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Abstract—With the development of information network, the
popularity of Internet of Things (IoT) is an irreversible trend,
and the intelligent demands for IoT is becoming more and
more urgent. How to improve the cognitive ability of IoT is
a new challenge and therefore has given rise to the emergence
of Cognitive Internet of Things (CIoT). In this paper, a device
level multimodal data correlation mining (DMDC) model is firstly
designed based on the CCA to transform the data feature into
a subspace and analyze the data correlation. The correlation
of the device is obtained based on the comprehensive of data
correlation and the location information of the device. Then a
heterogeneous clustering model (HDC) is proposed by using the
result of the correlation analysis to classify the device. Finally, we
propose a device clustering algorithm based on multimodal data
correlation (DCMDC) for CIoT, which combines the functions
of multimodal data correlation analyze with device clustering.
Extensive simulations are carried out and our results show that
the proposed algorithm can effectively improve the quality of
data transmission and the intelligent service.

Index Terms—Multimodal, data colleration, Cognitive Internet
of Things (CIoT), device clustering.

I. INTRODUCTION

THE concept of Internet of Things (IoT) is proposed since
1999 [1], which is a technological revolution that brings

us into an era of ubiquitous computing and communication.
Meanwhile, cognitive IoT (CIoT) emerges to meet the current
application requirements and becomes the development trend
of IoT. And the center of IoT is shifted from connective to
cognitive. The main idea of CIoT enables the traditional IoT
to possess the features of self-sensing, decision-making, self-
learning and self-adjusting intelligent. [2] proposed a view
that CIoT has the ability to combine the physical world
(such as goals, sources, etc.) with the social world (social
behavior, user needs, etc.) to enhance the relation among
intelligent resources allocation, automatic network operation
and intelligent service provision. The research on CIoT is still
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in the development stage compared with IoT. [3] [4] proposed
a cognitive management framework which could support the
development of the sustainable intelligent city better than
before. CIoT is regarded as an advance direction which is able
to improve the performance and realize intellectualization to
the current IoT [5] [6].

The data of CIoT is collected from multiple heterogeneous
devices and different domains, such as numerical observations,
the measurements from different devices or text from social
media stream [7]. In order to meet the social enterprise needs
and extract more valuable data information by mining the data
correlation, some algorithms about data correlation and data
clustering are studied to solve a practical application problem.
[8] proposed a novel fusion learning framework which pays
attention to cross-retrieval. The aim of the framework is
retrieving the similar data from other types data by regarding
a type of data as a query. For example, user retrieves relevant
text and video by using a single picture. [9] described three
clustering algorithms to analyze the data correlation of the
user online behavior, which could solve the problem among
clustering, person query, and social network prediction. [10]
designed a novel CCA framework which combines CCA
algorithm and norm-one regularization technology [11] [12],
the CCA framework can extract relevant sensing data and
cluster them into different clusters. [13] proposed a mobility
prediction-based clustering scheme to solve the high mobility
of nodes in ad hoc networks, which consists of two parts:
the initial clustering stage and the cluster maintenance stage.
[14] proposed an incremental clustering algorithm (ICFSKM)
based on K-medoids, which can quickly find and discover the
nodes with the density peak. [15] proposed a new heuristic
clustering algorithm for numerical data, which aims to max-
imize DI (Dunn Index) [16] [17] or CHI (Calinshi Harabasz
Index) [18]. [7] proposed an adaptive clustering method to
design dynamic IoT data stream, the method is suitable for
the underlying data drift of the data stream and can determine
the number of clusters based on the data distribution, then an
online clustering mechanism is used to cluster the input data
stream. However, the above researches exist the defect that the
processed data do not contain cognitive components and can
not handle the data generated with high mobility.

