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A B S T R A C T

Background: Methamphetamine use has been posited to be a risk factor for the development of Parkinson’s
disease (PD) and parkinsonism. The clinical implications of a potential association between methamphetamine
use and PD are considered.
Methods: A review of methamphetamine and PD and parkinsonism was conducted, including evidence from
animal models, clinical and population studies.
Results: There is biological plausibility to a link between methamphetamine use and PD. Though clinical and
epidemiological evidence in this area is scant, a number of studies suggest that methamphetamine is associated
with a moderately increased risk of PD and parkinsonism, and may also lead to premature onset of PD. The long
lag time between exposure to methamphetamine and onset of PD, the potential for recovery from neurotoxic
effects, and tobacco smoking each may attenuate the association. Individual and drug use characteristics that
may modulate a user’s risk remain poorly understood.
Conclusions: The use of methamphetamine may be an initiating event in the development of PD and parkin-
sonism, in addition to other risk factors that a given individual may hold. Clinicians should be vigilant to signs of
prodromal and emerging PD among methamphetamine users. In individuals with premature onset illness, in-
formation on current or prior exposure to methamphetamine should be sought.

1. Introduction

Methamphetamine use is a significant public health problem, with
an estimated 35 million stimulant users worldwide, predominantly of
methamphetamine (Degenhardt and Hall, 2012; Degenhardt et al.,
2013; UNODC, 2016). Harmful physical and mental health con-
sequences are common, including cardiovascular and cerebrovascular
pathology, psychosis, suicide and premature mortality (Callaghan et al.,
2012a; Darke et al., 2008, 2011; Karch, 2015). The stimulants me-
thamphetamine and its active metabolite amphetamine are highly re-
lated and are hereafter referred to as methamphetamine (McKetin et al.,
2016)

There has been recent speculation that methamphetamine use may
be associated with greater risk of developing Parkinson’s disease (PD).
Here, we examine the question whether methamphetamine users are at
increased risk of PD or parkinsonism. There is an extensive pre-clinical
literature investigating the effects of methamphetamine on brain tissue,
and specifically its propensity to cause brain dopamine neuronal da-
mage such as that observed in Parkinson’s disease. This literature has

been comprehensively reviewed elsewhere (Kish et al., 2017). The
current review extends beyond these preclinical findings by reviewing
evidence from clinical and population studies of PD and parkinsonism
among individuals exposed to methamphetamine. The clinical im-
plications for methamphetamine users, their communities and clin-
icians are considered.

1.1. Pathology of Parkinson’s disease and parkinsonism

PD is characterized by the clinical manifestations of bradykinesia in
combination with rest tremor and/or rigidity (Postuma et al., 2015),
and by the underlying pathology of irreversible loss of dopamine in the
basal ganglia (or striatum) of the brain. Dopaminergic cell loss occurs
following degeneration of dopaminergic neurons in the substantia nigra
(Kish et al., 2017). The characteristic motor symptoms that prompt
diagnosis present at a relatively late stage in the pathological process.
The term parkinsonism is distinct, and refers only to the clinical motor
manifestations (bradykinesia, tremor, rigidity) (Postuma et al., 2015),
that is, not specifying the underlying cause. These features may be
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attributable to PD or to other causes. That parkinsonism therefore
comprises a broader category than PD is reflected in illness prevalence;
the lifetime risk of parkinsonism is estimated at 4.4% for men and 3.7%
for women (Elbaz et al., 2002), while that of PD is estimated at 2% for
men and 1.3% for women (Elbaz et al., 2002).

PD is rare before the age of fifty (Twelves et al., 2003), but in-
creasingly common with age (Poewe et al., 2017). The prevalence in
those aged 65 and older is in the order of 2–3% (Poewe et al., 2017).
Approximately 10% of cases have an identifiable genetic cause
(Ascherio and Schwarzschild, 2016). In the remainder, referred to as
‘idiopathic’ PD, the pathogenic mechanisms are poorly understood.

