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Abstract

This paper presents a multi-scale progressive failure modeling scheme to analyze the damage 

behaviors of 3D angle-interlock woven composites under uniaxial tension. The macro-scale 

progressive damage model is established based on a meso-scale representative volume cell (RVC) 

model by using the inhomogeneous finite element method. In current model, a modified Puck 

criterion for fiber yarn and parabolic yield criterion for the matrix are chosen to be the damage 

initiation and propagation criteria, which can clearly describe the fiber breakage, inter-fiber fracture 

and matrix crack in the level of the fiber yarn and the matrix. The tensile effective elastic properties 

and the failure strength as well as the damage evolution process of this 3D woven composite are 

predicted. A series of uniaxial tensile tests are conducted to validate the macro-scale progressive 

damage model. Experimental and numerical results are compared and discussed.
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Nomenclature

 displacement vector                          shape function matrix𝒖  𝑵
 nodal displacement vector                      total stiffness matrix𝒂𝑒 𝑲
 total nodal force vector                        strain transfer matrix𝑸 𝑩
 material stiffness matrix                       force vector𝑫 𝑻

 angles between the local coordinate system of the fiber yarns and the global coordinate of the𝜗,𝜑
Material

 fiber, matrix t, c tension, compression𝑓, 𝑚



  

 spatial region of fiber yarns                   spatial region of the matrixℵ𝒇 ℵ𝒎

( ) stress and strain of the fiber yarn and matrix𝝈𝑖,𝜺𝑖 𝑖 = 𝑓, 𝑚
 compliance matrices                 damage factor matrix𝑺𝑖(𝑑)(𝑖 = 𝑓, 𝑚) 𝑫𝑖

( ) damage variables of the fiber yarn        damage variable of the matrix𝑑𝑓,𝑖 𝑖 = 1 ‒ 6 𝑑𝑚

 ,   young’s moduli of fiber yarn in  direction, shear moduli and Poisson’s ratios𝐸𝑓, 𝑖, 𝐺𝑓, 𝑖𝑗 𝑣𝑓,  𝑖𝑗 𝑖
in  plane  𝑖𝑗

,  elastic modulus and Poisson’s ratio of matrix 𝐸𝑚 𝑣𝑚  
,  loading functions of matrix and fiber yarns∅𝑚, 𝐿 ∅𝑓, 𝑁

,  (N=1t, 1c, 2t, 2c, 3t, 3c; ) damage threshold factors of fiber yarns and matrix𝑟𝑓, 𝑁 𝑟𝑚,𝐿 𝐿 = 𝑡, 𝑐
,   compressive and tensile strengths of matrix      stress magnification factor𝑆𝑚,𝑐 𝑆𝑚,𝑡 𝑚𝑓

,   compressive and tensile strengths of fiber yarn in  direction𝑆𝑓, 𝑖𝑐 𝑆𝑓, 𝑖𝑡(𝑖 = 1, 2, 3) 𝑖

 angle of the most dangerous plane in transverse direction of the fiber yarns𝜃'

 the first invariant of the corresponding stress tensor𝐼1

 the second invariant of the corresponding deviatoric stress tensor𝐽2

) damage degradation parameters          the fracture energies𝐴𝑀(𝐴𝑚, 𝐿, 𝐴𝑓, 𝑁 𝐺𝑀

 moduli and strengths of the component materials𝐸𝑀, 𝑋𝑀

 the characteristic length of the element                coordinate transformation matrix𝑎 𝑻
(i=1, 2, 3, j=1, 2, 3) elements in the matrix         , planes in the full-scale model𝑯𝑖𝑗 𝑯 𝑱𝟏,𝑱𝟐

1. Introduction

The 3D woven composite is a typical inhomogeneous material consists of reinforced fiber and 

matrix. It exhibits anisotropic properties as a whole although the reinforced fiber and matrix in 

component materials are considered as transversely isotropic and isotropic, respectively. The 

mechanical properties of fiber with high modulus and high strength have been brought into full play 

under the support of matrix. Compared with the conventional laminated composites, 3D woven 

composites have the prospect of long-term application in industrial fields like aeronautics, space 

and civil construction owning to their robust mechanical properties in the thickness direction, 

excellent damage tolerance and perfect impact resistance [1][2].