In this paper, we focus on how to cluster the heteroge-
neous devices according to the data correlation and device
distribution in CIoT. Firstly, a DMDC model is proposed
based on the CCA method to analyze the multimodal data
blocks by exploring the correlation among them, which aims
to obtain accurate data packet results and provide the basis for
detecting the correlation among devices which are explored by
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considering device distribution information and data packet
correlation. Then a HDC model is designed to classify the
heterogeneous devices according to their correlation. In the
HDC model, the devices are divided into clusters and the
clustering result is changed with time. Finally, a new DCMDC
algorithm is proposed for multimodal data mining and device
clustering in CIoT. To the best of our knowledge, it is the first
work to study the device correlation problem with clustering.
This paper offers the following contributions addressing the
issues mentioned above:
• DMDC model is designed based on the CCA to analyze

the multimodal data correlation according to their data
modal. By using this model, the data blocks are mapped
to the subspace to obtain the correlation of data blocks
and generate the correlation among packets.

• HDC model is proposed to form the correlation among
devices in CIoT, which combines the distribution of
device and the correlation of the data packet. Then the
device is classified into different clusters according to
their device correlation and the clustering results vary
with the time and the correlation of the device.

• DCMDC is designed by adopting the DMDC and the
HDC model. The extensive simulations are performed to
evaluate DCMDC. Simulation results demonstrate that
DCMDC achieves high performance for clustering in
CIoT.

The rest of this paper is organized as follows. In section
II, the system model of CIoT and problem statement are
introduced. DMDC and HDC model are proposed in section
III. Section IV describes DCMDC in detail. Simulations
and evaluations are given in Section V. In Section VI, the
conclusion and the future work are discussed.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Basic Topology and Architectures of CIoT

In this paper, the data cognitive and the intelligent man-
agement is integrated into IoT. Compared with traditional
IoT, more human awareness are added into the interaction
equipment and environment, which improves the accuracy and
the efficiency of the sensor-driven complex system. The design
of CIoT structure needs to meet the independent and intelligent
requirements from users, which introduces the heterogeneous
cognitive device to generate sensing information by adopt-
ing the interactive and convergent sharing mechanism. The
above aspects provide the infrastructure of data collection and
support the cognitive decision-making function and learning
optimization mechanism in CIoT.

As shown in Fig. 1, the adopted CIoT architecture in this
paper includes four layers. The first layer is the Data Sensing,
which consists of heterogeneous intelligent devices equipped
with various of sensors. These heterogeneous intelligent de-
vices are responsible for generating and perceiving data and
are able to communicate with each other under the control of
the cognitive process.

The second layer named the Network Access supports dif-
ferent network protocols, which guarantees the compatibility
of heterogeneous device communications. By adopting the

cognitive function, the devices can sense the change of the
local network environment. Under this premise, the devices in
CIoT are able to choose the most appropriate access method
according to the requirement and flexibly switch the communi-
cation mode, which is more convenient to build heterogeneous
fusion network and make it possible to provide the seamless
connection services to achieve the network integration and
switching among different applications.

Fig. 1: The architecture of CIoT.

Cognitive Processing is the third layer, which deals with the
data processing of CIoT and generates running process flows
corresponding to the different applications. Massive heteroge-
neous sensing information is obtained by exploring the internal
structure, operation mechanism and cooperative relationship
among the devices, meanwhile, the network ecological envi-
ronment observation and information perception are adopted
to optimize network performance. The interconnection mech-
anism is employed by the devices to distribute and share the
perceived information and the data fusion method is introduced
to analyze and integrate the corresponding information. The
collaborative intelligent decision is made according to the re-
sult of information fusion and execute the optimal processing.
In this layer, the multimodal data correlation exploring and
the device clustering need to be fulfilled.

The top layer of CIoT is the Intelligent Service, which is
responsibility for transmitting the cognitive results to servers
[19]–[22]. The resource demands of the users are analyzed in
the Intelligent Service Layer to form the corresponding system
requirements that are expressed as cognitive processes to the
cognitive processing layer.

B. Problem Statement

The data modality of CIoT is increasing with the diversity of
the devices which leads to the complexity of data processing.
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For example, as shown in Fig. 2, CIoT collects a variety
of different sensing data generated by heterogeneous devices
in the Data Sensing Layer. These heterogeneous devices are
divided into movable and stationary which can affect the
network topology. Specifically, the correlation between multi-
modal data generated by different devices is also varied with
the topology and time. In this case, we assume that the sensing
data generated by the devices in CIoT are heterogeneous,
multidimensional and unstructured.

