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Abstract—Cognitive networks (CNs) are one of the key 
enablers for the Internet of Things (IoT), where CNs will play an 
important role in the future internet in several application 
scenarios, such as healthcare, agriculture, environment 
monitoring, and smart metering. However, the current low packet 
transmission efficiency of IoT faces a problem of the crowded 
spectrum for the rapidly increasing popularities of various 
wireless applications. Hence, the IoT that uses the advantages of 
cognitive technology, namely the cognitive radio-based Internet of 
Things (CIoT), is a promising solution for IoT applications. A 
major challenge in CIoT is the packet transmission efficiency 
using CNs. Therefore, a new Q-learning-based transmission 
scheduling mechanism using deep learning for the CIoT is 
proposed to solve the problem of how to achieve the appropriate 
strategy to transmit packets of different buffers through multiple 
channels to maximize the system throughput. A Markov decision 
process based model is formulated to describe the state 
transformation of the system. A relay is used to transmit packets 
to the sink for the other nodes. To maximize the system utility in 
different system states, the reinforcement learning method, i.e., 
the Q learning algorithm, is introduced to help the relay to find 
the optimal strategy. In addition, the stacked auto-encoders deep 
learning model is used to establish the mapping between the state 
and the action to accelerate the solution of the problem. Finally, 
the experimental results demonstrate that the new action selection 
method can converge after a certain number of iterations. 
Compared with other algorithms, the proposed method can better 
transmit packets with less power consumption and packet loss.  
 

Index Terms—Internet of Tings; cognitive networks; Markov 
decision process; Q learning; deep learning 
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I. INTRODUCTION 
n the future, wireless sensor networks are expected to be 
integrated into the Internet of Things [1-2], where 
reconfigurable, flexible, and intelligent sensors dynamically 

join the Internet and use it to collaborate and accomplish their 
tasks for a wide range of applications in various domains [3-8], 
such as big data applications, Internet of Things, E-commerce, 
medical device [9-10], virtual reality & augmented reality, and 
environment monitoring. The network environment also tends 
to become increasingly complicated, and the communication 
resources become increasingly scarce. It is a great challenge to 
the wireless sensor networks and Internet of Things. 
Coincidentally, the cognitive network technology can 
compensate for these deficiencies [11-15]. Cognitive nodes are 
intelligent wireless devices that can sense the environment, 
observe the network changes, use the knowledge learnt from 
the previous interaction with the network, and make intelligent 
decisions to seize the opportunities to transmit. The process of 
continuously sensing the environment information, exchanging 
control information, learning information, deciding and 
executing a strategy in the network can provide the ability of 
intelligence and adaptability to the wireless sensor networks 
and the future Internet of Things. Therefore, the cognitive radio 
technology is a key communication approach for 
resource-constrained wireless sensor networks and future 
wireless network [16-20]. When cognitive users, i.e., sensors in 
wireless sensor networks, access the spectrum, to effectively 
use the network resources and satisfy the throughput demand 
for multimedia applications, effective mechanisms are required 
to coordinate the actions of the cognitive users (transmission 
power control, spectrum access, transmission scheduling, et al.) 
[21-24]. With the rapid increase in number of wireless devices 
in the Internet of Things, more data will be stored in the 
network nodes. Thus, the method to rapidly forward data with 
the limited storage space and bandwidth is a great challenge for 
the current wireless network of Internet of Things. 

Currently, many existing literatures (see in [25]-[33]) have 
studied the problem of network data transmission with 
unknown environment information in a cross-layer design 
manner. Among these literatures, [25] and [26] have examined 
the adaptive modulation algorithm in the data transmission 
stage, whereas [27] focused on the reliable route discovery to 
reduce the data online time. [28] proposed the quality of service 
(QoS) awareness scheduler and power adaptation scheme at 
both uplink and downlink medium access control (MAC) layers 
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to coordinate the action of the lower layers for resource 
efficiency. [29] focused on the throughput and fairness. 
Depending on the preference of the two features, algorithms 
and methods are proposed to assign or schedule users to 
prioritize to maximize throughput, maximize fairness or 
finding the appropriate balance between the two. In [30], a 
cross layer design of MAC and routing protocols and the 
topology design are studied to gain more profits for networking. 
In addition, [31-33] modeled the optimization problem of 
wireless networks as Markov decision process (MDP) to 
describe the state transformation of the system. However, it is 
difficult to solve the MDP problem because the MDP has many 
variables. Therefore, the reinforcement learning method can be 
introduced to solve it. [33-37] research the scheduling for 
different applications or services in distributed wireless 
networks. The scheduling mechanisms are in cross-layer way, 
and quality of service (QoS) or quality of experience (QoE) are 
involved in the designs of scheduling mechanisms. 

