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9 Abstract

10 The authors developed a forecasting model for Luxembourg, able to predict the expected regional PV power up to 72 hours ahead. 
11 The model works with solar irradiance forecasts, based on numerical weather predictions in hourly resolution. Using a set of physical 
12 equations, the algorithm is able to predict the expected hourly power production for PV systems in Luxembourg, as well as for a set of 
13 23 chosen PV-systems which are used as reference systems. Comparing the calculated forecasts for the 23 reference systems to their 
14 measured power over a period of 2 years, revealed a comparably high accuracy of the forecast. The mean deviation (bias) of the 
15 forecast was 1.1% of the nominal power – a relatively low bias indicating low systemic error. The root mean square error (RMSE), lies 
16 around 7.4% - a low value for single site forecasts. Two approaches were tested in order to adapt the short-term forecast, based on 
17 the present forecast deviations for the reference systems. Thereby, it was possible to improve the very short term forecast on the time 
18 horizon of 1-3 hours ahead, specifically for the remaining bias, but also systemic deviations can be identified and partially corrected 
19 (e.g. snow cover). 

20 Keywords
21 Photovoltaic forecasting, forecasting performance, rmse, photovoltaic integration, solar forecasting, solar energy integration
22

23 1. Introduction
24 The share of decentralized and fluctuating energy sources, such as wind power and photovoltaic (PV), is constantly increasing and will 
25 represent a major part of the future energy mix. The reliable management of our electricity supply and grids as well as the containment 
26 of increasing price volatility on the electricity market, will depend on the ability to handle these fluctuating renewable sources. The 
27 forecasting of the dynamics of PV power production is therefore crucial for the integration of high shares of photovoltaic into our energy 
28 system and market.
29
30 The different stakeholders involved in the electricity supply and operation of the grids, have their specific needs for load and production 
31 forecasting and these needs are changing with the rising shares of fluctuating, distributed generation. Electricity retailers require 
32 accurate day-ahead forecasts of PV systems (hourly resolution; updated once or twice a day) for their energy procurement and sales 
33 forecast. Since many small scale PV system feed in behind the meter of their customers, they reduce their demand and need to be 
34 considered in load forecasting. But also the utility scale PV systems have increased their share in the production portfolios and force 
35 the providers to account for them accurately in their production forecasts. The inaccuracies in day-ahead forecasts for production and 
36 demand need to be balanced out on the intra-day level, by procurement, respectively sales on the spot market. Hence, forecasting on 
37 intra-day (down to 5 minutes resolution and hourly updates) and day-ahead level is of high economic importance for energy retailers. 
38 [1] [2]
39
40 A second stakeholder is the transmission system operator (TSO), who establishes forecasts one or two days ahead (hourly resolution, 
41 daily updates) with the objective to keep demand and supply balanced and to meet the technical constrains of the grid. In order to avoid 
42 congestions, TSOs can mobilize reserves, curtail production or set other regulating measures, mainly short-term on the intra-day level. 
43 Hence, day-ahead and intra-day (5 min.; hourly updates) are also important forecast horizons for the TSOs. But, in order to run power 
44 flow simulations and identify potential congestions, the spatial variation of the PV power forecast is another aspect for the TSOs, 
45 although this can be at coarse resolution. [1] [2]
46
47 The distribution system operators (DSO), responsible for the electricity transport from the transmission grid to the final customer in mid- 
48 or low-voltage grid level, had a much more passive role in the past, as compared to the TSOs. But with the shift to distributed, fluctuating 
49 generation in our low-voltage grids, such as PV, their role is changing. Smart distribution grids, decentralized storage and demand 
50 response concepts are innovative technologies with the potential to increase the hosting capacity of the distribution grids for 
51 decentralized production [3]. But their operation and predictive control will also require accurate PV forecasting in the near future, but 
52 at a relatively detailed spatial resolution (e.g. street level). 
53
54 In the light of above explained developments, the objective of this work was to develop a forecasting approach reaching a high accuracy 