Cognitive Processing Center

Fig. 2: The transmission method of CIoT.

In this paper, we consider that there are M heterogeneous
devices in CIoT and the number of sensing data modal
is N . The set of data modal is represented by Type =
{Type1, T ype2, ..., T ypeN}. Considering an arbitrary time
period tκ in the time set t = {tκ|κ = 1, ..., T}, the data
set for all heterogeneous devices in CIoT is expressed as
Data = {Datatκ1 , Data

tκ
2 , ..., Data

tκ
τ }. Each data packet

consists of multiple different modal data blocks Datatκi =
{Datatκi1 , Data

tκ
i2 , ..., Data

tκ
iξ }. These different modality data

blocks employ advisable approaches to extract their features.
The data features are mapped into the corresponding binary
code by using the hash method. The eigenvector of the data
blocks is represented as D = {D1, D2, ..., Dn} ∈ Datatκiξ .
In the given n eigenvectors, p vectors are selected randomly
(p � n), which constructs the kernel matrix K and zero-
centered D′p =

Dp−D̄
σ . D̄ is the mean of the p vectors and

σ is the variance. We define an all-zero vector e with length
p for each hash equation. The vector e chooses q points in
[1, ..., p] to construct a row construct instruction vector es and
assigns the corresponding value to 1. Then the $ = K−1/2es
and the binary equation(1) are calculated.

h(φ(x)) = sign(

p∑
i=1

$(i)(φ(xi)
T
φ(x))) (1)

The equation(1) is a binary feature coding matrix and φ(x)
is the kernel function. Compared with the CCA algorithm can
only map the different modality data into the same subspace
E after encoding, we map the two different modality data
into the subspace α and β after constructing the mapping
relation. By this way, the features of different modalities exist
corresponding relationships.

MI : X → α MT : Y → β (2)

Two different modality data are mapped to two subspaces
α and β and the two subspaces are reversible. The similarity
search is performed in this subspace and a correlation measure
of different data blocks is returned. In this paper, the CCA
algorithm is used to train the different relationship space α
and β.

To improve and utilize the cognitive function in CIoT, our
objective is designing a multimodal data correlation exploring
method to detect the correlation among different devices in
CIoT, and proposing a device clustering algorithm based on
the correlation results to enhance the cognitive ability of
multimodal data in CIoT and provide more intelligent services
to users.

Typei

Typej

Data modality

Relevance analysis

t

iData k

t

jData k

( , )xy x yd r r

Fig. 3: The modal of data correlation.

III. DEVICE-LEVEL MULTIMODAL DATA CORRELATION
MINING AND CLUSTERING MODEL

In this section, a device-level multimodal data correlation
mining (DMDC) model is designed, which utilizes the canon-
ical correlation analysis (CCA) [23] to train the relationship
space and analyze the correlation among multimodal data,
and integrate the data generated by heterogeneous devices
with high correlation. Based on the correlation analysis, the
heterogeneous clustering model in CIoT is executed to classify
the heterogeneous devices for further multimodal data fusion.

A. Multimodal Data Correlation Analysis in CIoT
Suppose there are two different modal data blocks Datatκix

and Datatκjy from two heterogeneous device data packets. X
is the sample matrix of m×n1 and Y is m×n2. n1, n2 are the
feature dimensions of X and Y . X and Y are represented as
{(x1, y1), (x2, y2), ..., (xm, ym)}. Each (xi, yi) is associated
with a weight ζi which can show its importance. The weighted
mean of X and Y are

x̄ =

m∑
i=1

ζixi

m∑
i=1

ζi

ȳ =

m∑
i=1

ζiyi

m∑
i=1

ζi

(3)

The weighted sample variance and covariance are expressed
as:

D(X) =

m∑
i=1

ζi(xi−x̄)2

m∑
i=1

ζi

D(Y ) =

m∑
i=1

ζi(yi−ȳ)2

m∑
i=1

ζi

(4)
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ω(X,Y ) =

m∑
i=1

ζi

(
m∑
i=1

ζi)
2

−
m∑
i=1

ζ2
i

m∑
i=1

ζi(xi − x̄)(yi − ȳ) (5)

Suppose that ω(X,X) is the weighted covariance matrix
of the matrix X with itself and ω(Y, Y ) is the covariance
matrix of the matrix Y with itself. ω(X,Y ) is the weighted
covariance matrix of the matrices X and Y . The covariance
matrix of the entire data set can be expressed as ω =[
ω(X,X) ω(X,Y )
ω(Y,X) ω(Y, Y )

]
. For the linear representation of the

matrix X , the linear coefficient vector is a, and the linear
coefficient vector of Y is b. The linear representations are
α = aTx and β = bT y, respectively.