For the problem of the curse of dimensionality, a new 
Q-learning-based transmission scheduling mechanism using 
deep learning is proposed for the MDP problem to intelligently 
make the appropriate strategy. The model formulated in this 
paper considers the power required for packet transmission in 
the wireless networks and the packet loss to maximize the 
system throughput. We modify the action selection by the 
comprehensive action evaluation method based on the Q value 
and index value to consider the balance of exploration and 
exploitation. In addition, when the system scale is large, the 
state space and action space of the system are also notably large, 
and it is notably difficult to calculate the optimal action 
corresponding to the state one by one. Therefore, we use the 
method of deep learning to construct the mapping between state 
and action to quickly obtain the strategy. 

The contributions of the paper are as follows:  
1) The MDP model is formulated to describe the problem of 

transmission scheduling for the cognitive Internet of Things; 
2) The Q learning algorithm is modified to learn the system 

state transition without the system prior information; 
3) The stacked auto-encoder deep learning algorithm is 

adopted to map the relation between the states and the actions to 
avoid the massive calculation and storage in the Q learning 
phase. 

This paper is organized as follows. Sections II and III 
introduce the system model and MDP problem. Then, section 
IV introduces the proposed scheme of this paper, i.e., the deep 
Q learning algorithm, and the algorithms are compared in 
section V. Section VI provides the scheme simulation and 
analysis. Finally, we summarize the paper and point out the 
future direction. Some notations are listed in Table 3 for the 
reader’s convenience. 

II. SYSTEM MODEL 
As shown in Fig. 1, a CIoT that coexists with a licensed 

system is considered. In the system, a point-to-point 
transmission from the relay to the sink and M frequency domain 
channels are considered. One relay gathers packets from its K 
neighbor nodes, and these packets are stored in K buffers with 
identical length L. The packets that come from K neighbor 
nodes are assumed to have Poisson distribution with identical 

arrival rate λ . M channels are independent and identically 
distributed (i.i.d.). The transmission schedule is decided by the 
relay. In a frame, the relay selects a channel and transmits 
packets for a node to the sink. When the channel state is poor, 
the relay does not transmit packet. When a certain buffer is full, 
if the relay does not transmit packet for it, then, the packet are 
lost if packets continue to arrive in the next frame. Therefore, in 
the packet transmission process, the relay must 
comprehensively consider the channel state and the buffer 
states that correspond to the communication pairs and 
transmission mode.  
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Fig. 1. System model 

A. Channel state 
In the system model, the time unit is defined as frame fT , the 

state of the channel does not change in each frame, and the state 
transition of the channel occurs between two adjacent states. 
The channel state can be modeled as a finite-state Markov chain 
[38]. The signal-to-noise ratio (SNR) is assumed to obey 
Rayleigh distribution, and the probability density function is 
expressed as ( ) 1 exp( )p ρ ρ ρ ρ= − , where 0ρ > ; ( )Eρ ρ=  
is the average SNR. The threshold of the SNR is

1 2 1{ , , , }snr Cρ ρ ρ ρ −= L , and C is the number of channel states. 
Then, we obtain the channel state space 0 1 1{ , , , }CC c c c −@ L . 
Therefore, the probability distribution of channel state is  

1( ) ( )n

n
C np c p d

ρ

ρ
ρ ρ+= ∫                               (1) 

The state transition probability of the channel is 
1 1( , ) ( ) (c ) , {1,2, , 2}C n n n f C np c c N T p n Nρ+ += ∈ −L    

 (2) 

1( , ) ( ) (c ) ,   {1,2, , 1}C n n n f C np c c N T p n Nρ− = ∈ −L      
(3) 

where ( ) 2 exp( )n n dN fρ πρ ρ ρ ρ= − ; df  is the maximum 
Doppler shift. Since M channels are i.i.d., the state transition 
probability of M channels is '

, 11
( , ) ( , )M

C c m i im
p c c p c c +=

= ∏ . 