55 for regional PV power forecasts on day-ahead, as well as intra-day level, meeting the requirements of the stakeholders and reflecting 
56 the availability of the necessary data. Further, the approach should allow for a high spatial differentiation of the regional forecasted PV 
57 power. The effort, in terms of necessary computational power or the set up and operation of measurement devices should remain on a 
58 manageable level for the concerned stakeholders.
59
60 The following paragraphs will give a brief overview on existing methods and how they relate to above described requirements. Existing 
61 methods for PV power or solar irradiance forecasting do exist and can be differentiated by several characteristics. It will be explained 
62 to which groups our approach belongs to and how it differs from existing methods. 
63
64 Literature documents direct and indirect methods, where direct methods try to predict directly the expected PV power (mainly for single 
65 sites), while indirect methods forecast the solar irradiance and derive the PV power from this most important influence factor [1]. Direct 
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66 methods use mainly statistical or artificial intelligence (AI) methods and require detailed time series data of the PV site to be forecasted. 
67 This data is, specifically for regional forecasts, in most cases not available [4]. Somehow related to this differentiation, is the 
68 categorisation in methods using endogenous data only (e.g. time series measurements of PV output) and those using (additional) 
69 exogenous data, such as irradiance forecasts, for example [1]. 
70
71 In order to reach a detailed spatial differentiation of our regional PV power forecast, we chose a bottom-up approach, representing all 
72 PV systems in our forecast region, without modelling each single system, as explained in section 2.4.. For this reason and due to the 
73 lack of time series data for the regional PV power production, the approach used in this paper can be described indirect (using irradiance 
74 predictions and a PV performance model), using exogenous data and modelling the regional PV power from bottom-up. 
75
76 Currently, to our knowledge, stakeholders in Luxembourg use a top-down approach to forecast the expected PV power which does not 
77 allow regionalisation of the forecasts. Hence, the bottom-up model offers a sufficiently detailed spatial resolution, but needs to be fed 
78 by irradiance forecasts which are accessible by the stakeholders and rely on data and methods which could be handled by them.
79
80 Several methods have been proposed and are currently used to forecast solar irradiance, the most influential factor in PV power 
81 predictions, including a) statistical and artificial intelligence (AI) methods, working mainly with historical data sets of measured 
82 irradiance, b) remote sensing methods, e.g. basing on satellite images, c) numerical weather prediction models, d) local sensing and 
83 e) hybrid approaches combining the different methods. Each of them requires different input data or measurement devices or has its 
84 strengths and weaknesses depending on the size of the area to be covered and the spatial and temporal resolution to be delivered [1] 
85 [5] [6] [7] [8]. Not all of those approaches can be presented within the state-of-the-art overview of this paper and we will focus on those 
86 directly related to the approach of this study, but many review papers (see references before) do exist.
87
88 From literature it is known, that numerical weather prediction (NWP) models, such as the European Centre for Medium-Range Weather 
89 Forecasts (ECMWF) data used here, perform best for more than 6h-ahead or day(s)-ahead irradiance forecasting, but on very short 
90 term intra-day forecasts (below 6h-ahead), other approaches might perform better. Hybrid approaches, e.g. NWP combined with cloud-
91 motion vectors (CMV), demonstrated the potential to benefit from the strengths of various models at different forecast horizons [1] [9]. 
92 Since NWP based forecast schemes in combination with a PV performance model can be relatively easy implemented by the 
93 stakeholders and reach high accuracies over a wide range of forecast horizons (above 6h-ahead), the objective was to use this 
94 approach, but to try to enhance the performance on short-term, intra-day time scale. A combination with a satellite imaging-based 
95 forecast would suit this targeted forecast horizon [10] [11], but their application requires access to satellite images and the application 
96 of elaborated methods available to research facilities but not to the stakeholders themselves (energy provides and grid operators). The 
97 hybrid approach described here, therefore alternatively uses smart metering data of PV reference systems in the region to adapt the 
98 NWP based power forecasts. 
99