As described in Fig.3, the optimization goal of clustering
model is to maximize corr(α, β) for getting the corresponding
projection vector a, b to measure the relationship between α
and β, which means to find a set of optimal solutions to
maximize corr(α, β). The resulting a and b are the weights
that can maximize the relevance between α and β.

arg maxcorr(α, β)︸ ︷︷ ︸
a,b

=
cov(α, β)√
D(α)

√
D(β)

(6)

It can be concluded that the variance and covariance of α
and β are

D(α) = D(aTx) =

m∑
i=1

(aTxi − aT x̄)
2

m∑
i=1

ζi

=

aT
m∑
i=1

(xi − x̄)
2
a

m∑
i=1

ζi

= aTω(X,X)a

(7)

D(β) = D(bT y) =

m∑
i=1

(bT yi − bT ȳ)
2

m∑
i=1

ζi

=

bT
m∑
i=1

(yi − ȳ)
2
b

m∑
i=1

ζi

= bTω(Y, Y )b

(8)

cov(α, β) = aTω(X,Y )b (9)

The correlation between α and β is calculated as:

corr(α, β) = corr(aTx, bT y) =
aTω(X,Y )b√

aTω(X,X)a
√
bTω(Y, Y )b

(10)
By adjusting the values of the coefficients a and b of

α and β to maximize corr(α, β), which becomes a convex
optimization problem. The denominator in the above formula

is fixed as a constant 1. Then this optimization problem is
expressed as a mathematical formula as follows:

Maximize : aTω(X,Y )b
s.t : aTω(X,X)a = 1, bTω(Y, Y )b = 1

(11)

The optimization target is finally transformed into a convex
optimization process. The results of maximum value are the
previously mentioned multi-dimensional X and Y correlation
measure and the corresponding a, b are linear coefficients.

There are two general approaches to optimize this problem.
The first is the Singular Value Decomposition(SVD) and the
second is the Lagrangian Feature Decomposition. In this paper,
we use the latter to solve the problem.

L=aTω(X,Y )b− µ
2

(aTω(X,X)a−1)− υ
2

(bTω(Y, Y )b−1)

(12)
Derive the Equation(12):

∂L

∂a
= ω(X,Y )b− µω(X,X)a (13)

∂L

∂b
= ω(Y,X)a− υω(Y, Y )b (14)

Set the derivative equals to zero:

ω(X,Y )b− µω(Y, Y )a = 0 (15)

ω(Y,X)a− υω(Y, Y )b = 0 (16)

Set Equation (15) is multiplied by aT and Equation
(16) is multiplied by bT . Under the condition of restriction
aTω(X,X)a = 1 and bTω(Y, Y )b = 1, µ=υ=aTω(X,Y )b.
The equation (15) (16) are solved as

ω(X,X)−1ω(X,Y )b = µa

ω(Y, Y )−1ω(Y,X)a = µb
(17)

Merging two equations (17):

ω(X,X)−1ω(X,Y )ω(Y, Y )−1ω(Y,X)a = µ2a (18)

It can be seen that the result is the feature decomposition
of ω(X,X)−1ω(X,Y )ω(Y, Y )−1ω(Y,X) to find the largest
generalized eigenvalue µ. In this case, the eigenvector cor-
responding to the largest eigenvalue is the linear coefficient
a of X . Similarly, we can get the eigenvector of the linear
coefficient b of Y .