B. Buffer state 
In each system frame fT , the arriving packet obeys Poisson 

distribution with arrival rate λ , which is expressed as
( ) exp( )( ) !i

i i i

d
d i d f d f ip d T T dλ λ= − , where id is the number of 

arriving packets in each frame. At the beginning of frame i , to 
buffer k , the existing buffer length is ,i kl . If the number of 
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arriving packets is ,i kd  and the number of transmitted packets is

,i kt , then the new buffer length is 

, 1 , , ,min( , )k i i k i k i kl l d t L+ = + −                       
(4) 

If the state transition probability of buffer k  is '( , )
kl k kp l l , 

the state transition probability of the K buffers is 
'

, 1 ,1
( , ) ( , )K

l l k i i i kk
p l l p l l a+=

= ∏ , where ,i ka is the number of 
packets transmitted for buffer k  during frame i . 

C. Transmission Power 
To truly improve the transmission efficiency, the adaptive 

modulation (AM)[39] method is used to adjust the transmission 
power and rate. We use { }0,1,2, ,j J∈ L to indicate the selected 
mode. 0 and 1 are corresponding to no transmission and BPSK 
transmission respectively, and 2j ≥ is corresponding to 
2 -QAMj  transmission. Given transmission rate, power, and 
channel state, the bit error rate (BER) can be estimated. 
Assuming ideal coherent phase detection, BER bounds are 
given by [40], 

If j =1, then 

0( , ) 0.5 ( ( , ) )BER i i ip c j erfc P c j WNρ≤
                                   

(5) 
If j >1, i.e., 2,3,j = L , then 

0( , ) 0.2exp( 1.6 ( , ) (2 1))j
BER i i ip c j P c j WNρ≤ − −

                
(6

) 
where WN0 is the noise power. The BER inequalities above 
give a pessimistic minimum power ( , )iP c j  to achieve a 
specified BER for channel state ic and selected mode j . 

III. MDP ANALYSIS OF TRANSIMISSION 
The system contains two state objects: buffer state and 

channel state. The system operation is a process of state 
transition. The next system state is obtained by selecting and 
implementing a certain action at the current system state. 
Therefore, the state of the system in the next frame is only 
related to the current state and action. Thus, we model the 
transmission scheduling problem as Markov decision process. 

A. Action Set 
When state transition occurs, the relay must choose an action 

according to current state. The possible action of relay can be 
defined as , ,{ }i m k ja A a∈ = , where { }1,2, ,m M∈ L ,

{ }1,2, ,k K∈ L , { }0,1,2, ,j J∈ L . , ,i m k ja a= indicates that at 
the beginning of frame i , the relay selects channel m  to 
transmit , ,m k ja packets by selected mode j for buffer k.  

B. State Transition Probability 
The system state is the combination of the buffer state and 

channel state, i.e., S B C⊗@ . If the buffer length is L, the 
number of buffer states of a single buffer is B=L+1. The number 
of channels is M. 

To one buffer and one channel, the state transition 
probability is 1 1( , ) ( , )l i i i c i ip l l a p c c+ +× . Therefore, the entire 
system state transition probability expression is 

1 1 11 1
( , ) ( , ) ( , )

k m

K M
s i i i l i i i c i ik m

p s s a p l l a p c c+ + += =
= ×∏ ∏

     
(7) 

C. Utility 
The goal of the paper is to maximizing the system utility. If 

the coding rate is V, the throughput (bits per symbol) under 
different transmission mode is ×V j . Thus, at system

{ , }i i is l c S= ∈ , the benefit of system after taking action ia  is 

1
( , )

=
= ×∑K

i i k
B s a V j

                            
(8) 

where ( , )i iR s a  is the throughputs when the system state is is , 
and action ia  is selected in frame i . It is mentioned in above 
section that adaptive transmission scheme based on M-QAM is 
employed for each channel. When , ,m k ja packets are transmitted 
through channel m , corresponding transmission mode j is 
employed. Therefore, there is a mapping ( )ϕ ⋅ , that , ,( )ϕ = m k jj a . 
For simplification, we assume that , ,× = m k jV j a . 

The pressure value of buffer k is defined as 
, ,exp( )k i i kf lθ= × , where θ  is the pressure coefficient, which 

represents the number of packets in the buffer. When the 
number of packets in buffer increases, the arriving packets in 
the next frame may be lost because of the small space. 
Therefore, a smaller pressure value corresponds to less packets 
loss. Thus, the pressure value is inversely proportional to the 
performance of the system. In addition, if we have the 
constraint of the BER, we can obtain the minimum power 
transmission power ( , )

is i ip s a [41], which is also inversely 
proportional to the performance of the system. 

Consequently, the system cost is the combination of buffer 
pressure and power consumption. 