100 Meanwhile, several studies used data from ground measurements (be it irradiance measurements or PV power) in different manners 
101 to improve their performance. Lorenz et al. [12] used ground measured irradiance data for a post processing of the irradiance forecasts 
102 in order to reduce bias. Also Mathiesen et al. in [13] used post processing of NWP model forecasts by ground measurement, referred 
103 to as Model Output Statistics (MOS), and obtained significant mean bias reductions. Lorenz et al. [14] also uses measured PV reference 
104 systems to upscale the regional power forecasts as well as to upscale the measured actual regional production. In [15] they 
105 demonstrated the potential of a combination of data from a NWP model data, cloud-motion vectors, PV measurements and statistical 
106 learning approaches for regional and single site forecasts, improving the forecast specifically in the short-term time frame. Marquez 
107 [16] combined cloud motion vector data derived from satellite pictures with a statistical learning algorithm (Artificial neural networks, in 
108 this case) and used ground measured global horizontal irradiation data to train the algorithm and validate the results, but not as a (close 
109 to) real-time input parameter to the forecasting model (as tested in this study). 
110
111 The use of power measurement data from nearby PV systems was also tested by some authors, either using it directly in a deterministic 
112 manner to influence the short-term forecast (very few studies do so), or feeding it into a statistical model. Lonij et al. [17] used 80 
113 residential PV systems as irradiance sensors to estimate cloud velocity in a direct manner and outperformed persistence forecasting, 
114 in a forecast horizon between 15 min. and 45 min., normally dominated by persistence forecasts.
115
116 But most of the studies, that use measurements of nearby PV systems, feed the data into a statistical model and focus on the short-
117 term forecast horizon (< 6h-ahead). Bessa et al. [18] used a vector auto regression framework to generate probabilistic forecasts for 
118 6h-ahead, out of time series PV measurements. In [4] Fonseca et al. compared support vector regression (SVR), trained by PV 
119 measurement data of three different degrees of details, and a very simple PV performance model, fed by NWP data. They found the 
120 SVR approaches yielding best results, but the simplicity of the PV performance model didn’t allow to explore the full potential of the 
121 NWP based model. Vaz et al. [19] used a nonlinear autoregressive model with exogenous inputs (NARX) from nearby PV plants in the 
122 city of Utrecht (NL), but on a quite small geographical scale. Within this forecast horizon (below 6h-ahead), statistical methods seem to 
123 perform very well. Although, on intra-hour level, it is hard to perform better than a simple persistence forecast [1].
124
125 Some authors try to profit from the strengths of the different approaches by a combination of existing methods. Wolff et al. [10] compared 
126 SVR and physical modelling for PV forecasting, using different input data (CMV, NWP and measurements). The best performance 
127 across a broad forecast horizon was found for a combination of all inputs, using either SVR or statistically enhanced physical modelling. 
128 This demonstrates that the deterministic use of measurement data without advanced statistical methods can still keep up with AI 
129 methods, if the full potential of the physical model is used. 
130
131 The aim of this paper is therefore to contribute to the further development of PV forecasting over a broad forecast horizon by:
132  Using widely available and easily accessible irradiance forecasts from NWP models,
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133  Foregoing the use of MOS, since we needed to work with “original” untreated data in order to reduce errors originating from 
134 incorrect predicted cloud movements, 
135  feeding them into a detailed PV performance model to use physical models as far as possible, 
136  incorporating measurement data from nearby PV systems in a direct, deterministic manner to enhance the forecast,
137  modelling the PV power from bottom-up to achieve a detailed spatial resolution of the regional power forecast,
138  assessing the approach over a relatively long evaluation period of 2 years, as compared to other papers.
139
140 Unlike the other few papers using measurements from PV stations directly, within this paper we follow the approach to use the 
141 deviations of the single site forecasts for the reference systems from their measurements (see chapter 3.). Thereby we’re aiming at 
142 reducing error originating from imprecise cloud movement predictions in NWP models.
143 Using smart meter data of PV systems to adapt the power forecasts, as in this paper, has the further advantage that, in the near future, 
144 smart meter data of PV systems will be available in high temporal and spatial resolution in many European countries, in contrast to 
145 expensive pyranometer measurements. This is due to the aim of the European Union to replace at least 80% of the electricity meters 
146 by smart meters by the end of 2020, wherever a replacement is cost-effective [20]. The roll-out of smart meters is ongoing and within 
147 the responsibility of the member states, therefore the actual progress in each country and technical details differ. Due to reasons of 
148 taxation, billing and reporting, in many EU countries, generation systems such as PV, are often measured individually and independent 
149 of the consumption of the PV system owner, which makes the data valuable for forecasting. Data is available to grid operators in many 
150 countries, although currently often with a time delay.
151
152 The structure of the paper is as follows: Chapter 2 explains the full scheme of the forecasting model, which input data is used and the 
153 applied methods for forecasting and evaluation of the performance. Chapter 3 states the idea behind the two tested concepts to adapt 
154 the forecast based on the measured deviations for the reference systems. The results are presented and discussed in chapter 4, 
155 including the performance on level of different modelling steps, after the adaptation of the forecast, as well as the upscaling on the 
156 regional level. In Chapter 5 the paper is concluded and a brief outlook on further development steps is given.
157
158 2. Forecasting model, data and methods
159 2.1. Description of the forecasting scheme
160 The approach of the PV power forecast model described here, is building up on geo-referenced irradiance and ambient temperature 
161 forecast data, from a NWP model of the European Centre for Medium-Range Weather Forecast (ECMWF) and measurement data of 
162 reference PV systems distributed over Luxembourg (Figure 1). The irradiance forecast data, which is being retrieved from the ECMWF 
163 web servers once a day, is pre-processed in order to obtain the irradiance in plane of the PV modules. This is done for a number of 
164 given PV systems that serve as references and for a matrix of predefined orientations and inclinations, representing the whole portfolio 
165 of PV systems in the country. The reference PV systems, of which measured PV power in a temporal resolution of 15 minutes is 
166 available, are distributed over the whole country of Luxembourg. A power forecast is being generated based on a set of equations, 
167 which describe the behaviour of a whole PV system depending on irradiance and temperature conditions and individual system profiles 
168 for each of the 23 reference systems, representing their technical characteristics. The predicted power of the reference systems is 
169 compared to their measured generated power, with the aim to set up a feed-back loop that enables the adaptation of the short term 
170 forecasts for the whole region, based on prediction errors of previous time steps for the reference systems.