For the designed device-level multimodal data correlation
mining model, the mapping relation is reversible between
the two spaces. As shown in Fig. 4, it helps to form a
compact and efficient representation. In this representation,
the vector ρx is employed as a spatial coordinate and the
space X maps into the largest subspace α while the vec-
tor ρy is a spatial coordinate and the space Y maps into
the largest subspace β. The set is expressed as (α, β) =
{(ρx1, ρy1), (ρx2, ρy2), ..., (ρxm, ρym)}.The distance function
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dxy(ρx, ρy) is employed to determine the maximize correlation
between the data block Datatκix and Datatκiy .

dxy(ρx, ρy) =

√√√√ m∑
i=1

(ρxi − ρyi)2 (19)

The correlation is inversely proportional to the distance. The
correlation between two heterogeneous device data packets can
be speculated from the correlation between their data blocks
set. The measure of different data blocks is determined by
their bit length and the importance in the packet which are
expressed as ` and Θ. For the data packets, the set is expressed
as `tκi = {`tκi1 , `

tκ
i2 , ..., `

tκ
iξ } and Θtκ

i = {Θtκ
i1 ,Θ

tκ
i2 , ...,Θ

tκ
iξ }.

The correlation among packets is depended on the weighted
sum of the data blocks as shown in Equation (20).

rij = corr(Datatκi , Data
tκ
j )

=
∑

x∈Datatκ
i

∑
y∈Datatκ

j

`tκx · `tκy + Θtκ
x ·Θtκ

y

dxy(ρx, ρy)
(20)

a b«

Fig. 4: The public subspace.

B. The Heterogeneous Device Clustering Model for the CIoT

As mentioned above, the data packets generated by the
heterogeneous devices have different degrees of correlation.
Next, we consider how to classify the heterogeneous devices
in CIoT to make full use of such correlation among multimodal
data. A heterogeneous device clustering Model (HDC) is
designed for CIoT to improve the performance of the following
processing, such as devices co-operation and data sharing,
which classifies the heterogeneous devices according to the
relativity between the data packets and their distribution. By
utilizing the DMDC model, the data packet correlation can
be extracted to get the correlation efficiency rij . We assume
that each heterogeneous device transmits to one data packet
at any time tκ. In addition to the degree of correlation among
the data, the distribution of the heterogeneous devices is also
considered in the HDC model, which avoids the long-distance
devices are classified into the same cluster to improve the
network communication performance.

Therefore, the distance factor is taken into account during
the clustering of the heterogeneous devices. For two hetero-
geneous devices Ri, Rj ∈ {RM}, the distance between them
is:

Ω(Ri, Rj) =
√

(Rxi −Rxj )
2 − (Ryi −R

y
j )

2 (21)

(Rxi , R
y
i ) and (Rxj , R

y
j ) are the location for the device Ri

and Rj , respectively.
The data correlation and distance among heterogeneous

devices are jointly adopted to decided the correlation of two
devices:

Φ(Ri, Rj) =
λrij

Ω(Ri, Rj)
(22)

In the equation (22), λ is the equilibrium factor used to
coordinate the relationship between the device distance and
the data correlation. The results of Φ(Ri, Rj) is standardized
to make Φ(Ri, Rj) ∈ [0, 1]. If the two devices are not relevant,
the Φ(Ri, Rj) = 0. And we default the device has the
correlation of 1 to itself, Φ(Ri, Ri) = 1.

The clustering set C = {C1, C2, ...Ci, ...Cs} represents the
clustering results is firstly defined in the process of clustering.
In the initial stage of clustering, each device in CIoT is
classified as a cluster to complete the initialization of the
clustering set, which means C = {R1, R2, ..., Ri, ..., RM} =
{C1, C2, ..., Ci, ..., Cs} and Ri = Ci. In order to describe the
correlation between devices and clusters clearly, a adjacency
matrix Σs×s is defined to describe the correlation between
them. Due to each device is a cluster at the initial stage of
clustering, the value of each device in the adjacency matrix is
the correlation between the two devices when the adjacency
matrix is initialized. Where Φ(Ri, Rj) = Φ(Ci, Cj). The
adjacency matrix Σs×s

Σs×s =


Φ(C1, C1) • • • Φ(C1, Cs)
• • •
• • •
• • •

Φ(Cs, C1) • • • Φ(Cs, Cs)