,1
( , ) ( ) ( , )

=
= ×∑ i

K
i i k i s i ii

C s a f p s a                        (9) 

The system utility iO is proportional to the number of 
transmitted packets in each frame and inversely proportional to 
the buffer pressure and power consumption. Hence, the system 
utility can be described as 

( , ) ( , ) ( , )i i i i i i iO O s a B s a C s a= =                          (10) 

IV. DEEP-Q-LEARNING-BASED OPTIMAL ACTION 
ACQUISITION SCHEME 

In the transmission process, the relay obtains the 
environment state information by learning to guide its action. 
The state and action of the system are discrete, and the state of 
the system discontinuously changes when an action is executed 
in a frame. Accordingly, to solve the MDP problem, the method 
of reinforcement learning is used to guide the action of node 
[42-45]. The Q learning (QL) algorithm learns the environment 
state information and obtains the optimal action. The QL 
algorithm is a type of gradual optimization process, so it is 
difficult to achieve fast convergence in action selection. The 
artificial neural network can compensate the limitation for its 
generalization and function approximation ability. In addition, 
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the deep learning method has proven good performance in 
many fields [46-48]. Thus, we use the deep learning method to 
establish a mapping between states and actions [49-53]. 

A. Q Learning Algorithm 
In the process of the Q learning algorithm, the agent finds the 

optimal action by continuous interaction with the environment 
in a constant trial-and-error manner. The optimal action is 
related to immediate reward and considers the reward of future
n steps. We use ( )iV sπ  to represent the entire reward it in Q 
learning algorithm under a policyπ . 

2
1 2( )i i i iV s r r rπ γ γ+ += + + +L                   (11) 

In the Q learning algorithm, the Q value, which is the 
evaluation of the state and action, is the combination of 
immediate and discounted reward and can be formulated as 

1( , ) ( )i i i iQ s a r V sπγ +← +                       (12) 
where (0 1)γ γ< <  is the discount coefficient, which indicates 
the effect of future reward on the current action. The learning 
goal of Q learning is to maximize the total utility. Thus, in (12), 
we replace ir and 1( )iV sπ

+ with iO and
1

1 1max ( , )
i

i ia A
Q s a

+
+ +∈

, 

respectively. 

1
1 1( , ) max ( , )

i
i i i i ia A

Q s a O Q s aγ
+

+ +∈
← +                  (13) 

where A is the action sets. 
In the learning stage, how to balance the exploration and 

exploitation of the action set is the key problem in Q learning. 
In particular, when the state of the system is large, how to 
effectively choose the action will directly affect the algorithm 
convergence and system performance. Therefore, to achieve 
the optimal action, we add a modified index value to quickly 
find the best action. The index value can reflect the fluctuations 
of the rewards and timely adjust the explore range to reduce the 
unnecessary selection cost. 

arg max( ( , ) ( , ))i i i
a

a Q s a Index s a← +               (14) 

where Q is the evaluation value to the current state and action. 
Based on the Q value, ( , )iIndex s a  is introduced to obtain the 
optimal potential action. Its expression is (15). 

( , ) 2 ln min{1 4, ( )} ( )i p a aIndex s a C i V i T i= ×             (15) 
where pC  is a constant greater than 0 [54]. ( )aT i  is the number 
of times action a has been selected after i frames. ( )aV i  is the 
bias factor, which contains the utility value variance 2 ( )a iσ  of 
the action to reflect its volatility.  

( ) ( )( )2 2 2
( )1

( ) , / ( ) ,a

a

T i
a k a T ik

i O s a T i O s aσ
=

= −∑             (16) 
2( ) ( ) 2 ln ( )a a aV i i i T iσ= +                     (17) 

On one hand, the action selection method based on the action 
index considers the system utility of the current action and 
gradually considers the action with a larger effect, which 
reflects the characteristic of exploitation of the system. On the 
other hand, with the ongoing iterative process, if a certain 
action is not selected or the selected number is notably small, 
then it is biased to select the action in the next iteration, which 
reflects the characteristic of exploration. 

After determining the execution action, the relay performs 
action ia , calculates utility value O, and updates the Q value 
according to formula (18). 

1 1

1

(1 ) ( , ) ( max ( , ))
( , )                                     ,

( , )                        .

i i i i i i i

i i i i i

i i i

Q s a O Q s a
Q s a if s s and a a

Q s a otherwise

α α γ + +

+

− + +
= = =



 (18) 
where (0 1)α α< ≤  is the learning rate of the state action and is 
calculated by 1 (1 ( ))aT iα = + . 

The specific implementation process of the modified Q 
learning algorithm is shown below. 
 