171

172 Fig 1 - scheme of the forecasting approach, combining modelling data and statistical information (left hand side) 
173 with a feed-back loop from PV reference systems (right hand side)

174 The methodology is explained in more detail in the following chapters, step-by-step.
175
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176 2.2. Solar irradiance forecasts and processing
177 Irradiance and ambient temperature forecast data are automatically extracted from the European Centre for Medium Ranged Weather 
178 Forecasts (ECMWF), Reading (close to London). Hence, the irradiance forecasts originate from a numerical weather prediction model 
179 (NWP). The used parameter is the “surface solar radiation downwards” (ssrd) and can be considered, according to ECMWF, a 
180 reasonably good approximation of what would be measured by a global pyranometer at the earths surface [21]. This value hence 
181 represents the global horizontal irradiance (GH) and is available at a spatial resolution of 0.125° x 0.125° as hourly values. Forecast 
182 data cover the time span of 72 hours and are being updated twice a day.
183
184 In order to derive the global irradiance on inclined surfaces (Gψ)  from GH, a simple but proven approach has been used, published by 
185 Olmo in [22] and validated against comparable methods in [23]. As explained in more details and providing a validation with field 
186 measurements in [24], the approach was found to be adequately reliable, for this application – also since of this model has comparably 
187 small impact on the total result, as compared to the irradiance forecasts [25]. 
188

189 Eq.  1𝐺𝜓 =  𝐺
( ‒ 𝑘𝑡(𝜓2 ‒ 𝜓2

𝐻)
𝐻 ∗ 𝐹𝑐

190
191 kt = Clearness index [ / ]
192 ψ = angle of incidence [rad]
193 ψH = elevation angle [rad]
194 Fc = ground reflected radiation [ / ]
195
196 Following this approach, our forecast model calculates the Gψ in plane of the 23 PV reference systems of known inclination and 
197 orientation. The whole portfolio of PV systems installed in Luxembourg has been classified into 57 predefined classes of orientations 
198 and inclinations, statistically representing the entirety of PV systems in the country (see 2.4). Also for those planes Gψ is calculated.
199  
200 2.3. Modelling of PV-reference systems
201 In order to calculate the expected power output of a PV system, based on the irradiance and ambient temperature forecast as main 
202 parameter and the calculated solar angle of incidence, azimuth and elevation, a model is necessary which represents the behaviour of 
203 the PV system and all its components. A set of equations and technical models are chosen which results in a rather detailed 
204 representation of the system behaviour. The below described model is used in all its details for the representation of the 23 PV reference 
205 systems and is simplified to calculate the up-scaled behaviour of the portfolio of installations in the country. 
206
207 Angle of incidence reflection losses, I AMB, are considered using a physical model published by De Soto et. al [26] and corrected in 
208 [27]. After a first implementation of another model for simplicity reasons, the so called “ASHRAE incidence modifier” model, it was found 
209 that the known drawbacks (inaccuracies at high angles of incidence), led to inacceptable results. Therefore, the physical IAM model 
210 was implemented, which works fine along the full range of possible angles of incidence, but requires assumptions or knowledge of the 
211 PV modules glass’ main parameter. 
212