The microstructures of 3D woven composites are determined largely by the fiber architecture to the 

woven preform and weaving process as well as the consolidation process [3]. However, 

microstructural defects like distortion, abrasion and breakage of the yarns, voids and resin-rich areas 

are unintentionally produced during the manufacturing process of 3D woven composites that can 

seriously affect material performance. To predict and measure the mechanical properties of 3D 

woven composites accurately, extensive damage models and failure tests have been conducted and 

developed by researchers. In the 1980s, Tensile mechanical properties of 3D and laminated fabric 

Kevlar 49/epoxy composites are compared experimentally [4]. Then a binary model of textile 



  

composites has been proposed to predict the elastic parameters and failure strength [5-6]. A stress 

analysis method and extracted a unit cell volume from 3D woven composites has been put forward 

after then [7]. Reference [8] developed a progressive failure model for laminated composites to 

predict the tensile strength of laminates with a circular hole, three damage parameters have been 

defined to represent degradation of the longitudinal modulus, transverse modulus and shear modulus, 

respectively. Three-cell model [9], analytical model [10], multiphase finite element model [11], 

multi-scale damage progression model [12] are proposed and constructed based on microstructure 

to predict tensile properties of 3D woven composites. Incompatible multivariable finite element 

method combined homogenization theory was used to calculate the mechanical properties of 3D 

braided composite [13]. Asymptotic expansion homogenization method is another widely used 

method to simulate the non-linear behavior of RVC models of 3D woven composites [14] [15]. 

Damage evolvement models depended on the fracture energy of the yarn and matrix constituents, 

characteristic length of element and equivalence [16-18] are established to predict the mechanical 

properties of 3D braided and woven composites. Warren et al. [19] summarized an extensive 

experimental study of composites reinforced with three-dimensional woven preforms subjected to 

tensile, compressive and in-plane shear loading and examined three innovate 3D woven 

architectures.

Representative volume unit model is one of the most popular methods at present. Once the unit cell 

is chosen, the local stress field within the unit cell can be easily obtained. The local failure criterion 

of meso components and the meso-scopic damage evolution models can be introduced to decide 

whether material is damaged and simulate the whole damage evolution process. Tsai-Hill criterion 

[20], Tsai-Wu criterion [21], Hoffman criterion [22], Hashin criterion [23], Chang-Chang criteria 

[24] Puck criterion [25] and LaRC03 criterion [26] are commonly used failure criteria. Combined 

with finite element method, boundary element method, finite difference method, discrete element 

method and multi-scale method et al. The mechanical properties and the damage evolution process 

of 3D composites have been predicted in recent years [27-38].

In this paper, a macro-scale progressive damage model of is established based on a meso-scale RVC 

model by using the inhomogeneous finite element method (also called the multiphase finite element 

method [11, 39]). Modified Puck criterion [18] and parabolic yield criterion is chosen to be the 

damage initiation and propagation criteria. The tensile failure behavior of a type of 3D angle-



  

interlock woven composites are simulated. Typical uniaxial tensile tests are carried out to validate 

the accuracy of the predicted results. Considering the size of the RVC, a reasonable mesh size is 

chosen to balance the precision and time of calculation.

2. Method

2.1 Inhomogeneous finite element method

The 3D woven composite is composed of fiber yarns and matrix. The fiber yarn is formed by the 

fibers and relatively small amounts of permeated matrix. The fiber yarn is assumed to be 

transversely isotropic and the matrix is assumed to be isotropic. In finite element analysis, the 

irregularities of cross-sections and the complexity of the spatial orientations of the fiber yarns bring 

great challenges to a fine mesh. Therefore, most studies focused on RVC models. Few macro 

progressive damage models of 3D woven composites are reported. This work establishes a macro 

progressive damage model based on RVC model considering the fiber breakage, inter-fiber fracture 

and matrix crack using inhomogeneous finite element method.

The advantage of the inhomogeneous finite element method is that the finite element model can be 

easily established without considering the distribution of the material components. The material 

properties are determined by the location of the integration point in the calculation procedure instead.

Namely, the fiber yarn and the matrix cannot necessary be distinguished when mesh. Thus the 

mechanical properties of the material components are considered and the number of meshes is 

controlled. The diagram of the element in inhomogeneous finite element method is described in 

Figure 1.