The Modified Q Learning Algorithm 
1. Initialize action visiting number ( ) 0iT n = . 
2. Initialize state-action value ( , ) 0i iQ s a = and state-action 

look-up table. 
3.for episode1=1, 1I  do 
4. Initialize action vector 1 2{ , , }a a a= L . 
5.  To the current state is . 
6.  for episode2=1, Ite  do 
7.    if episode2=1 
8.    Select a random action ia . 
9.    end if 
10.   if episode2>1 

11.
    

2ln 1( , ) min{ , ( )}
( ) 4i p a

a

iIndex s a C V i
T i

←  

12.    Select action according to the following formula 
    max( ( , ) ( , ))i i ia

a Q s a Index s a← + . 

13.   end if 
14.   Execute ia  and obtain iO and turn into state 1is + . 
15.   Calculate 1 (1 ( ))aT iα ← + . 
16.   Update ( , )i iQ s a . 

1 1

1

(1 ) ( , ) ( max ( , ))
( , )                                        ,

( , )                           .

i i i i i i i

i i i i i

i i i

Q s a O Q s a
Q s a if s s and a a

Q s a otherwise

α α γ + +

+

− + +
← = =



 

17.   Update state-action look-up table. 
18.  end for 
19. end for 

 

B. Convergence Analysis of Algorithm  
In the convergence analysis process of algorithm, the optimal 

Q value is * ( , )i iQ s a . 
Theorem 1:  
The value of the system utility function iO , which is defined 

by formula (10) is bounded. 
Proof:  
Formula (10) consists of three parts: benefit and cost. The 

expression of benefit is
1=

×∑K

k
V j , which indicates the number 

of transmitted packets in a frame, is a finite value. The 
denominator is the cost function (9) which is the combination 
of buffer pressure and power consumption. The number of 
packets in the buffer and power consumption are finite. 
Consequently, the system utility is bounded.                             ■                                                                        
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Theorem 2: 
 Learning rate satisfiers that 0 1α< ≤ , and 

2
1 1

, , ,
i i

s aα α∞ ∞

= =
= ∞ < ∞ ∀∑ ∑                     (19) 

Proof:  
Since 1 (1 ( ))aT iα = + and ( )aT i  is the number of times 

action a has been selected after i frames, 0 1α< ≤ . 
According to the definition of ( )aT i ,1 (1 ( )) 1aT i i+ < . It is 

clear that ( )2

1
1 0

i
i∞

=
= < ∞∑ , therefore, 2

1i
α∞

=
< ∞∑ . 

If each state-action pair are visited infinitely, It is obviously 
that 

1 1 1
1 (1 ( )) 1ai i i

T i iα∞ ∞ ∞

= = =
= + >∑ ∑ ∑                (20) 

  Since 
1
1

i
i∞

=
= ∞∑ , 

1i
α∞

=
= ∞∑ .                                         ■ 

Theorem 3: [55]  
Given bounded utility function iO , learning rate 0 1α< ≤ , 

and
1i
α∞

=
= ∞∑ , 2

1i
α∞

=
< ∞∑ , ,s a∀ , then 

*lim ( , ) ( , )ii
Q s a Q s a

→∞
= , ,s a∀                         (21)  

with probability 1.  *( , )Q s a is Q value under the optimal  
policy *π                                                                                      
 

 

 
Fig. 3. Flow chart of the proposed scheme 

 
 

C. Deep Action Mapping Network 
The stacked auto-encoder (SAE) model of the deep learning 

is used to build the relations of states and actions. The structure 
of the model is shown in Fig. 2. 

 
Fig. 2. Structure of the SAE model 

 
The input layer of the model represents the state information 

of the system, and the number of neurons in the layer is K+M. 
The input vector can be expressed as 

1 1[ , , , , , , , , , , ]k K m MInput l l l c c c= L L L L . The output layer, 
which represents the selection action information, can be 
expressed as [ ( ), ( ), ( )]Output a k a m a j= . It consists of the 
selected channel m, transmission mode j and buffer k. Its 
neuron number is K+M+J. The hidden layer consists of 
multiple layers. According to the previous experience, the 
number of neurons in hidden layer is 

h i on n n Con= + +                               (22) 
where in is the number of input layers, on is the number of 
output layers, and hn  is the number of hidden layers. Con  is a 
constant limited in [1,10] . 

The SAE model uses the logistic sigmoid function as the 
transfer function in the encoding and decoding process. The 
cost function ( )L X  is defined as follows. 