213 Eq.  2𝐼 𝐴𝑀𝐵 = (𝜏(ψ)
𝜏(0))

214
215 τ = transmittance
216 ψ = angle of incidence
217 τ(0) = transmittance when normal to the sun
218 τ(ψ) = transmittance at incidence angle
219

220 Eq.  3𝜏(ψ) = 𝑒
‒ (

𝐾𝐿

cos (ψ𝑟))[1 ‒
1
2(𝑠𝑖𝑛²(ψ𝑟 ‒ ψ)

𝑠𝑖𝑛²(ψ𝑟 + ψ)) + (𝑡𝑎𝑛²(ψ𝑟 ‒ ψ)

𝑡𝑎𝑛²(ψ𝑟 + ψ))]
221
222 K = glazing extinction coefficient [m-1]
223 L = glazing thickness [m]
224 n = index of refraction of the cover glass [ / ]
225 ψ r = refraction angle
226

227 Eq.  4ψ𝑟 = sin ‒ 1 (1
𝑛sin (ψ))

228

229 Eq.  5𝜏(0) = exp ( ‒ 𝐾𝐿)[1 ‒ (1 ‒ 𝑛
1 + 𝑛)2]

230
231 Standard values for glass parameter, to be used as assumptions in PV applications, can be found in literature [26] and have been used 
232 in the model, if no specific values were known. 
233
234 The PV modules efficiency, defining the part of the irradiance reaching the PV cell that is actually being transformed into DC current, 
235 is depending on the cell temperature (Tmodule) and the irradiance in plane (Gψ), reduced by the reflection losses. In its current state, the 
236 used approach is a simple approximation of the modules temperature, based on [14] and own simplifications. 
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237
238 Eq.  6𝑇𝑚𝑜𝑑𝑢𝑙𝑒 =  𝑇𝑎 +  𝐺𝜓 ∗  𝛾
239
240 Ta = ambient temperature [°C]
241 γ = 0.02 (free standing) or 0.056 (BIPV) [ / ]
242

243 Eq.  7𝜂𝑇𝑚 =  𝜂𝑆𝑇𝐶 ∗ (1 ‒ ( ‒
𝐾𝑇

𝑃𝑀𝑃𝑃
∗ (𝑇𝑚𝑜𝑑𝑢𝑙𝑒 ‒ 25°𝐶))

244
245 ηTm = efficiency at operation temperature [%]
246 ηSTC = efficiency at standard test conditions [%]
247 KT = temp. coefficient for module power [W/°K]
248 PMPP = nominal power of the module [W]
249
250 Degradation and mismatch losses can both substantially reduce the yield and actual power of PV systems. Specifically, when working 
251 with data on nominal power of the entirety of the PV systems in a region, deductions considering those effects should be made. Even 
252 the detailed knowledge on some of the reference systems used in our approach does not allow the system-specific consideration of 
253 these effects. Therefore, different lump sum factors have been chosen to take these effects into account. Degradations of the modules 
254 performance, due to the light-induced degradation, is known to be higher in its first year and, in most cases, stabilizes in the following 
255 years [28]. This is valid for crystalline PV cells, while other cell technology can statistically be neglected for the area of Luxembourg. 
256 First year degradation losses have been chosen based on [29], [30], [31]. The long-term degradation losses used in our study are 
257 based on an analytical review done by Jordan et. al [28]. 
258
259 cdegr 1st = degradation losses, 1st year= 2.5 [%]
260 cdegr f = degradation loss, following years= 0.5 [%/a]
261
262 Mismatch losses can be caused by different effects and are referred to on module- as well as array level. The relevant mismatch effects 
263 for this study are those caused by deviations in the performance characteristics of modules of the same nominal power, operated in 
264 series within an array. Based on literature values [32], [33] and own judgement, these losses are also taken into account by a simple 
265 lump sum.
266
267 cmm = mismatch losses = 2.5 [%]
268
269 Wherever the level of detail of information on the reference system allows it, the consideration of wiring losses is system specific: Wiring 
270 losses in between the PV module strings and the inverter, hence on direct current level (DC), as well as between the inverter and the 
271 point of injection (AC level), are calculated based on cable sections and cable lengths for the PV arrays nominal power (MPP). This 
272 value is considered when the PV array is operated at MPP, while part load behaviour is taken into account with this simplified approach, 
273 here documented for the example of the DC level – AC level is done accordingly:
274
275 Eq.  8𝑐𝐷𝐶𝑤𝑖𝑟𝑒 = (𝑚𝑝𝑎𝑟𝑡 𝑙𝑜𝑎𝑑)2 ∗  𝑐𝐷𝐶 𝑀𝑃𝑃
276
277 cDCwire = factor, DC losses at operating cond. [%]
278 cDC MPP = factor, DC losses at MPP [%]
279 mpart load = part load operation mode [%]
280
281