In the finite element calculation process, the continuum space is discretized at first, and then the 

appropriate shape function is constructed so that the displacement of each point in the continuum 

space can be expressed by the discretized node displacement and the shape function. The 

displacement of any point in a cell can be expressed as:

 2-1𝒖 = 𝑵𝒂𝒆

Where  is the displacement vector,  𝒖 = [𝑢(𝑥,  𝑦,  𝑧), 𝑣(𝑥, 𝑦, 𝑧), 𝑤(𝑥, 𝑦, 𝑧)]𝑇  𝑵 = [𝑵𝟏, 𝑵𝟐, ⋯𝑵𝒏]

is the shape function matrix,  is the nodal displacement vector.𝒂𝑒 = [𝒂𝟏, 𝒂𝟐, ⋯𝒂𝒏]𝑇

The finite element solving equation of elastic problem can be expressed as:

 2-2𝑲𝒂 = 𝑸



  

Where  and  are the total stiffness matrix and nodal force vector, respectively,  𝑲 = ∑
𝑒𝑲𝑒 𝑸 = ∑

𝑒𝑸𝑒

and the expression of  and  are as follows:𝑲 𝑸

 2-3{𝑲𝒆 = ∫
𝑉𝑒

𝑩𝑇𝑫𝑩𝑑𝑉
𝑸𝑒 = ∫

𝑆𝑒
𝜎
𝑵𝑇𝑻𝑑𝑉

Where  is the strain transfer matrix,  is the material stiffness matrix and  is the force vector.𝑩 𝑫 𝑻

It should be noted that  is a function of the coordinate geometric location:𝑫

 2-4𝑫 = 𝑫(𝑥, 𝑦, 𝑧) = {𝑫𝒇, (𝝑, 𝝋)(𝑥, 𝑦, 𝑧) 𝑖𝑓 (𝑥, 𝑦, 𝑧) ∈ ℵ𝒇
𝑫𝒎(𝑥, 𝑦, 𝑧) 𝑖𝑓 (𝑥, 𝑦, 𝑧) ∈ ℵ𝒎

Which means if the integration point is in the yarn volume, the material property matrix 𝑫𝒇, (𝝑, 𝝋)

 is chosen, otherwise  is taken.  and  are the angles between the local (𝑥, 𝑦, 𝑧) 𝑫𝒎(𝑥, 𝑦, 𝑧) 𝜗 𝜑

coordinate system of the fiber yarns and the global coordinate system of the material.  and ℵ𝒇 ℵ𝒎 

denote the spatial regions of fiber yarns and the matrix, respectively.

To realize the above scheme, a program module of location judgment is proposed and introduced to 

the ABAQUS VUMAT subroutine by using the 3D nonlinear programming theory [40]. A space 

region of fiber yarn and matrix is surrounded by N space plans is assumed in this program module. 

Then the integration points in this space satisfy:

 2-5𝑔𝑖(𝑥, 𝑦, 𝑧) ≤ 0, 𝑖 = 1, 2, ⋯𝑁

Where  is the equation of ith space surface.  and  𝑔𝑖(𝑥, 𝑦, 𝑧) = 0 𝑔𝑖(𝑥, 𝑦, 𝑧) = 0 ‒ 𝑔𝑖(𝑥, 𝑦, 𝑧) ≤ 0

represent the same surface. While  and  represent two regions on 𝑔𝑖(𝑥, 𝑦, 𝑧) ≤ 0 ‒ 𝑔𝑖(𝑥, 𝑦, 𝑧) ≤ 0

both sides of this surface. For 3D woven composites, the following points should be observed during 

the process of programming the location determination module: 1) the whole material structure can 

be duplicated and superposed by a RVC. 2) the judging sequence of component material is from 

warp/weft yarns to binder yarns, then to matrix. 3) warp and weft yarns are parallel to one coordinate 

axis of global coordinate system of the structure, while a binder yarn should be described 

individually since it can be divided into multiple sections according to the angles between them and 

the global coordinate system. Figure 2. shows the structure and fiber orientation of a type of 3D 

woven composites.

2.2 Progressive damage criteria

To better describe the fiber breakage, inter-fiber fracture and matrix crack in the level of the fiber 

yarn and the matrix, a modified Puck criterion for fiber yarn and parabolic yield criterion for the 



  

matrix are chosen to be the damage initiation and propagation criteria in current model. According 

to Puck et al. [25] and our previous work [18, 41], the constitutive equation can be expressed as:

 2-6𝜺𝑖 = 𝑺𝑖(𝑑)𝝈𝑖, 𝑖 = 𝑓, 𝑚

Where  and  denote the fiber yarn and matrix, respectively.  is the compliance matrix:𝑓 𝑚 𝑺𝑖(𝑑)

 2-7𝑺𝑖(𝑑) = 𝑫𝑖𝑺𝑖(0), 𝑖 = 𝑓, 𝑚

The damage factor matrices of fiber yarn and matrix can be written as:

 2-8𝑫𝑓 = [
1

1 ‒ 𝑑𝑓, 1
1

1 ‒ 𝑑𝑓, 2
1

1 ‒ 𝑑𝑓, 3

0

𝑠𝑦𝑚.

