluded that these eggs, when fertilized, would 
give rise to triploid embryos.
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   Pelohylax esculentus  –  P. lessonae  –  P. ridibundus  
Complex 

 Hybridization of 2 diploid species may lead to poly-
ploidy, because differences between 2 divergent genomes 
can lead to meiotic disturbances and, in turn, to aneu-
ploid gametes [Vrijenhoek, 1989]. Thus, single cases of 
viable allotriploid hybrids were detected among offspring 
of natural crosses between the frogs  Lithobates chirica-
huensis  and  L. pipiens  and between  H. versicolor  and  H. 
chrysoscelis  ( table 1 ). An unusual case of polyploidy oc-
curs in the frog  Pelophylax esculentus  ( table 1 ). This am-
phibian exists in numerous diploid and triploid popula-
tions from France eastward into European Russia and 
from southern Scandinavia into Italy.  P. esculentus  is a 
hybrid between the bisexual species  P. lessonae  (LL ge-
nome) and  P. ridibundus  (RR genome) and is sympatric 
with the parental species over much of its range. Both spe-
cies and the hybrid can be freely crossed in laboratory 
conditions, giving progeny of varying viability [Berger, 
1988; Berger et al., 1994]. Diploid individuals (LR ge-
nome) depend on gametes from one or the other parental 
species. In the  lessonae-esculentus  system, frogs exclude 
the L genome during gametogenesis and produce exclu-
sively clonal R gametes (hybridogenesis, hemiclonal re-
production). Therefore, they have to cross with  P. lessonae 
 to produce new hybrids [for reviews, see Graf and Polls 
Pelaz, 1989; Christiansen, 2009]. Interhybrid crossings 
yield RR offspring that usually die before reaching sexual 
maturity, because of homozygosity for deleterious muta-
tions [Vorburger, 2001; Guex et al., 2002; Christiansen, 
2009]. A reverse form of this system operates in the  ridi-
bundus-esculentus  system [for reviews, see Graf and Polls 
Pelaz, 1989; Christiansen, 2009]. Here LR frogs predomi-
nantly produce L gametes and, therefore, have to cross 
with  P. ridibundus  in order to form new hybrids.

   P. ridibundus  does not always exist in stable diploid 
systems. In many geographic regions, the diploid parental 
species (LL and RR genomes), diploid hybrids (LR ge-
nomes), and triploid hybrids (LLR and LRR genomes) are 
present [Rybacki and Berger, 2001]. In the northern part 
of the range (Sweden, Denmark, northern Germany, 
northern Poland), diploids and triploids often form all-
hybrid populations [Regnier and Neveu, 1986; Zavadil, 
1994; Lada et al., 1995; Mikulícek and Kotlík, 2001; Ry-
backi and Berger, 2001; Christiansen et al., 2005; Arioli, 
2007; Jakob, 2007; Christiansen and Reyer, 2009; Arioli et 
al., 2010]. Spontaneous cases of tetraploidy were reported 
in some populations, but it is not known if they are of any 
importance for the genetic dynamics of these populations 

[Borkin et al., 2004; Christiansen, 2009]. A detailed over-
view on the hybridogenic reproduction mode of  P. escu-
lentus  in the various populations, the types, ploidy degree 
and frequencies of different gametes, as well as the XY 
sex-determining system was published by Christiansen et 
al. [2005] and Christiansen [2009].

  Genus  Neobatrachus  

 There are 9 extant species of Australian lymnodynas-
tid frogs in the genus  Neobatrachus . 5 species  (N. fulvus , 
 N. pelobatoides ,  N .  pictus, N .  sutor ,  N. wilsmorei)  are dip-
loid (2n = 24), and 4 species  (N. aquilonius ,  N. centralis , 
 N. kunapalari ,  N. sudelli)  are tetraploid (4n = 48;  table 1 ). 
The 4 tetraploid species inhabit wide areas of Australia 
allopatrically. According to Mahony and Roberts [1986], 
the origin of the tetraploids was by autopolyploidy in a 
single event. They did not find any indication of diploidi-
zation (see below) in the tetraploid karyotypes. In the dia-
kinesis stage of meiosis, in male tetraploids a high fre-
quency of tetravalents was observed; 70% of the diakine-
ses contained more tetravalents than bivalents. Some of 
the diploid species occur sympatrically with the tetraploid 
species, and in 2 localities, triploid hybrids were detected. 
Additionally, a single pentaploid specimen was found.