282 Eq.  9𝑚𝑝𝑎𝑟𝑡 𝑙𝑜𝑎𝑑 =  
𝑃𝑚𝑜𝑑

𝑃𝑀𝑃𝑃

283
284 mpart load = part load operation mode [%]
285 Pmod = power on level of the PV module [W]
286 PMPP = nominal power of the PV module [W]
287
288 Inverter efficiency is also changing with the current part load mode of operation. The reference systems description of our model 
289 contains characteristic points of the efficiency curve of the inverter in part load mode (see Table 1). Depending on the part load operation 
290 mode, the part load efficiency of the inverter can be interpolated.
291
292 Eq.  10𝜂𝑖𝑛𝑣 = 𝑓(𝑚𝑝𝑎𝑟𝑡 𝑙𝑜𝑎𝑑)
293
294 ηinv = part load efficiency of the inverter [%]
295

mpart load [%] 5 10 20 40 60 80 100
ηinv [%] 96.7 97.1 97.9 98.3 98.4 98.3 98.0

296 Table 1 – example: efficiency curve of an inverter with a European inverter efficiency of 98% [34]

297 This modelling approach, as presented in chapter 2.3, is only briefly described since more details can be found in [24]. 
298
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299 A similar approach, as described above for the reference systems, is followed for the modelling of the performance of the entirety of 
300 PV systems in the country, but at a reduced level of detail, since some parameter are replaced by standard values (see Table 2).
301

parameter value [unit] description
ηSTC 17 [%] mean module efficiency at STC
KT -0.5 [W/°K] temperature coefficient for 

module power of 1 kWp
AkWp 6.7 [m2/kWp] mean surface demand for 

1 kWp module power 
cDC MPP = 
cAC MPP

0.5 [%] cabling losses 
(AC as well as DC)

302 Table 2 - standard values for model parameter representing the entirety of PV systems in the country

303
304 2.4. Statistical representation of PV systems on national scale – Luxembourg
305 In order to be able to estimate PV power forecasts for the whole territory of a country, a region or a city, statistical information on the 
306 entirety of PV systems are necessary. As the forecasts should be regionalized (addressing future challenges of integration of high PV 
307 shares into our grids) and as irradiance conditions vary over the whole forecasting area, the nominal power and location of the individual 
308 PV systems are required. Further, for a time-discrete forecasting, orientation and inclination of the installations are of importance.
309
310 In the case of Luxembourg, nominal power and location of the PV systems is known by the grid operators and has been provided for 
311 research purposes, in anonymized form. The available data set, provided by two main gird operators, covers 111 [MWp] of the 116 
312 [MWp] PV installed at the end of 2015 [35]. 
313
314 Specific data on orientation and inclination of individual PV systems is currently not registered, neither by utility companies / energy 
315 providers nor by grid operators. This means that precise data on the entirety of installations in the country is not available. Nevertheless, 
316 the Administration de l’Environnement (AEV) has a dataset on subsidized photovoltaic installations in Luxembourg which covers, 
317 according to the applicable regulation, mainly small scale systems and partially contains erroneous data. After a plausibility check and 
318 cleaning of the data, a data set of 37.9 MWp has been retained and analysed, representing 32.6% of the installed power in Luxembourg. 
319 Thereby, the distribution of orientation and inclination of PV systems is represented and can be statistically applied in the model to a 
320 set of PV systems, assuming that this distribution remains constant across the country. As long as the spatial resolution of the model 
321 remains relatively rough, the amount of PV systems in a grid cell remains high enough to consider this a valid assumption.
322

323

elev/orient
-180°=

-15
0°

-150°=
-12

0°

-120°=
-90

°

-90°=-60°

-60°=-45°

-45°=-30°

-30°=-15°

-15°=15
°

15°=
30°

30°=
45°

45°=
60°

60°=
90°

90°=
120°

120
°=150

°

150
°=180

°

0°=5° 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5°=10° 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.6% 0.3% 0.1% 0.0% 0.1% 0.0% 0.0% 0.0%