1
1 ‒ 𝑑𝑓, 4

1
1 ‒ 𝑑𝑓, 5

1
1 ‒ 𝑑𝑓,  6

]
 2-9𝑫𝑚 =

1
1 ‒ 𝑑𝑚[ 1

1
1

0

𝑠𝑦𝑚.
1

1
1

]
Where  are damage variables of the fiber yarn,  is the damage variable of the matrix.𝑑𝑓,𝑖 𝑑𝑚

The initial compliance matrices of the fiber yarn and matrix can be written as:

 2-10𝑺𝑓(0) = [
1

𝐸𝑓, 1

‒ 𝑣𝑓,12

𝐸𝑓, 1

‒ 𝑣𝑓,13

𝐸𝑓, 1
1

𝐸𝑓, 2

‒ 𝑣𝑓,23

𝐸𝑓, 1
1

𝐸𝑓, 3

0

𝑠𝑦𝑚.

1
𝐺𝑓, 12

1
𝐺𝑓, 23

1
𝐺𝑓,31

]
 2-11𝑺𝑚(0) =

1
𝐸𝑚[1 ‒ 𝑣𝑚 ‒ 𝑣𝑚

1 ‒ 𝑣𝑚
1

0

𝑠𝑦𝑚.
2(1 + 𝑣𝑚)

2(1 + 𝑣𝑚)
2(1 + 𝑣𝑚)

]
Where , ,  are the Young’s moduli of fiber yarn in  direction, shear moduli and 𝐸𝑓, 𝑖 𝐺𝑓, 𝑖𝑗 𝑣𝑓,  𝑖𝑗  𝑖

Poisson’s ratios in  plane, respectively.  and  are the elastic modulus and Poisson’s ratio 𝑖𝑗 𝐸𝑚 𝑣𝑚

of matrix.



  

The fiber yarn and the matrix exhibit different failure modes under tensile and compressive stress 

conditions, damage variables of the matrix and the fiber yarn can be expressed as

 2-12{ 𝒅𝑚 = {𝒅𝑚, 𝑡   𝑖𝑓 𝐼1 ≥ 0
𝒅𝑚, 𝑐   𝑖𝑓 𝐼1 < 0

𝒅𝑓,1 = {𝒅𝑓, 1𝑡   𝑖𝑓 𝜎𝑓, 11 ≥ 0
𝒅𝑓, 1𝑐   𝑖𝑓 𝜎𝑓, 11 < 0

𝒅𝑓,𝑖 = {𝒅𝑓, 𝑖𝑡   𝑖𝑓 𝜎𝑓, 𝑛 ≥ 0
𝒅𝑓, 𝑖𝑐   𝑖𝑓 𝜎𝑓, 𝑛 < 0 (𝑖 = 2, 3)

The damage initiation and evolution criteria of matrix and fiber yarn are defined as:

 2-13𝐹𝑚,𝐿 = ∅𝑚, 𝐿 ‒ 𝑟𝑚,𝐿 ≤ 0, 𝐿 = {𝑡, 𝑐}

 2-14𝐹𝑓,𝑁 = ∅𝑓, 𝑁 ‒ 𝑟𝑓, 𝑁 ≤ 0, 𝑁 = {1𝑡, 1𝑐, 2𝑡, 2𝑐, 3𝑡, 3𝑐}

Where  and  are the loading functions of matrix and fiber yarns. According to the Puck ∅𝑚, 𝐿 ∅𝑓, 𝑁

criteria and the parabolic yield criteria [43], they can be expressed as:

 2-15{ ∅𝑚,𝑡 =
3𝐽2 + 𝐼1(𝑆𝑚,𝑐 ‒ 𝑆𝑚,𝑡)

𝑆𝑚,𝑐𝑆𝑚,𝑡
 𝑖𝑓 𝐼1 ≥ 0

∅𝑚,𝑐 =‒
3𝐽2 + 𝐼1(𝑆𝑚,𝑐 ‒ 𝑆𝑚,𝑡)

𝑆𝑚,𝑐𝑆𝑚,𝑡
 𝑖𝑓 𝐼1 < 0

 2-16{ ∅𝑓, 1𝑡 =
𝜀𝑓, 11𝐸𝑓1 + 𝑚𝑓(𝑣𝑓, 12𝜎𝑓, 22 + 𝑣𝑓,  13𝜎𝑓,  33)