2

1(0,1)
( ) arg min ( ) 2 l

N i i
Wix

L X x f x Jµ
=

∈
= − +∑            (23) 

where 1 1 2
1 1 1

(W )l l l
l

n s s l
jiW l i j

J − +

= = =
= ∑ ∑ ∑  is the weight decay term, 

whose function is to reduce the range of the weight to prevent 
over-fitting in the training section. The rules of weight and bias 
vector updating are as follows. 

Environment

State

Action iteration
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( 1) ( )W k W k L Wβ+ = − ×∂ ∂                       (24)
 ( 1) ( )b k b k L bβ+ = − ×∂ ∂                          (25) 

where β  is the learning rate. The partial derivative of the cost 
function to the weight and bias parameters are calculated in 
formulas (26) and (27). 

' '
1, 1, , ,

1
, ,

( )

            =

m
m i m i m m i j i

m m
j m i j i

L W y y f y W

δ y W

µ

µ
+ +

+

∂ ∂ = − − × × +

− ⋅ +
    

  (26) 

' ' 1
1, 1,( ) m

m i m i m jL b y y f δ +
+ +∂ ∂ = − − × = −

            
 (27) 

where m  is the m-th layer of SAEs; ,m iy  is the expected 

values; '
,m iy  is the current values; f  is the sigmoid function. 

The back propagation of the residual error δ  is 
1 '

,
m m m
i j j i mδ δ W f+= × ×

                            
   (28) 

 

D. Algorithm Description 
The Q-learning-based SAEs algorithm flow chart is shown in 

Fig. 3. 
In the interaction process with the environment, we will not 

train the SAE model in the first certain time because we have no 
optimal actions. With time, increasingly more optimal action 
will be found and stored in the state-action look-up table. Then, 
the SAE model will be trained according to the sufficiently 
optimal state action information. Therefore, when the system 
transfers into the hidden state, we use the trained SAE network 
to map between the state and the action and find the optimal 
action. Then, we execute the new action and update the look-up 
table. In the follow-up time, if the system transfers to the 
learned state, the relay will query the state-action table to obtain 
the executable action. 

V. ALGORITHM COMPARISONS 
Now, we compare the complexity of each algorithm, as 

shown in table 1. In the system, the number of buffers is K, the 
buffer length is L, the number of channels is M, the number of 
channel states is C, and the number of possible transmission 
modes is J. Accordingly, the number of system states is

( 1)K MS L C= + × . To each system state, the possible action 
number is ( 1)= × × +A K M J . The system scale is D S A= × . 

To verify the performance of the algorithm, we compare it 
with the strategy iteration (SI) algorithm [33], W learning (WL) 
algorithm [32] and random selection (RS) algorithm. 

1) Strategy iteration algorithm 
We can use the SI algorithm to obtain the optimal action as 

described in formula (37). 
1 max[ ( ) ( ) ] ( ) ( )n n n n na A

V r a p a V r a p a Vγ γ+ ∈
= + = +        (29) 

The SI algorithm must know the system state transition 
probability information. However, when the system scale is 
notably massive, the number of linear equations is equal to the 
system states (i.e., ( 1)K MS L C= + ×  ). Thus, the calculation 
would be notably massive. It is notably hard to solve because of 
the problem of dimensional disaster. Therefore, the SI 
algorithm is not practical in wireless networks. 

2) W Learning algorithm 

In the W learning method, the Q learning method is used to 
obtain the Q value; then, the obtained value is used for W 
learning. The W value represents the difference between the 
expected return and the actual return.  

1

1

( )
      (1 ) ( ) ( ( , ) ( max ( , )))

i

i i

i i i i i i i i ia A

W s
W s Q s a r Q s aα α γ

+

+∈

=

− + − +           

(30) 
3) Random Selection algorithm 
The random selection algorithm is that each system frame 

randomly selects an action to execute. 
In the iteration process, the SI algorithm prefers to calculate 

all states of the system in one iteration time, whereas the 
proposed algorithm in this paper prefers to calculate according 
to the current state. The difference of the RS algorithm is the 
method of action selection. The RS algorithm randomly selects 
an action to perform with no extra calculation, so its 
computational overhead is small. For the Q learning phrase, the 
calculation overhead of the algorithm in this paper is equivalent 
to that of the W learning algorithm and lower than that of the SI 
algorithm. 