10°=15° 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3% 1.6% 0.1% 0.4% 0.2% 0.0% 0.0% 0.0% 0.0%
15°=20° 0.0% 0.0% 0.0% 0.4% 0.4% 0.9% 1.4% 3.3% 1.7% 1.9% 0.5% 0.4% 0.0% 0.0% 0.0%
20°=25° 0.0% 0.0% 0.0% 0.3% 0.7% 1.4% 5.9% 8.1% 3.7% 2.9% 0.9% 0.5% 0.3% 0.0% 0.0%
25°=30° 0.0% 0.0% 0.0% 0.1% 0.4% 1.4% 4.6% 7.7% 4.5% 2.3% 0.8% 0.6% 0.1% 0.0% 0.0%
30°=35° 0.0% 0.0% 0.0% 0.3% 0.2% 1.4% 3.4% 9.7% 3.6% 2.1% 0.7% 0.5% 0.1% 0.0% 0.0%
35°=40° 0.0% 0.0% 0.0% 0.2% 0.3% 0.7% 1.4% 4.6% 1.0% 0.7% 0.8% 0.6% 0.2% 0.0% 0.0%
40°=45° 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.5% 1.5% 0.4% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0%
45°=50° 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.6% 0.1% 0.2% 0.2% 0.0% 0.0% 0.0% 0.0%
50°=55° 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
55°=60° 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
60°=70° 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
70°=80° 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
80°=90° 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

324 Fig 2 - – PV power distribution [%] by orientation and inclination of PV installations in Luxembourg (based on data from AEV)

325 2.5. Characterisation of PV-reference systems and introduction of “synthetic system profiles”
326 The reference PV installations currently implemented in the model, have been chosen from a list of 173 systems, equipped with smart 
327 meters, which are able to deliver production data every 15 minutes and were chosen due to different requirements. Owners needed to 
328 agree on the collaboration, the PV systems have to be unshaded and of a relative simple design (e.g. not too much different 
329 orientations), detailed information on the technical setup is required, the systems need to work seamlessly – just to name a few. 
330 Furthermore, the spatial distribution over the forecasting area should be balanced. To that aim, systems were pre-sorted based on the 
331 available information by desk-audit. Owners of pre-selected systems were contacted and on-site visits were conducted wherever 
332 possible. This assured the high level of quality of information on the individual reference system. On the other hand, these conditions 
333 weren’t met by a large amount of potential reference systems.
334
335 Finally, the lack of information on suitable PV systems led to a two-fold approach: 1) detailed reference systems fulfilling the criteria 
336 mentioned above, which are modelled according to the approach described under 2.3, and 2) less detailed reference systems, which 
337 are modelled with a similar approach, but using standard values wherever specific data is missing. The secondly described systems 
338 are further referred to as “synthetic system profiles”. 
339
340 2.6. Adaptation and calibration of PV-reference system profiles
341 After the completion of the model and the choice and characterization of the set of reference systems, the forecasting system went 
342 through a first run of the model in order to evaluate the suitability of the model and the chosen or acquired parameter for the individual 
343 reference system. The techno-physical model represents the theoretical behaviour of the reference system. Hence, a calibration of the 



ACCEPTED MANUSCRIPT

7 / 16

344 individual systems parameter might be necessary to better reflect the real performance of the reference system. As irradiance 
345 measurements on site of the reference systems were in almost all cases not available, it was not possible to calibrate each reference 
346 system independent of the forecast data. But since irradiance forecast are known to be relatively precise on days of clear sky conditions 
347 [9] [14], each forecast of the reference systems has been compared with the measurement curve on specific days (in March and July 
348 2014) for which forecast and real measurement showed cloudless conditions. Overlaying both curves (forecast and measurement) 
349 revealed the deviations of the forecast. By adapting the reference systems model parameter, the forecast curve can be adapted in 
350 three directions, to better fit the measured values. The shape of each curve can be influenced a) in its height (by calibration factor 
351 mainly) or b) in its width (by adapting the inclination) and can be c) shifted e.g. towards earlier hours (by turning the orientation angle 
352 eastwards). Adaptations in orientation and inclination have been used scarcely. The calibration factors have been chosen after an 
353 analysis of the relative monthly error (εM dt), considering day time values only, for the months March and July 2014.
354 The analysis reveals, as expected, that the model generally overestimates the expected PV power. All calibration factors for the 23 
355 reference systems were below one, ranging from 0.88 minimum up to 0.99 maximum and an average of 0.94.
356
357 The effect of applying these calibration factors and adapting the systems parameter to better fit the curves for clear sky days, has been 
358 evaluated and documented under 4.1.
359
360 2.7. Introducing evaluation criteria
361 The accuracy of the full chain of the forecast model, from the irradiance forecast to the point of injection behind the inverters, can be 
362 evaluated by its comparison to the actual measured production for each PV reference system. The fully up-scaled forecast for a full 
363 forecasting area cannot be evaluated as such, since no discrete time measurements are available. Hence, the basis for the evaluation 
364 are hourly forecasts of the 23 PV preference systems. In order to be comparable to other evaluations of forecasting approaches, the 
365 following evaluation criteria have been chosen in analogy to the literature [6] [9] [14].
366
367 To evaluate the accuracy of the forecasts for the individual PV reference systems, each hourly value has been compared to the 
368 measurement value. The error has been normalized to the nominal power of each reference system and is given as:
369