The elements on the main diagonal of the adjacency matrix

represent the correlation of the cluster itself and its default
value is equal to 1. Since the value of the correlation between
the different clusters or the different devices is from 0 to
1, and the maximum value in the adjacency matrix Σs×s
is required in the subsequent process, the elements on the
main diagonal are set to 0. In order to reduce the time and
space complexity of the clustering process and unnecessary
operations, the value of the element in matrix Σs×s which less
than the threshold value ϑ(Φ(Ci, Cj) < ϑ) is also assigned to
zero Φ(Ci, Cj) = 0(0 < i, j < s).

For any time period tκ, the clustering result set C and the
adjacency matrix Σs×s are initialized firstly. Then maximum
value of the correlation Φ(Ci, Cj) is found from the matrix
Σs×s and the corresponding two clusters Ci and Cj are
extracted in the set C. The clusters Ci and Cj are combined
into a new cluster Cη , which is Cη = Ci ∪ Cj , and the
clustering Cη is added into the clustering result set to form
the new set C ′. The Equation (23) is used to calculate the
modularity Q′ of the results in the clustered result set. The
initial value of Q = −1.
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Q =
1

2s

∑
ij

(Σij −
Φ(Ci, Cj)

2s
)δ(Ci, Cj) (23)

δ is a discriminant function for determining whether the
devices i and j belong to the same cluster. The value of
function δ is 1 if the device i and j in the same cluster,
otherwise it is equal to 0.

If Q′ < Q, the two clusters Ci and Cj in clustering Cη are
separated and reintroduced into the clustered result set C. The
correlation between Ci and Cj of the clustering is set to 0 in
the matrix Σs×s. The algorithm is terminated if Q′ ≥ Q while
the difference between the current iteration module degree Q′

and the previous iteration module degree Q is relatively small,
|Q′−Q| ≤ ε. The ε is a very small value. If |Q′−Q| > ε, the
result set C ′ of current iteration is the initial result set of the
next iteration, which means C = C ′. In addition, the adjacency
matrix Σ|C|×|C| is reconstructed by using the elements in the
clustering result set C, where |C| is the number of elements
in the set C. In the clustering result set C, some clusters
are composed of only one device and others have multiple
devices. For constructing the adjacency matrix Σ|C|×|C|, a
detailed description of the correlation between clustering of
a node is given from the Equation (22).

The Equation (24) is used to calculate the relationship
between different clusters, and a cluster can contain one or
multiple devices.

Φ(Ci, Cj) =
1

|Ci| · |Cj |

|Ci|∑
l=1

|Cj |∑
k=1

Φ(Rl, Rk) (24)

|Ci| and |Cj | represent the number of devices in clusters Ci
and Cj respectively, Rl ∈ Ci and Rk ∈ Cj . All the elements
on the main diagonal are set to zero in the matrix Σ|C|×|C|. By
adopting the reconstructed adjacency matrix Σ|C|×|C| and the
clustering result set C for iterative processing, the HDC model
is executed according to the above steps until the module is
calculated by the clustering result set C which satisfies the
condition |Q′ − Q| ≤ ε. The heterogeneous devices in CIoT
are classified into different clusters based on the correlation
between the devices in different time periods through the
above steps.

IV. DEVICE CLUSTERING ALGORITHM BASED ON
MULTIMODAL DATA CORRELATION

In the previous section, DMDC and HDC model are adopted
to analyze data correlation and classify the devices. The clus-
tering result is able to be applied to the corresponding network
routing distribution or other application services in CIoT.
By utilizing DMDC and HDC model, the device clustering
algorithm based on multimodal data correlation (DCMDC) is
designed to improve the performance of CIoT.

As mentioned above, the device is heterogeneous and the
data is multimodal in CIoT. In order to explore the correlation
among multimodal data, the DMDC model is used to detect
the correlation among the multimodal data from heterogeneous
devices. The two packets Datatκi and Datatκj from hetero-
geneous devices which contain multiple different modal data

Algorithm 1 Device Clustering Based on Multimodal Data
Correlation Algorithm.