𝑆𝑓, 1𝑡
 𝑖𝑓 𝜎𝑓, 11 ≥ 0

∅𝑓, 1𝑐 =‒
𝜀𝑓, 11𝐸𝑓1 + 𝑚𝑓(𝑣𝑓, 12𝜎𝑓, 22 + 𝑣𝑓,  13𝜎𝑓,  33)

𝑆𝑓, 1𝑐
 𝑖𝑓 𝜎𝑓, 11 < 0

 2-17{∅𝑓, 2𝑡 = 𝑠𝑖𝑛2 𝜃' + 𝑐𝑜𝑠2 𝜃'∅𝑚𝑎𝑥
𝑓, 𝑡 (𝜃') 

∅𝑓, 3𝑡 = 𝑐𝑜𝑠2 𝜃' + 𝑠𝑖𝑛2 𝜃'∅𝑚𝑎𝑥
𝑓, 𝑡 (𝜃') 

if 𝜎𝑓,  𝑛 ≥ 0

 2-18{∅𝑓, 2𝑐 = 𝑠𝑖𝑛2 𝜃' + 𝑐𝑜𝑠2 𝜃'∅𝑚𝑎𝑥
𝑓, 𝑐 (𝜃') 

∅𝑓, 3𝑡 = 𝑐𝑜𝑠2 𝜃' + 𝑠𝑖𝑛2 𝜃'∅𝑚𝑎𝑥
𝑓,𝑐 (𝜃') 

if 𝜎𝑓,  𝑛 < 0

Where  and  are compressive and tensile strengths of matrix,  and  ( =1, 2, 3) 𝑆𝑚,𝑐 𝑆𝑚,𝑡 𝑆𝑓, 𝑖𝑐 𝑆𝑓, 𝑖𝑡 𝑖

are the compressive and tensile strengths of fiber yarns in  direction.  is the ‘stress 𝑖 𝑚𝑓

magnification effect’ caused by different moduli of fiber yarns and matrix.  denotes the angle of 𝜃'

the most dangerous plane in transverse direction of the fiber yarns. Detailed expressions of ∅𝑚𝑎𝑥
𝑓,𝑐 (

 and  are provided in eference [18]. is the first invariant of the corresponding stress 𝜃') ∅𝑚𝑎𝑥
𝑓,𝑡 (𝜃') 𝐼1 

tensor, and  are the second invariant of the corresponding deviatoric stress tensor. They can be 𝐽2

written as:

 2-19{ 𝐼1 = 𝜎𝑚, 11 + 𝜎𝑚, 22 + 𝜎𝑚, 33

𝐽2 =
1
6[(𝜎𝑚, 11 ‒ 𝜎𝑚, 22)2 + (𝜎𝑚, 22 ‒ 𝜎𝑚, 33)2 + (𝜎𝑚, 33 ‒ 𝜎𝑚, 11)2]



  

2.3 Damage evolvement model

From our previous research on experiment, we found the failure mode is close to brittle failure. Thus 

the damage evolution model can be defined as exponential damage evolution law (figure 3):

 2-20𝑑𝑚, 𝐿 = 1 ‒
1

𝑟𝑚, 𝐿
exp [𝐴𝑚, 𝐿(1 ‒ 𝑟𝑚, 𝐿)], 𝐿 = {𝑡, 𝑐}

 2-21𝑑𝑓, 𝑁 = 1 ‒
1

𝑟𝑓,  𝑁
exp [𝐴𝑓, 𝑁(1 ‒ 𝑟𝑓,  𝑁)], 𝑁 = {1𝑡, 1𝑐, 2𝑡, 2𝑐, 3𝑡, 3𝑐}

 2-22{𝑑𝑓,  4 = 𝑑𝑓,  1 + 𝑑𝑓,  2 ‒ 𝑑𝑓,  1𝑑𝑓,  2
𝑑𝑓,  5 = 𝑑𝑓,  2 + 𝑑𝑓,  3 ‒ 𝑑𝑓,  2𝑑𝑓,3
𝑑𝑓,  6 = 𝑑𝑓,  3 + 𝑑𝑓,  1 ‒ 𝑑𝑓,  3𝑑𝑓,1

Where  and  are the damage degradation parameters, detailed solving process can be 𝐴𝑚, 𝐿 𝐴𝑓, 𝑁

find in appendix of reference [42]. The damage evolution law used in this paper considers the simple 

case of that proposed in reference [42]. The analytical solutions of parameters  can be obtained 𝐴𝑀

by Eq. 2-23

 2-23𝐴𝑀 =
2𝑎 ∗ 𝑋𝑀

2𝐸𝑀 ∗ 𝐺𝑀 ‒ 2𝑎 ∗ 𝑋𝑀

Where  represents and ,  and  are the moduli and strengths of the component 𝐴𝑀 𝐴𝑚, 𝐿  𝐴𝑓, 𝑁 𝐸𝑀 𝑋𝑀

materials, respectively.  are the fracture energies，  is the characteristic length of the element. 𝐺𝑀 𝑎

In this paper,  represents the mesh size of the element since all elements are cubic.𝑎

The description of the progressive model is conducted in the local coordinate system of fiber yarns. 