Selective striatal dopamine deficiency is the hallmark feature of PD,
together with the widespread accumulation of intracellular protein (α-
synuclein) in intracellular inclusions known as Lewy bodies (Poewe
et al., 2017). Over recent decades, however, it has become clear that PD
pathogenesis is not limited to the dopaminergic system, but rather in-
volves numerous cell types in both the central and the peripheral au-
tonomic nervous systems (Poewe et al., 2017). Lewy pathology is ob-
served early in both cholinergic and monoaminergic neurons in the
brainstem and in olfactory system neurons, and more latterly, with
disease progression, in the limbic system and neocortex (Poewe et al.,
2017). A range of mechanisms and pathways have been implicated,
including α-synuclein proteostasis, calcium homeostasis, oxidative
stress, mitochondrial function, axonal transport, and neuroinflamma-
tion (Poewe et al., 2017). It appears that both behavioural and en-
vironmental effects modify the risk (Ascherio and Schwarzschild,
2016).

Drug-induced parkinsonism is the second most common aetiology of
parkinsonism after idiopathic PD (López-Sendón et al., 2013). Drug-
induced parkinsonism, relating to prescribed drug treatments, is a side
effect most commonly associated with antipsychotic agents, but which
can occur with a variety of other treatments including antidepressants,
calcium channel antagonists, antiarrhythmic and antiepileptic drugs
(López-Sendón et al., 2013). There is evidence that at least some of
these drugs may cause neurotoxic damage to nigrostriatal dopaminergic
neurons (Mena et al., 1995). Despite being considered reversible on
drug discontinuation, suspected drug-induced parkinsonism renders as
many as 25% of individuals subject to progressive or persisting par-
kinsonism (Marti Masso and Poza, 1996).

2. Evidence from preclinical and human studies

2.1. Evidence from preclinical studies: is there a plausible mechanism?

Striatal dopamine nerve terminal markers, including the dopamine
metabolite, homovanillic acid, the striatal dopamine transporter, and
the vesicular monoamine transporters (VMAT) are all observed at low
levels in PD, indicating the hallmark deficiency of the dopaminergic
system (Kish et al., 2017). The rate of dopaminergic neuronal loss is
initially exponential: a study of neuronal loss in PD brains compared to
that in ageing brains demonstrated 45% neuronal loss during the first
decade of PD, ten times that accounted for by ageing (Fearnley and
Lees, 1991). In some regions of the substantia nigra, average neuronal
loss in PD exceeded 90% (Fearnley and Lees, 1991).

Methamphetamine and its metabolite amphetamine cause release of
dopamine from dopaminergic neurons in the human brain (Laruelle
et al., 1995). Evidence from animal studies using both histological
techniques and dopamine marker measurement indicates that me-
thamphetamine exposure induces structural damage in dopaminergic
neurons (reviewed in Kish et al., 2017). Repeated, high-dose metham-
phetamine administration modifies the dopamine transporter, a pos-
sible mechanism in long-lasting dopaminergic deficits (Fricks-Gleason
et al., 2016). In animal studies, dopamine synthesis may recover within
six months of amphetamine exposure, indicating that at least some
dopaminergic effects are reversible (Melega et al., 2008).

2.2. Evidence from human studies: is there a plausible mechanism?

Evidence from human studies is limited. There are reduced levels of
striatal dopamine (Moszczynska et al., 2004; Wilson et al., 1996) and of
dopamine markers, such as the dopamine transporter (McCann et al.,
1998, 2008; Volkow et al., 2001a). Striatal dopamine levels reduced by
up to 50% have been observed in chronic methamphetamine users
(Wilson et al., 1996). Moszczynska et al. (2004) conducted one of very
few studies examining, at autopsy, the basal ganglia of human chronic
methamphetamine users. The study found prominent reductions in
dopamine levels, which were greater in the caudate nucleus (61%),
than the putamen (50%). This pattern differed to that observed in PD
controls, in whom mean dopamine levels were more marked in the
putamen (loss of 97%) than in the caudate (loss of 82%). The putamen
and caudate are entailed in motor and cognitive function respectively,
and it was posited that dopamine reduction in the caudate may explain
cognitive impairment in some methamphetamine users, and that the
relative sparing of the putamen might explain the absence of PD. There
was considerable variability in the levels of dopamine loss observed.
While several exhibited very severe dopaminergic deficiency, the au-
thors concluded that, in the majority, the doses used recreationally
would not give rise to significant irreversible damage to dopaminergic
neurons (Kish et al., 2017). This was a small sample (n= 20), however,
and there were no pre-mortem clinical characteristics reported. Of note,
the methamphetamine users in the sample had a median age of 31 years
with a modal 10 years’ duration of use. It is unknown how many may
have progressed to PD had they lived longer.