Require:
At time tκ, Data = {Datatκ1 , Data

tκ
2 , ..., Data

tκ
τ } ∈

{RM}
Ensure:

The clustering set C;
1: for i = 1 to τ do
2: for j = 1 to τ do
3: Obtain two heterogeneous devices’ data packet-

s Datatκi = {Datatκi1 , Data
tκ
i2 , ..., Data

tκ
iξ } and

Datatκj = {Datatκj1, Data
tκ
j2, ..., Data

tκ
jξ}

4: end for
5: for x = 1 to ξ do
6: for y = 1 to ξ do
7: Extracting Datatκix Data

tκ
jy from two packets

8: Extracting the feature Dx = {D1, D2, ..., Dm} ∈
Datatκix and Dy = {D1, D2, ..., Dm} ∈ Datatκiy

9: Hashing h(Dx, Dy) = {X,Y }
10: Adopting CCA to get corr(α, β) from

Equation(10)
11: Calculating (α, β) = (aTx, bT y)
12: Calculating dxy(ρx, ρy) between Datatκix and

Datatκjy
13: end for
14: end for
15: for i = 1 to τ do
16: for j = 1 to τ do
17: Calculating corr(Datatκi , Data

tκ
j )

18: Calculating Φ(Ri, Rj) from the Equation(21)
19: end for
20: end for
21: Initializing C = {C1, C2, ..., Ci, ..., Cs} and Σs×s
22: Getting modularity Q′

23: if |Q′ −Q| ≤ ε then
24: return New Cluster C ′ and Σ|C|×|C|;
25: end if
26: if |Q′ −Q| ≤ ε then
27: return The Cluster C and set Φ(Ri, Rj) = 0
28: end if
29: end for

blocks. The correlation of each data block and the distribution
of device information are both analyzed to obtain the two
devices correlation. The data block feature is extracted and
the corresponding eigenvector Dx = {D1, D2, ..., Dm} ∈
Datatκix and Dy = {D1, D2, ..., Dm} ∈ Datatκiy from two
different modal data blocks Datatκix and Datatκjy. Next, the
eigenvector converts into a hash representation h(Dx, Dy)
and is mapped into the same subspace. The CCA algorith-
m is adopted to transform linearly the vector {X,Y } =
{(x1, y1), (x2, y2), ..., (xm, ym)} into the subspace α and β
with the maximize correlation. The function dxy(ρx, ρy) is
used to determine the correlation of two data blocks α and
β. The correlation corr(Datatκi , Data

tκ
j ) from the heteroge-

neous device data packets is obtained after synthesizing the
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weight information of the data blocks.
The correlation between the two heterogeneous devices

Φ(Ri, Rj) is obtained by taking into account the combination
of the device distribution Ω(Ri, Rj) after obtaining the data
correlation. The HDC model is established to cluster the
heterogeneous devices in CIoT to integrate the various require-
ments of the device clustering according to the correlation
among devices. In the clustering process, each device in
CIoT is divided as a cluster and composed a clustering result
C = {C1, C2, ..., Ci, ..., Cs}. The adjacency matrix Σs×s is
adopted to represent the correlation from the devices. The
new cluster C ′ is formed through the correlation between the
devices and the modularity Q is used to measure the new
clustering results. If the new module Q′ satisfy the condition
|Q′−Q| ≤ ε, the cluster is converted to a new cluster C ′ and
update the adjacency matrix to Σ|C|×|C|. The result set C ′ of
current iteration is the initial result set of the next iteration.
The clustering results are formed on this basis which is served
as the initial value for the next iteration. If |Q′ −Q| ≥ ε, the
clustering result is split and update Σs×s to set the correlation
of the two heterogeneous devices to 0. The device provides the
necessary assistance for network routing and other application
services for CIoT based on their correlation clustering. The
algorithm of building and working process of the DCMDC is
described in Algorithm1.