Thus in the finite element calculation, the relationship of the global coordinate system and the local 

coordinate system should be established. The coordinate transformation matrix  is used to 𝑻

correlate the stresses and strains of fiber yarns in these two coordinate systems.  can be written 𝑻

as:

 2-24𝑻 = [ 𝐻 2
11 𝐻 2

21 𝐻 2
31

𝐻 2
12 𝐻 2

22 𝐻 2
32

𝐻 2
13 𝐻 2

23 𝐻 2
33

𝐻11𝐻21 𝐻21𝐻31 𝐻31𝐻11
𝐻12𝐻22 𝐻22𝐻32 𝐻32𝐻12
𝐻13𝐻23 𝐻23𝐻33 𝐻33𝐻13

𝐻11𝐻12 𝐻21𝐻22 𝐻31𝐻32
𝐻12𝐻13 𝐻22𝐻23 𝐻32𝐻33
𝐻13𝐻11 𝐻23𝐻21 𝐻33𝐻31

𝐻11𝐻22 𝐻21𝐻32 𝐻31𝐻12
𝐻12𝐻23 𝐻22𝐻33 𝐻32𝐻13
𝐻13𝐻21 𝐻23𝐻31 𝐻33𝐻11

]
Where (i=1, 2, 3, j=1, 2, 3) is the elements in the matrix :𝑯𝑖𝑗 𝑯

 2-25𝑯 = [ 𝑐𝑜𝑠 𝜗 𝑠𝑖𝑛 𝜗𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜗𝑐𝑜𝑠 𝜑
‒ 𝑠𝑖𝑛 𝜗 𝑐𝑜𝑠 𝜗𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜗𝑠𝑖𝑛 𝜑

0 ‒ 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 ]
Where the angles  and  are Euler angles.𝜗 𝜑



  

3. Model

3.1 RVC model

The geometric RVC model of a type of 3D angle-interlock woven carbon/epoxy composites is 

obtained by normalizing the statistics of the cross-sections and the fiber yarn orientations based on 

the cubic spline implementation method. This kind of composite consists of 12K T700 carbon fibers 

for the warp and weft yarns, 3K T300 carbon fibers for the binder yarns and TDE-86 resin for the 

matrix. Determination process of the RVC model is shown in figure 4. Statistical data suggests that 

the cross-section areas of weft/warp yarns and binder yarn are approximately 1.1 mm2 and 0.275 

mm2, respectively. For modeling and calculation convenience, a simplified octagonal cross-section 

is designed. The dimensions of the cross-section and the RVC model are shown in figure 5. Final 

dimensions of RVC is 6.6 mm * 6.6mm * 0.6 mm. The Fiber volume fraction is 50.9%, which is 

the same to the actual 3D composite material.

Spatial location equations of warp, weft and binder yarns in the RVC model can be easily acquired 

by 3D nonlinear programming.

3.2 Full-scale model

To investigate the macroscopic damage behavior of the 3D woven composites, a full-scale 

progressive damage model is established based on the actual testing specimen. The scheme of mesh 

and boundary conditions are given in figure 7.

Dimensions of the model is 120 mm * 20 mm *5 mm, uniform cube elements are applied, the mesh 

size is 0.25 mm. The 8-nodes reduced integration element (C3D8R) is used in this model, the total 

number of DOFs is 2454543. The selection of boundary conditions plays a vital role in the 

simulation results. According to the actual force conditions of the specimen, the displacement value 

in X direction of plane  is set as zero, point A in Plane  is fixed. An appropriate displacement 𝑱𝟏 𝑱𝟏

load (2.76mm) is applied on the plane , displacement values of point B in Y and Z directions are  𝑱𝟐

set as zeros (Figure 7). The structure of this kind of 3D woven composite can be regarded as 

duplication and arrangement of a certain number of the RVC.

The inhomogeneous finite element based multi-scale progressive failure model is implemented into 

a user-defined material subroutine VUMAT in ABAQUS. Calculation process of the program is 

shown in figure 8.