2.3. Evidence from preclinical studies: are the neurotoxic effects of
methamphetamine irreversible?

The risk for PD increases with age, with continued progressive loss
of dopaminergic neuronal integrity. If methamphetamine-related ef-
fects on dopaminergic neuronal integrity were chronic and irreversible,
the baseline for dopaminergic function would be lower than in non-
methamphetamine users. Thus, it is plausible that with progressive age-
related loss of dopaminergic function, methamphetamine users will
achieve prematurely the threshold of dopamine function loss required
for clinical manifestation of parkinsonism. This prompts the question:
does the observed dopaminergic neuronal integrity damage induced by
methamphetamine use constitute permanent degenerative change or
reversible modulatory effects?

Neuronal degeneration in animals is observed at high methamphe-
tamine doses that exceed those of recreational use in humans
(Woolverton et al., 1989), and thus may not be a good preclinical model
of human methamphetamine abuse. There is insufficient evidence to
answer the question whether recreational methamphetamine use in
humans causes such irreversible loss of dopaminergic neurons (Kish
et al., 2017). Binge-like dosing is more deleterious in animal models,
with more severe or longer-lasting effects than comparable cumulative
dosing over time (Moszczynska and Callan, 2017). Of note, prior me-
thamphetamine exposure attenuates the later binge-induced striatal
dopamine level decrease, perhaps indicative of tolerance to the neu-
rotoxic effects of methamphetamine (McFadden et al., 2015). None-
theless, evidence for a strong dose-dependent relationship between
amphetamine use and neural toxicity has been demonstrated in a
variety of animal species, including rodents and primates (Yamamoto
et al., 2010).

2.4. Evidence from human studies: are the neurotoxic effects of
methamphetamine irreversible?

Evidence from the neurocognitive literature is pertinent here.
Reviews suggest that methamphetamine abuse is associated with mild
cognitive impairment (Dean et al., 2013), which, in turn, is associated
with effects on dopamine function (Volkow et al., 2001b). Importantly,
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suppression of cognitive abilities improves with abstinence from me-
thamphetamine, at least in some individuals (Dean et al., 2013; Kim
et al., 2006; Salo et al., 2009; Scott et al., 2007). Further, the observed
improvement in function following abstinence, at least in some cogni-
tive domains such as memory and executive function, is associated with
partial recovery in methamphetamine related neuronal integrity (Chou
et al., 2007; Dean et al., 2013). Recovery may, however, not be com-
plete, as some cognitive impairments persist in abstinent methamphe-
tamine users and correlate with markers of decreased dopaminergic
neuronal integrity (McCann et al., 2008). There are caveats to the in-
terpretation of these neurocognitive findings, such as whether neuro-
cognitive deficits occur in all individuals, and whether the differences
observed are clinically significant (Hart et al., 2012). Nonetheless,
evidence from animal and human studies suggests that there is damage
to dopaminergic neurons in methamphetamine users, that these
changes in dopaminergic neuronal integrity show some potential to
recover with abstinence, and that recovery is associated with im-
provement in (cognitive) function.

While neurocognitive effects are observable at the time of current
methamphetamine use, the PD paradigm is different: abnormalities in
striatal dopaminergic neurons will only give rise to the clinical mani-
festations of parkinsonism when the required 50% threshold loss of
dopaminergic function is met. That the acute catastrophic development
of parkinsonism is not observed in young methamphetamine users in-
dicates that this level of damage does not result acutely. It may be the
case however, as is speculated in neurocognition, that there is some
irreversible damage to neurons, with a resultant depletion of dopami-
nergic neurons. Such neuronal depletion will not be detectable at the
time. This is important because, unlike in neurocognition, it is not
possible to study the gradual development of PD in neuroimaging or
human studies. Rather, the illness may develop after a variable lag time
post-exposure to methamphetamine and will present with clinical
motor features at a late stage in the disease process.