TABLE 1 
 ALGORITHM COMPLEXITY COMPARISON 

Algorithm Exponential 
Operation 

Multiplication 
and Division 

Addition and 
Subtraction 

Comparison 
Operation 

SI 0 D S+  D  ×S A  
QL A  4A  2A  A  
WL 2A  3A  3A  A  
RS 0 1 0 0 

 
For the storage overhead, the SI algorithm must calculate the 

system state transition probability, and the storage overhead is
3( 1)K ML C+ × . The storage in the strategy calculation phase is

( 1)K ML C+ × , whereas the proposed method does not need the 
prior information storage overhead, and the Q learning storage 
overhead is ( 1)× × +K M J , which is much less than SI. The 
deep learning model requires some storage overhead. However, 
the model structure in this paper is relatively simple. Therefore, 
in general, the storage overhead of the proposed method is not 
larger than SI. 

VI. SIMULATION EXPERIMENT AND ANALYSIS 

A. Simulation Setting 
In the simulation, we define the parameters of the system as 

follows. The number of wireless communication pairs is 3K = , 
so the number of buffers is 3K = . The length of each buffer is

5L = . The number of channels is 2M = . The number of 
channel states is 4C = . The possible transmission modes are 
no transmission, QPSK, 4-QAM, 8QAM, 16QAM, therefore

{ }0,2,4,8,16∈j and 4=J . Coding rate V is 2. For the 
problem, we compared the three described algorithms with the 
algorithm of this paper. The simulation parameters were set as 
shown in table 2. We use the SAE model with two hidden 
layers. Further performance comparisons are shown in part B. 

The SAEs with many hidden layers cannot be fully trained 
when the data quantity is small. More errors are also introduced 
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because there are more hidden layers. Therefore, the number of 
hidden layers is selected according to the simulation 
comparison. 

TABLE 2 
 SIMULATION PARAMETER SETTING 

Parameters Value/Description 
Threshold of SNR /dB [ 6.28, 1.28,1.28]snr = − −  
Doppler frequency shift /Hz 50df =  
Frame length /s 32 10fT −= ×  
Slot number I1 3

1 5 10I = ×  
Slot number I2 3

2 1 10I = ×  
Noise power WN0/W 31 10−×  Buffer pressure coefficient 0.5θ =  
Arrival rate [0.1, ,0.9]λ =   
BER constraint 310BER −≤  
Discount coefficient 0.9γ =  
Index weight 1 2pC =  
MQL Learning rate (0,1]α ∈  
SAEs hidden neuron number [8,15,15,9] 
Weight 33 10µ −= ×  
SAEs Learning rate 21 10β −= ×  
Training error accuracy 51 10rate −= ×  

B. Performance Comparison 
In slots 1I , the system learns the optimal actions that 

correspond to the system states. The optimal state action 
information is stored in the look-up table. Then, we train the 
SAE model with the obtained information and use the trained 
model to map the state and action in the next 2I phrase. Figure 4 
shows the Q value changing curve in the process of action 
iteration selection using the QL algorithm. 

 

 
Fig. 4. Q value changing curve 

Fig. 4 shows that when 0.1λ = , in states s1={l1=5,c1=3}、
s2={l2=9,c2=4} and s3={l3=12,c3=2}, the curve in the modified 
Q learning algorithm changes value. From Fig. 4, we observe 
that the three different curves converge to different values 
because in different system states, the existing number of 
packets in buffer, amount of coming packets and selection of 
the transmission mode are different. Therefore, the three values 
converge to different values, and the convergence of the 
algorithm is illustrated. 

In the following, we compare its performance with other 
algorithms and use QL-SAEs to name our algorithm. 
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Fig. 5. Normalized throughput comparison of the algorithms 

Fig. 5 shows that the system normalized throughput in one 
frame varies with different packet arrival rates. The QL-SAEs 
algorithm has a less throughput than the SI algorithm but more 
than the other two algorithms. This graph shows that when the 
packet arrival rate is small, SI, QL-SAEs and WL algorithms 
have almost equivalent throughputs. Because the buffer 
pressure is relatively small, in the learning process, the energy 
consumption is small (Fig. 6) in exchange for the packet 
throughput. When the packet arrival rate increases, the pressure 
of the buffer gradually increases. Then, the average amount of 
packet throughput in each frame gradually increases. 
Relatively, the arrival rate has less effect on the RS algorithm, 
and it can obtain a larger throughput only when there are 
sufficient packets in buffer and better transmission mode is 
selected. 
 