  

4. Results

4.1 Uniaxial tensile test
Mechanical properties of component materials are listed in table 1. This uniaxial tensile test is 

conducted by referencing the standard ASTM D5379 on Zwick Z100 testing machine. Three 

specimens are tested and dimensions of the specimen and the experimental setups are shown in 

figure 6. Strain gages and extensometer are used simultaneously to record the history of strains when 

specimens subject to uniaxial tensile loading with a speed of 0.5 mm per minute. The size of the 

specimen is 250 mm * 20 mm * 5 mm, four aluminum tabs are bonded to the ends of a specimen 

on both sides. Thus the effective length of the specimen is 120 mm.

4.2 Results and discussions
Figure 9 compares the stress-strain relationships between experiment and numerical simulation 

under uniaxial tensile load. Strains measured by extensometer are chosen as the final strains 

considering the data stability and the mesostructure of the 3D woven composite. From the full-scale 

model, the average stress data is obtained by dividing the reaction force at the fixed end by the cross-

sectional area. Calculated moduli and strengths of this kind of 3D woven composite material are 

listed in table 2. Both the numerically predicted and experimental measured longitudinal moduli are 

determined by computing the slope of initial linear stage of the stress-strain curves over a strain 

range of 0.23% - 0.35% since no damage occurs. The simulated curves are almost linear before 

failure, when damage occurs, it expands rapidly and reaches damage threshold. This is consistent 

with the brittle fracture phenomenon observed in experimental process. Averaged moduli and 

strengths of experimental results are 52.701GPa and 900.773 MPa, respectively, and simulated 

results of those are 54.053GPa and 973.561MPa, respectively. The stiffness and strength errors of 

the experimental and simulated results are 2.57% and 8.08%, respectively. From the values in table 

2 and curves in figure 9, we find that simulated stress-strain curve correlate with the experimental 

ones very closely. The brittle failure occurs at the strain range of 1.70%-1.80%. From experimental 

results we know that this kind of material exhibits brittle fracture. The stress-strain response is 

approximate to linear relationship, but not completely linear since damage occurs before failure. 

The slope of simulated stress-strain response to damage changes gradually, but not that obviously. 

In this model, the slope of the stress-strain curves decreases from 54.681 to 51.559.



  

Diagram of distinguishing the fiber yarns and matrix in the 3D woven composites specimen 

depending on the locations of the integration points is shown in figure 10, different colors represent 

different material components, red represents the matrix, yellow represents the binder yarns, light 

blue represents the warp yarns, navy blue represents the weft yarns. According to the real structure 

of tested specimen in figure 4, there are eight layers of warp yarns, nine layers of weft yarns and 

eight layers of binder yarns, the distance between two parallel yarns is 3.3 mm. All this structural 

features can be accurately and effectively described by the proposed model in figure 10. Namely, 

the correctness of the location determination module program is validated.

Figure 11 shows the damage initiation and accumulation of the damage variables warp yarns ( ) 𝑑𝑓,1

and weft yarns ( ) under tensile load. Notably, damage accumulation of the damage 𝑑𝑓,2 𝑎𝑛𝑑 𝑑𝑓,3

variable of matrix ( ) is the similar to that of the weft yarns. This is because the inter-fiber fracture 𝑑𝑚

will occur in weft yarns when applying uniaxial load in warp direction. While the inter-fiber fracture 

is essentially the matrix crack since the fiber yarn is formed by the fibers and relatively small 

amounts of permeated matrix. As shown in Figure 11, damage initiates in matrix first, damage 

related to  in weft yarns occurs when strain is in the range of (0.54% - 0.94%). Then slight 𝑑𝑓,2

damage related to  occurs around the strain of 1.15%. During the strain range of 1.15% - 1.79%,𝑑𝑓,1

damage related to  expands rapidly, while damage related to  and  increase slowly.𝑑𝑓,2 𝑑𝑓,1 𝑑𝑓,3

When strain reaches around 1.80%, damage related to  expands rapidly and the warp fibers 𝑑𝑓,1

breakage result in the failure of the whole structure. Figure 11(a1, a2, a3), (b1, b2, b3) and (c1, c2, 

c3) show the damage accumulation related to , , and  at the strains of 0.73%, 1.37% 𝑑𝑓,1 𝑑𝑓,2 𝑑𝑓,3

and 1.80%, respectively.

For experimental study, initial damage first occurs in matrix on the surface of the specimen, the 

matrix particles detach gradually when the load increase. Then the specimen is accompanied by a 

series of crisp sound then the load reaches a certain value. This might be the damage occurs within 

several fiber yarns. When the load reached the ultimate value, the specimen fails instantaneously. 