3. Evidence from population and clinical studies

Population and clinical studies provide a means of examining
whether individuals exposed to methamphetamine have an increased
prevalence for PD or parkinsonism. In a large population sample,
Callaghan et al. (2012b) reported that individuals admitted to hospital
with methamphetamine-use disorders had a 76% increased risk of de-
veloping PD over 16-year follow-up compared to a matched population-
proxy appendicitis group. Curtin et al. (2015), in a retrospective cohort
study of hospitalizations and outpatient service use among metham-
phetamine users and controls, reported a 3.1 times increased risk of PD
in users. These findings support Callaghan et al. (2012b), and indicate
that an increased risk for future development of PD is not limited to
those with use severe enough to warrant hospital admission. Indeed, a
limitation of hospital population-based datasets is that there may be
underestimation of exposure to methamphetamine use, and of PD, for
which hospital admission is not (yet) indicated. Another important
difference between these studies was the more inclusive definition of
PD/parkinsonism/essential tremor employed by Curtin et al. (2015).
They did, however, confirm an increased risk of 2.8 times controls in
methamphetamine users when applying the more stringent PD only
diagnosis.

While these two population studies provided evidence of increased
risk for PD among methamphetamine users, it remained a rare event.
This warrants discussion. It has been argued that only a subset of in-
dividuals may be susceptible to developing PD (Callaghan et al.,
2012b), though there is a lack of evidence about which individual and/
or drug use characteristics increase risk. Studies to date have not ex-
amined mode of administration, dosing, duration of use, or duration of
abstinence, so it is unclear to what extent these factors impact risk.
Reduced risk for PD is associated with tobacco smoking (Chen et al.,
2010). The high rates of nicotine smoking among methamphetamine

users may somewhat underestimate the risk conferred by methamphe-
tamine (Callaghan et al., 2012b; Curtin et al., 2015). High mortality
among methamphetamine users prevents many reaching an age at
which PD might otherwise become diagnosable (Darke et al., 2017).

Stimulant drugs including amphetamine have, for decades, been
used in the treatment of other conditions including narcolepsy and at-
tention deficit hyperactivity disorder (ADHD). Clinical studies of the
long-term effects of stimulant exposure in ADHD have not been con-
ducted (Huang and Tsai, 2011). A study among patients with PD found
narcolepsy to be an additional morbidity much more commonly present
than would be expected in the general population (Christine et al.,
2012). Exposure to amphetamines (for the treatment of narcolepsy) was
found to occur at a rate five times higher than that expected among
those with PD, raising the question whether amphetamines accounted
for this increased risk of comorbid narcolepsy and PD (Christine et al.,
2012). This lends support to the proposal that there is under-detection
of an association between methamphetamine and PD. This finding only
came to light because there is appropriate recording of amphetamine
exposure as a treatment prescribed for narcolepsy in patient medical
records. In other settings, information on illicit substance use may be
neither sought nor provided.

Finally, Garwood et al. (2006) found that individuals with PD were
eight times more likely than their carers to have had prior prolonged
exposure to prescribed, or illicit, amphetamine use. The average ex-
posure occurred 27 years before diagnosis. Overall, population studies
report a two- to three-fold increased risk of development of PD and
parkinsonism among chronic users (Callaghan et al., 2012b; Curtin
et al., 2015), and several studies suggest an increased risk in individuals
exposed to prescribed or illicit amphetamines.

3.1. Evidence from experimental studies in human methamphetamine users

To date, studies have been based on large-scale populations from
clinical sources that document diagnosed syndromes. There is a lack of
evidence regarding the prevalence of subthreshold or threshold par-
kinsonian features among non-clinical populations of chronic MA users.

Various movement disorders associated with methamphetamine use
have been described, both acute hyperkinetic presentations such as
chorea and tics, and more persistent effects such as psychomotor dis-
turbances and parkinsonism (Caligiuri and Buitenhuys, 2005). Chronic
motor effects exist in human methamphetamine users, such as deficits
in fine dexterity and timed gait tasks (Volkow et al., 2001b). These
effects were observed in users who had been abstinent for at least 12
months, indicating that some psychomotor changes endure. Whether
these movement disorders are associated with increased risk of future
development of PD or parkinsonism is unclear. It is unclear whether the
effects observed in the methamphetamine users were irreversible or due
to neurotoxicity. Indeed, it has been argued that such psychomotor
disturbances may reflect deficits in higher-order cognitive functions
such as planning, attention, and/or executive function (Simon et al.,
2000). This conclusion is consonant with the findings of Moszczynska
et al. (2004) (discussed in Section 2.1) that methamphetamine-related
neurotoxic effects were more pronounced in the striatal areas im-
plicated in cognitive function than those involved in motor function.