  Diploidization of Polyploid Genomes 

 Diploidization processes operating in polyploid ge-
nomes cause divergent development of originally identi-
cal chromosomes and genes. They lead to strict formation 
of bivalents in meiosis and disomic segregation rates. 
Diploidized genomes are polyploid with respect to the 
amount of genetic material and the number of gene cop-
ies, but diploid with respect to the nature of cell division 
in that each chromosome pairs with only 1 other partner 
[Ohno, 1970; Ferris and Whitt, 1977; Leipoldt, 1983; Sol-
tis and Soltis, 1999; Wendel, 2000; Gregory and Mable, 
2005; Braasch and Postlethwait, 2012; Roulin et al., 2012]. 
Diploidization must have been important to stabilize the 
benefits associated with polyploidization, such as the cre-
ation of genes with the potential to evolve novel functions 
[Ohno, 1970]. For the tetraploid Asian bufonid species 
and subspecies ( table 1 ) both allopolyploid and autopoly-
ploid modes of origin have been proposed, but this is still 
controversial. Whether the presence of unusual quina-
crine-bright heterochromatic bands in single chromo-
somes of these tetraploid bufonid species and subspecies 
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reflects an ancestral polymorphism of constitutive het-
erochromatin, or is evidence of diploidization, or is a sign 
of hybridization between different taxa (as closely related 
mitochondrial DNA sequences in diploid and tetraploid 
specimens suggest), is still unknown [for review, see Stöck 
et al., 2005].

  The preferential formation of bivalents instead of 
multivalents is the prerequisite for diploidization. There-
fore, a structural heterogeneity must be created among 
the homologous chromosomes in the polyploid karyo-
type. Careful studies on the karyotypes of phylogeneti-
cally tetraploid fishes of the orders Isospondyli and Os-
tariophysi have shown that such structural heterogene-
ities can originate by centric fusions and pericentric 
inversions of the chromosomes [Ohno, 1970, 1974; Ohno 
et al., 1968]. It has been concluded that much smaller 
changes than the inter- and intrachromosomal rear-
rangements mentioned above suffice to initiate the dip-
loidization process [Schmid et al., 1985]. These definite 
differences between the original homologues in some 
quartets of  O. americanus  and octets of  C. ornata  are 
manifested in the size, staining intensity, and position of 
some C-bands. It is generally accepted that constitutive-
ly heterochromatic regions are enriched with genetically 
inert DNA [Arrighi and Saunders, 1973]. Furthermore, 
closely related species may possess entirely different sat-
ellite DNAs [Walker, 1968; Hennig and Walker, 1970; 
Arrighi and Saunders, 1973], as well as different C-band-
ing patterns in their karyotypes. Apparently, the evolu-
tionary changes occurring in the highly repeated DNA 
sequences located in the constitutive heterochromatin 
can be very rapid because they are not subject to selective 
pressure. This could also explain why some quartets and 
octets of  O. americanus  and  C. ornata , which are sup-
posed to be recently evolved autopolyploids, show het-
erogeneities in their heterochromatin patterns even 
though other chromosome parameters (length, arm ra-
tio, constrictions) are usually unchanged.

  The number of active NORs is important with respect 
to a possible diploidization of the gene activity in the ge-
nomes of polyploids. In  O. americanus , the 4 NORs in the 
quartet 11 correspond to the tetraploid status [Schmid et 
al., 1985]. In agreement with this, by means of molecular 
RNA-DNA-hybridization experiments, Schmidtke et al. 
[1976] have found that tetraploid  O. americanus  are en-
dowed with about twice the number of 18S + 28S ribo-
somal DNA (rDNA) cistrons than the diploid frogs. In 
contrast to this, comparative measurements of erythro-
cyte volume and hemoglobin content per cell, lactate de-
hydrogenase activity in heart muscle tissue [Beçak and 

Pueyo, 1970], and RNA content per kidney cell [Beçak 
and Goissis, 1971] essentially yield identical values in the 
tetraploid and diploid  O. americanus . This would suggest 
that overall levels of gene expression in tetraploids may 
be similar to those of diploids. Various observations in 
animals [Pedersen, 1971] and plants [Maher and Fox, 
1973; Siegel et al., 1973] indicate a selective loss of 18S + 
28S rDNA cistrons as a possible means of decreasing ge-
netic activity. In  O. americanus , however, the phenom-
enon of diploidization of genetic activity cannot be at-
tributed to the loss of 18S + 28S rDNA as shown by the 
number of active NORs and the amount of rDNA pres-
ent in the genomes. This result corresponds with the 
findings in diploid and tetraploid species of the fish fam-
ily Cyprinidae. While genetic activity is similarly dip-
loidized in the tetraploids [Schmidtke and Engel, 1975], 
the number of 18S + 28S rDNA cistrons is proportional 
to the degree of ploidy [Schmidtke et al., 1975]. A similar 
mechanism might likewise be responsible for the reduc-
tion of the genetic activity observed in tetraploid  O. 
americanus  [Beçak and Pueyo, 1970; Beçak and Goissis, 
1971]. A study on the methylation status of the 18S + 28S 
rDNA cistrons in  O. americanus  revealed that methyla-
tion of the ribosomal genes was increased in the tetra-
ploid genomes of adult animals, but exact quantitative 
determinations could not be obtained [Ruiz and Brison, 
1989]. In contrast to the results in  O. americanus , the cy-
togenetically examined specimens of  C. ornata  did not 
exhibit a NOR number that corresponded to its octo-
ploid status [Schmid et al., 1985]. The NOR-specific Ag-
staining, mithramycin- and chromomycin A 3 -fluores-
cence unequivocally showed that 4 NORs had been de-
leted in octet 7. Similarly, most of the frogs possessed 
only 4 NORs in octet 8, and more than 4 NORs were rare. 
This loss of rRNA genes can be interpreted as a sign of 
progressive diploidization. As concluded by Schmid et al. 
[1985], further studies on other octoploid populations of 
 C. ornata  are necessary to find out if there are still indi-
viduals showing the maximum number of 16 NORs in 
their karyotypes, as well as the various intermediary stag-
es of NOR reduction. The diploidization of the rRNA 
genes in  C. ornata  would be concluded if only 1 pair of 
NORs were present in octets 7 and 8. In all tetraploid 
Asian bufonid species and subspecies ( table  1 ), only 2 
NORs have been detected by Ag-staining, mithramycin 
staining, as well as by 18S + 28S rDNA in situ hybridiza-
tion [Stöck et al., 2005]. This demonstrates an actual loss 
of 50% of the original ribosomal cistrons of the tetraploid 
frog genomes and is an indication of an advanced dip-
loidization process. Also tetraploid  Xenopus  species have 
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a single pair of nucleolar constrictions and a single pair 
of Ag-stained NORs in their karyotypes; co-dominant 
expression of the parental NORs, which is expected in 
polyploids, has not been found in tetraploid  Xenopus  
species [Tymowska and Fischberg, 1982; Tymowska, 
1991]. This indicates either a genetic inactivation or, 
more probably, a complete loss of the other ribosomal 
cistrons.