The failure modes observed after experiment are shown in figure 12. Fiber yarn tensile breakage 

and pull-out is observed in figure 12(a) and 12(b). Matrix crack is shown in figure 12(c) and the 

inter-fiber fracture is observed by the electron microscope in figure 12(d).

The above analysis shows that the simulated macroscale progressive failure process correlate well 

with the specimen failure in experimental procedure, which validates the availability of the proposed 



  

model.

Considering the size of the RVC as well as the computational efficiency, models with different mesh 

sizes are implemented using the FEM. The calculation results show that 0.25 mm is a reasonable 

mesh size that can balance the RVC size, the accuracy and efficiency of calculation.

5. Conclusion

A multi-scale progressive failure modeling scheme is presented to analyze the damage initiation and 

development of 3D angle-interlock woven composites under uniaxial tension load. The macroscale 

failure behaviors are simulated based on a RVC model by using inhomogeneous finite element 

method. Fiber yarn breakage, inter-fiber yarn fracture is predicted by using modified Puck criteria, 

the matrix crack is predicted by using the parabolic yield criterion.

Experimental results show that initial damage first occurs in matrix on the surface of the specimen, 

then the matrix particles detaches gradually with the increasing of the load. Finally, the brittle 

fracture occurs on the specimen along with the warp yarns breakage.

The proposed model is correlated and validated by experimental study. Simulated damage 

evolvement and failure modes agrees well with that observe in experiment. Results show that 

damage initiates in matrix first and expands gradually when strain is in the range of (0.54% - 0.94%). 

Then slight damage related to  occurs around the strain of 1.15%. When strain reaches around 𝑑𝑓,1

1.80%, damage related to  expands rapidly and the warp fibers breakage result in the failure of 𝑑𝑓,1

the whole structure. Additionally, models with different mesh sizes are simulated. The calculation 

results indicate that 0.25 mm is a reasonable mesh size.

In conclusion, the proposed model can predict the damage evolution progress of a full-size specimen 

with considering the fiber breakage, inter-fiber fracture and matrix crack.
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Figure 1. Element in inhomogeneous finite element method

Figure 2. Structure and fiber orientation of 3D woven composites: (a) structure and RVC, (b) fiber 

orientation, (c) fiber orientation view along X-axis direction



  

Figure 3. Scheme of the exponential damage evolution law

Figure 4. Determination process of the RVC: (a)appearance [16] (b)surface of 3D composites, 

(c)cross-sections in different directions, (d) micro-yarns by SEM, (e) statistical cross-sections



  

Figure 5. Simplified geometric model: (a) cross-section of binder yarn, (b) cross-section of 

warp/weft yarn, (c) RVC model

Figure 6. Experiment: (a) specimen, (b) setups



  

Figure 7. Scheme of mesh and boundary conditions: (a) dimensions, (b) boundary conditions

Figure 8. Scheme of calculation process



  

Figure 9. Comparison of stress-strain curves between simulation and experiment

Figure 10. Locations of fiber yarns and matrix: (a) the whole specimen, (b) detail view



  

Figure 11. Damage initiation and accumulation of the damage variables: (a1, a2, a3) , (b1, b2, 𝑑𝑓,1

b3)  and , (c1, c2, c3) 𝑑𝑓,2 𝑑𝑚 𝑑𝑓,3

Figure 12. Experimental failure modes: (a) and (b) fiber yarn breakage, (c) matrix crack, (d) inter-

fiber yarn fracture



  

Table 1. Mechanical properties of component materials [16]

Table 2. Calculated moduli and strengths of experimental and numerical results

𝐸𝑓,1 𝐸𝑓,2 𝐺𝑓,12 𝜈𝑓,12 𝜈𝑓,23 𝑆𝑓,1𝑡 Density

T700 230 GPa 18.2 GPa 36.6 GPa 0.27 0.3 4.9 GPa 1.80g/cm3

T300 221 GPa 13.8 GPa 9.0 GPa 0.20 0.25 3.53 GPa 1.75g/cm3

𝐸𝑚 𝜈𝑚 𝑆𝑚,𝑡 Density

TDE-86 3.55 GPa 0.33 241 GPa 1.22g/cm3

Specimen Moduli (GPa) Strengths(MPa)

Experiment UT-20-1

UT-20-2

UT-20-3

53.583

53.103

51.416

897.410

909.976

894.933

Average 52.701 900.773

Simulation

Error (%)

-

-

54.053

2.57

973.561

8.08