While it is not possible to measure dopaminergic integrity itself in
living individuals, an important potential marker is that of abnormal
substantia nigra (SN) pathology. SN hyperechogeneity can be demon-
strated in between 80 and 90% of living adults with PD using tran-
scranial sonography (Berg et al., 2001; Tsai et al., 2007). SN hyper-
echogeneity in healthy adult humans is associated with presynaptic
dopaminergic dysfunction (Berg et al., 2001). It is also highly predictive
of future development of PD: affected older (50 years+) adults were
shown to be 17 times more likely to develop PD within 3 years than
those without the abnormality (Berg et al., 2011). A larger area of SN
hyperechogeneity was observed in living adults with a history of illicit
amphetamine (predominantly methamphetamine) use compared to
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controls in a case-control study (Todd et al., 2016). The amphetamine
users also showed some features of parkinsonism, scoring significantly
more highly than controls on a clinical rating scale for PD. Deficits were
noted particularly in movement domains such as hand movements and
movement speed, speech, posture and postural stability (Todd et al.,
2016). There was no correlation between the area of SN hyper-
echogeneity and duration of abstinence (mean=3.6 years), leading the
authors to conclude that the abnormality was likely to be long-lasting.
Indeed, SN hyperechogeneity appears to be an irreversible risk factor
for PD, as there have been no reported cases of improvement in any
population once the abnormality has been detected (Todd et al., 2016).

The two studies detailed above demonstrate that it is possible that
subtle parkinsonian features are present in methamphetamine users. It
is likely that subthreshold or indeed threshold symptoms and signs may
go undetected and, thus, untreated among methamphetamine users
who demonstrate reduced help-seeking behaviours (McKetin and Kelly,
2007).

4. What modulatory factors might impact on the association
between methamphetamine and Parkinson’s disease?

Individual and drug use factors may influence the degree to which a
methamphetamine user experiences neurotoxic effects or subsequent
recovery. Age of onset and cessation may be important, as neural
plasticity and brain reserve may explain the ability of younger in-
dividuals to experience better outcomes following neurological injury
(Hukkelhoven et al., 2003; Satz et al., 2011). There is much still to learn
about the degree to which irreversibility of neuronal integrity is, or is
not, impacted by duration of exposure to methamphetamine use, route
of administration, dependence, or form (e.g., low-potency prescribed
psychostimulants through to high-potency crystalline methampheta-
mine).

Dose and duration of exposure effects, too, are poorly understood.
The available data relate to cognitive impairment, rather than PD.
Cumulative methamphetamine exposure has not been associated with
degree of cognitive impairment in most studies (Dean et al., 2013). This
is, perhaps, not surprising, given that the observed cognitive impair-
ment is mild. Thus, in the early phases of methamphetamine use, there
would be expected to be some association with a degree of impairment,
but once that mild impairment has been established it is likely that
ongoing use is associated with a plateauing in impairment. Thus, fur-
ther ongoing exposure over time would not be associated with further
impairment. Duration of illness per se may thus not be the best measure
of methamphetamine dose effects. Parkinsonian features may occur
more frequently among individuals with binge-use patterns, based on
animal models that binge-like dosing is more deleterious (Moszczynska
and Callan, 2017). Measures of addiction severity similarly yield mixed
findings: dependence was found to be associated with poorer cognitive
performance in some (McKetin and Mattick, 1997) but not all studies
(Hoffman et al., 2006).