0 1000 2000 3000 4000 5000
The number of device

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m
e

Fig. 5: The clustering time of devices

Now, we discuss the complexity of clustering algorithms.
The correlation among the devices is calculated and sorted in
the initial clustering. For example, if there are n devices in
the network, the n(n−1)/2 devices correlation is obtained in
the initial clustering. In the clustering process, the number of
inter-cluster correlations is less than n(n− 1)/2. So DCMDC
calculates the correlation of n(n − 1)/2 devices at most, the
time complexity is O(n2). As shown in Figure 5, when there
are only 1000 devices in the network, the clustering time has
small growth with the number of devices increases, and the
fluctuation does not exceed 0.1 seconds. When the number of
devices increases to 5000, the device cluster time exponentially
increase and has a greater impact on the clustering. At this
time, the clustering effect of DCMDC is not better than before.
Therefore, the algorithm takes into account the common

relationship between data correlation and device distance in
running process. For the environment with a large number of
network devices, the clustering process is running in a small
environment. In Equation (22), the common role of device
location information and data correlation is defined.

V. SIMULATION AND RESULT

This section discusses the results of simulations to evaluate
the performance of DCMDC. In this section, we use an LFR
artificial network [24] to evaluate the clustering result of
DCMDC. The LFR is a simulation network that can contain
overlapping clusters. The artificial network is constructed by
controlling the power distribution of device degree and clus-
tering size. At the same time, the network can also initialize
the degree of community overlap.

In the simulation, four different sizes and characteristics
networks are built. As shown in Table I, three parameters
are considered in the network construction, the number of
devices (ND), device degree distribution index (D3I) and
clustering size distribution index (CSDI). In the artificial
network experiment, we gradually increase the average number
k of devices, k = 10, k = 20 and k = 30 respectively, observe
the experimental results from three levels.

TABLE I: Parameters for eight different types networks

Name G1 G1 G3 G4 G5 G6 G7 G8
ND 1000 1000 1000 1000 5000 5000 5000 5000
D3I 2 2 3 3 2 2 3 3

CSDI 1 2 1 2 1 2 1 2

We use the appropriate evaluation criteria of Normalized
Mutual Information (NMI) [25] to evaluate the effect of
clustering. The NMI calculates the information between two
clusters to obtain the similarity of two clustering. NMI is used
to evaluate the matching degree of the clustering structure
detected by the algorithm with the real clustering structure.
NMIs formula is defined as follows:

NMI(E|Z) = 1− [H(E|Z) +H(Z|E)]/2 (25)

Where E and Z are given two clustering structures. The larger
of the value NMI, the more similar to the two clustering
structures. The clustering result calculated by the algorithm
is similar to the clustering structure of the artificial network,
where NMI ∈ [0, 1].

As shown in the Figures 6 and 7, the NMI value between
the clustering structure generated by the algorithm and the
artificial network clustering structure is gradually reduced with
the increase of the network topology mixed parameter v. The
similarity between the two results reduced and this is a normal
phenomenon. Because with the increase of v, the structure
of the network becomes more complex and it is difficult
to detect the real clustering structure. When the value of v
is relatively small, the clustering structure generated by the
algorithm is almost the same as the artificial network structure,
which shows that the clustering effect of the algorithm is quite
good. Generally speaking, when v ≤ 0.5, NMI value can
reach more than 0.8. The clustering structure calculated by
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Fig. 6: Simulation results for DCMDC in LFR networks, network size ND=1000

the algorithm has very good results. In addition, the results
are compared with the corresponding experimental in Figures
6 and 7. When the number of devices reach to 5000 and the
size of the network increases, the corresponding NMI value
will be slightly reduced. But the algorithm proposed in this
paper can get better results.

VI. CONCLUSION

To increase the data cognitive ability of CIoT, this paper
introduces a device clustering algorithm based on multimodal
data correlation which including the function of data correla-
tion analyze and device clustering. A device-level multimodal
data correlation mining model is firstly proposed based on
the CCA algorithm to analyze the multimodal data and de-
vice correlation, which is capable of classifying the device
according to the data correlation and device distribution. The
DCMDC clusters the heterogeneous devices in CIoT according
to their correlation by using the result of the data correlation
mining model. Extensive simulations are performed to evaluate
the proposed algorithm. The results show that the designed
algorithm can achieve a satisfying quality of device clustering
and has the potential to transform into a practical technique
in CIoT.
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