 
Fig. 6. Average power comparison of the algorithms 

Fig. 6 shows the average power contrast of each algorithm at 
different packet arrival rates. When the number of packets is 
large, the buffer pressure is high, which can force the relay to 
select better transmission mode and channel to transmit more 
packets to reduce the buffer pressure. Ultimately, more power 
is consumed. The energy consumption of the three algorithms 
rapidly increased at first and subsequently slowly increased 
because with the increase of packet in the buffer, more packets 
can be transmitted, and more power is consumed. Therefore, 
the curve rapidly increases. The buffer will not have much 
effect on the action when the buffer reaches its limitation. 
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Finally, the power curve tends to gently increase. The power of 
the RS algorithm is relatively stable because the packet arrival 
rate basically does not affect the transmission mode selection, 
whereas the other three algorithms are greatly affected by λ . 
The other three algorithms consider the buffer pressure and 
transmission power, but the curses are above the curse of the 
RS algorithm. 

 

 
Fig. 7. Number of average packet loss of the algorithms 

When the system buffer space is small, in the next frame, 
more packet will be possibly lost if more packets are arriving. 
As shown in Fig. 7, with the increase in packet arrival rate, the 
growth of the packet loss curves is approximately linear. 
Because the RS algorithm does not consider the power 
consumption and buffer pressure during the selection process, 
its packet loss is large compared to other algorithms. 

 

 
Fig. 8.  Average system utility of the algorithms 

TABLE 3  
NOTATIONS IN THIS PAPER 

Notation Description Notation Description 

fT  Length of frame '( , )Cp c c  Channel state transition probability 

ρ  Ratio of Signal-to-Noise df  Maximum Doppler shift 

C  Channel state space 0WN  Noise power 

( )C np c  Channel state probability λ  Data arrival rate 

S  System state space L  Length of a signal buffer 
'( , )lp l l  Buffer state transition probability d  Number of  arriving packets 

ia  The selected action t  Number of transmitted packets 

BERp  Bit error rate restriction ( , )iP c j  Power consumption 

j   The selected modulation A  Action set 

B  Buffer space 
1( , )s i i ip s s a+  System transition probability 

V  Coding rate K  Number of buffers 

( , )i iB s a  System benefit 
,k if  Pressure of buffer k 

θ  Buffer pressure coefficient ( , )i iC s a  System cost 

iO  System utility ( )iV sπ  System long term reward 

( , )i iQ s a  Evaluation of the state and action γ  Discount coefficient 

( , )iIndex s a  Action index ( )T n  Selection number of the action  

( )aV i  Bias factor 2 ( )i nσ  Action utility value variance 

α  Learning rate Output  Output vector of SAEs 
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Notation Description Notation Description 

Input  Input vector of SAEs in  Neuron number in SAEs input layer 

M  Number of available channels on  Neuron number in SAEs output layer 

Con  A constant limited in [1,10] kn  Neuron number in SAEs hidden layer 

( )L X  Cost function ix  Input data 

lW
J  Weight decay term ( )if x  Output data 

µ  Weight decay term coefficient l
jiW  Weight 

β  Learning rate δ  Residual error 

 
The average utility of the system is shown in Fig. 8. The 

graph shows that the utilities of SI, QL-SAEs and WL 
algorithm are higher than RS. Although QL-SAEs have a lower 
system utility value than SI, it is better than the WL algorithm. 
To constrain the buffer space, the utility of the system is not 
notably large when the arrival rate of the packet is too large or 
too small. When λ is small, the system can select the 
appropriate action to enhance the utility value. However, when 
the amount of packet is large, although the system is attempting 
to transmit packets, it cannot completely transmit all packets. In 
addition, the transmission power consumption is notably large 
if there are many packets. 

VII. CONCLUSION 
In this paper, a relay for transmission packets to the sink of 

the other nodes is considered in the CIoT. To solve the problem 
of transmission scheduling in the CIoT, a new 
Q-learning-based transmission scheduling mechanism using 
deep learning has been proposed to achieve the appropriate 
strategy with multiple channels for the cognitive node. In this 
paper, the reinforcement learning, which is based on the joint 
action selection criteria of the index value and Q value to 
balance the action equilibrium problem in exploration and 
exploitation, is used to solve the MDP problem. Ultimately, it 
realizes the long-term maximum utility of the system. In 
addition, the SEA deep learning model is introduced to map 
between the state and the action. Although the proposed 
scheme has a lower performance than SI, the algorithm 
complexity is strongly reduced. The proposed algorithm can 
work without priori information, which is suitable for practical 
scenarios. 

The research in this paper is based on the case of one relay. 
However, if there are more than one relay scenario, the method 
to make many relays cooperatively or competitively work can 
be further studied. 
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