Smoking of nicotine may be an important modulator of the asso-
ciation between methamphetamine use and parkinsonism, as nicotine
reduces the risk of PD (Chen et al., 2010). Smoking is very common
among methamphetamine users, with a prevalence of 95% in depen-
dent users (McKetin et al., 2012). This is many times higher than the
general population prevalence of smoking of between 10 and 20 per-
cent reported in the U.S. and Australia where most population and
clinical studies have been conducted (AIHW, 2017; CDC, 2016). In
animal models, nicotine has been shown to be neuroprotective, at-
tenuating MA-induced nigrostriatal damage and altering nicotinic
acetylcholine receptor expression (Baladi et al., 2016; Vieira-Brock
et al., 2015). Thus, smoking nicotine may attenuate MA-induced neu-
rotoxic effects and reduce the likelihood of later development of par-
kinsonism.

Potential individual-level modulators include male gender, Hispanic
ethnicity, exposure to neurotoxins, comorbid physical illness such as

HIV (associated with parkinsonism-like symptoms) or psychiatric ill-
nesses and their treatments (Langston et al., 1987; Tse et al., 2004; Van
Den Eeden et al., 2003). Several case reports of drug-induced PD/par-
kinsonism have been reported in men aged below 45 years treated on
antipsychotic treatment who were also taking prescribed or illicit am-
phetamines (Matthew and Gedzior, 2015; Tcheremissine and Englert,
2013). Genetic profile is increasingly investigated when considering the
pathogenesis of various subtypes of PD (Thenganatt and Jankovic,
2014). Polymorphism in the genes involved in dopamine regulation and
detoxification may modulate an individual’s susceptibility to PD (Singh
et al., 2008). Thus, genetic variability in the metabolism of metham-
phetamine leading to potential neurotoxic effects (Cherner et al., 2010)
may be relevant to a methamphetamine user’s future risk of develop-
ment of PD. Genetic susceptibility among individuals from families with
familial PD is evidenced by high rates of drug-induced parkinsonism
(Hoenicka et al., 2002). The issue of genetic profile as a modulator of
the association between methamphetamine use and PD is an area for
future study. Additionally, models of the pathogenesis of PD continue to
evolve: disease mechanisms at both molecular and cellular levels are
increasingly implicated, such as progressive development of Lewy body
pathology (Poewe et al., 2017). Thus, it is possible that nigrostriatal
dopaminergic loss associated with methamphetamine use alone is not
sufficient to entail the development of PD. Other, as yet unspecified,
pathogenetic mechanisms may be additionally required.

Finally, methamphetamine administration can much more rarely
lead to acute onset of persistent parkinsonism following vascular
ischaemic damage to the basal ganglia (Deeb et al., 2017; Tang et al.,
2017), with methamphetamine associated with an increased risk of
stroke (Lappin et al., 2017). Cases occurring by this alternative me-
chanism are rare and would not be expected to share the same risk
factors as discussed above for progressive PD secondary to nigrostriatal
dopaminergic neuronal loss.

5. Is methamphetamine associated with premature development
of Parkinson’s disease?

When considering the chronic development of PD, it is important to
consider exposure to risk factors over time. An analogy can be drawn
with the now well-recognised association between methamphetamine
exposure and increased risk for hypertension and cardiovascular dis-
ease (Darke et al., 2017). Current use of methamphetamine would not
be expected to necessarily confer risk for chronic cardiovascular dis-
ease. Rather, chronic exposure confers a cumulative risk which, in ad-
dition to other risk factors in an individual, gives rise to accelerated
ageing. Cardiovascular pathology among chronic methamphetamine
users is comparable to that observed in individuals decades older
(Huang et al., 2016; Karch, 2015; Kaye et al., 2007). This leads to the
question whether similar methamphetamine-associated accelerated
ageing effects may be relevant to PD?

There is some evidence from population studies for the premature
development of PD. Callaghan et al. (2012b) found that the median age
of onset of PD was six years younger among methamphetamine users
than controls. Comparisons of onset age of PD in methamphetamine
users compared to controls were not reported by Curtin et al. (2015),
but the age of PD onset was early, with a median age around 45 years.
One small clinical study compared patients with prolonged ampheta-
mine exposure with unexposed PD controls, and found a younger onset
age in the amphetamine-exposed group, with no difference in clinical
features (Christine et al., 2010).