  Finally, it must be emphasized that, in addition to the 
process of diploidization, considerable chromosomal
rearrangements, as deletions, and inversions, intra- and
intergenomic translocations and insertions can occur af-
ter polyploidization and change the karyotype in relative-
ly short time [Soltis and Soltis, 1999; Adams, 2007; Gaeta 
et al., 2007].

  Sex Chromosome Evolution and Polyploidization 

 In amphibians, sex determination is triggered by al-
lelic differences between sex-specific and non-sex-spe-
cific regions of the sex chromosomes. Sex specificity is 
thought to be maintained by a lack of genetic recombi-
nation between a portion of the chromosome that car-
ries the genetic trigger (the Y or W) and the other sex 
chromosome that is not sex-specific (the X or Z, respec-
tively) [Charlesworth et al., 2005; Bergero and Charles-
worth, 2009]. Interestingly, in some species the ‘sex-spe-
cific’ region in fact is not always sex-specific, and this 
could limit the extent of sex chromosome divergence if 
there exist differences in the rate of recombination be-
tween phenotypic males and females [Perrin, 2009; 
Stöck et al., 2011].

  If the non-recombining region encompasses a large 
portion of the sex chromosome, each allele of other 
genes (that do not trigger sex determination) also has an 
independent evolutionary fate on each sex chromosome. 
Occasionally, an allele of one of these genes in the non-
recombining portion of the sex-specific chromosome 
becomes a pseudogene, creating an imbalance between 
the sexes in the number of alleles. Loss of alleles on the 
sex-specific chromosome is potentially problematic for 
a polyploid genome if 1 copy of this chromosome ac-
quires an autosomal mode of inheritance after genome 
duplication [Evans et al., 2012]. This is also problematic 
if dosage compensation mechanisms, which equilibrate 
expression levels across the sexes of sex-linked genes 
with differing allelic counts between males and females, 
are disrupted during the initial stages of polyploid spe-
ciation [Orr, 1990]. Evidence of dosage compensation is 

lacking in amphibians [Schmid et al., 1986, 2010, 2012], 
so it is possible that disruption of dosage compensation 
is not germane to the question of whether differences in 
allele content between the sex chromosomes influenced 
polyploidization. Either way, both of these scenarios are 
similar in the sense that they predict that polyploidiza-
tion would be less common in lineages with substantial 
differences in allele content between the sex chromo-
somes.

  As discussed above, the African clawed frogs  (Xeno-
pus)  stand out among amphibian genera because of their 
high number (at least 8) of independent polyploidization 
events [Evans et al., 2005, 2008, 2011; Evans, 2007, 2008]. 
Interestingly, the sex chromosomes of  X. laevis  are essen-
tially identical except a small sex-determining region on 
the W chromosome [Tymowska, 1991; Uno et al., 2013]. 
This also appears to be true for  X. tropicalis  [Bewick et 
al., 2013], and, by extension, the closely related tetraploid 
species in the  Silurana  group, even though sex determi-
nation in the  Silurana  group is triggered by a different 
gene on a different (non-homologous) chromosome 
from that in  X. laevis  [Yoshimoto et al., 2008; Olmstead 
et al., 2010; Bewick et al., 2011; Uno et al., 2013]. Further-
more, laboratory crosses indicate that tetraploidization 
in  Xenopus  can occur via a female triploid intermediate 
that carries 1 W chromosome and 2 Z chromosomes 
[Kobel, 1996]. This suggests that, unlike other chromo-
somes in the nucleus, the W chromosome needs not be 
duplicated by polyploidization, and thus that a copy of 
the W may never have segregated as an autosome after 
polyploidization in  Xenopus . Together these factors may 
help explain the high incidence of polyploidization in 
this genus.
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