It is noteworthy that the risk for later development of PD is not
common to all psychostimulants. Both Callaghan et al. (2012b) and
Curtin et al. (2015) included hospitalized cocaine users as comparison
groups in their studies of later diagnosis of PD. Both found there to be
no increased risk in the cocaine user groups (Callaghan et al., 2012b;
Curtin et al., 2015). These findings are consistent with evidence from
animal studies that cocaine exposure is not associated with the
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neurodegeneration effects observed with amphetamine (Ryan et al.,
1988).

Finally, it is worthy of note that, to date, only a small number of
clinical and epidemiological studies have been conducted on this im-
portant issue. Methamphetamine users are delayed in help-seeking
across a range of conditions (McKetin and Kelly, 2007), so it is plausible
that individuals currently or previously exposed to methamphetamine
have symptoms of PD and parkinsonism that have never been detected
or diagnosed. Further studies across a range of clinical populations are
needed to explore the association of methamphetamine and risk for PD
and parkinsonism.

6. Clinical implications

Onset of PD is rare before age 60, and very rare before 50 (Van Den
Eeden et al., 2003). Manifestations of PD or parkinsonism in younger
people, therefore, should be treated with concern and a detailed history
of prior exposure to methamphetamine and/or other prescribed and
illicit substances should be sought. Individual risk factors as discussed
above should be identified. Premature onset of PD at any age may
warrant enquiry about current or prior methamphetamine use. It is
important to document the use patterns and time course of metham-
phetamine exposure, and to note smoking history.

Clinicians caring for methamphetamine users should be vigilant in
examining for the characteristic motor symptoms of PD and for the less
well-known prodromal symptoms of constipation, reduced sense of
smell, and sleep disorders which may precede the onset of motor
symptoms by up to twenty years (Savica et al., 2010). Where indicated,
screening for parkinsonian motor features with sensitive instruments of
motor function should be conducted, designed to detect subthreshold
parkinsonian features among current or previous methamphetamine
users.

Many individuals experience symptoms of PD for years before their
diagnosis is recorded (Ascherio and Schwarzschild, 2016), and may
benefit from a range of both pharmacological (dopamine agonists, le-
vodopa, monoamine oxidase-B inhibitors) and non-pharmacological
treatments, such as occupational therapy, speech and language therapy,
and deep brain stimulation (Rogers et al., 2017). There is no evidence
to date regarding the effectiveness of such treatments in individuals
who have developed Parkinson’s disease associated with methamphe-
tamine use. It is also unknown whether such individuals may be more,
or less, likely to develop adverse side effects such as impulse control
disorders (compulsive eating, spending, gambling, or sexual behaviour)
that are associated with dopamine agonist treatment in PD (Weintraub
et al., 2010).

Methamphetamine users seeking medical assistance with a range of
conditions may be more susceptible to drug-induced parkinsonism;
therefore, there should be preference for selection of drugs less likely to
cause this. For example, in the treatment of psychosis where there is
current or prior methamphetamine use, preference should be given to
antipsychotic agents that are associated with low rates of drug-induced
parkinsonism, such as quetiapine (López-Sendón et al., 2013).

Current high rates of methamphetamine use may herald significant
future health burden from PD for hospital and community health ser-
vices for years to come. The potential future risk of PD and parkin-
sonism should be highlighted to people who may use or have formerly
used methamphetamine and to their communities in order to ensure
appropriate help seeking, detection, and intervention. An intervention
to be encouraged in the primary prevention of PD is the promotion of
physical activity, which may be neuroprotective (Ascherio and
Schwarzschild, 2016). Finally, where methamphetamine use is in-
dicated in the development of PD, there may be implications for op-
timal management of both PD and methamphetamine maintenance
treatment.

7. Conclusions

In summary, over twenty years of research in animals and humans
have established a biological plausibility to an association between
methamphetamine exposure and PD and parkinsonism. In contrast to
the many preclinical studies in this area, to date only a handful of
clinical and epidemiological studies have investigated this important
issue. Further studies across a range of clinical populations are needed
to explore the association of methamphetamine and risk for PD and
parkinsonism throughout adult life. There is evidence from a variety of
sources of a link between methamphetamine use and the development
of PD and parkinsonism. While we must be cautious, the use of me-
thamphetamine may be an initiating event in the development of
Parkinson’s disease and parkinsonism, in addition to other risk factors
that a given individual may hold.
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