370 Eq.  11𝜀(𝑡) =
𝑃𝑝𝑟𝑒𝑑(𝑡) ‒ 𝑃𝑚𝑒𝑎𝑠(𝑡)

𝑃𝑛𝑜𝑚(𝑡)

371
372 Ppred = predicted power of the PV system [kW]
373 Pmeas = measured power of the PV system [kW]
374 Pnom = nominal power of the PV system [kWp]
375
376 The root mean square error (RMSE) is a common term in the evaluation of forecasting algorithms for solar irradiance [9] as well as for 
377 power forecasts in wind and solar. RMSE is considered suitable for power predictions in utility companies, since large errors are 
378 disproportionally problematic in those applications, as stated by [14].
379

380 Eq.  12𝑅𝑀𝑆𝐸 =
1
𝑁

∑𝑁
𝑡 = 1𝜀(𝑡)2

381
382 The mean value of the error (bias) is further interesting to evaluate the performance and to identify systemic errors in the forecasts:
383

384 Eq.  13𝑏𝑖𝑎𝑠 =
1
𝑁∑𝑁

𝑡 = 1𝜀(𝑡)
385
386 Another important aspect in the evaluation of solar power forecasting is the handling of night time values. Irradiance forecast and real 
387 production are zero during the night. Thus, forecast and measurement completely fit and the error is zero. If night time values (hourly 
388 errors) are taken into account when estimating the evaluation criteria (often common practice), the results show better performance 
389 obviously, only by trivial night time forecasts. For this reason it has been decided to evaluate both, the performance including night time 
390 values and taking only day time values into account. The evaluation criteria are marked with the suffix “dt” if it considers “day time” 
391 values only:
392
393 RMSEdt = root mean square error, day time values only
394 biasdt  = bias, considering day time values only
395 εM dt = monthly normalized error, day time values only
396
397 The normalized error ε for each hour, as the base value for the other evaluation criteria, can potentially be larger on days of high solar 
398 irradiance and thus high PV power. Hence, the mean power “mean P” within a certain time span is an important reference value. Also 
399 “mean P” is normalized to the nominal power for reasons of comparability. 
400
401 mean P = mean PV power of a system within period
402 mean Pdt = mean PV power of a system within period, considering day time values only
403
404 3. Theory of feedback loop concepts for error reduction
405 PV power forecasting is relying on the accuracy of the solar irradiance forecasts and can thus, if solely based on those predictions, 
406 never be more accurate than the underlying meteorological forecast. Although, the solar radiation forecasts improved a lot during the 
407 last decade, they are still the main source of uncertainty, as the physical description of the PV systems is comparably straightforward. 
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408 In solar radiation forecasting by numerical weather prediction models (such as the forecasts delivered by the ECMWF), mathematical 
409 equations describe processes in the atmosphere and the models are being fed with measured parameter from the recent past and 
410 current observations. The models predict near future developments in the atmosphere, such as cloud movements and cloud formation 
411 on different heights, which influence strongly the solar radiation reaching the earth’s surface. These cloud movements and 
412 transformations on several heights need to be precisely predicted in their speed, direction and thickness, in order to estimate their 
413 regional effect on solar radiation. On larger areas, inaccuracies in cloud movements balance out more strongly and thus the accuracy 
414 of the forecast increases with a coarser spatial resolution [6] [7]. 
415
416 If such inaccuracies in the irradiance predictions are not of a purely random nature, but would be, e.g. due to inaccuracies in forecasting 
417 of cloud speed or direction, the error could persist over a short time period – in our case a few hourly time steps. Hence, the forecasting 
418 error could be reduced by the estimation of the current inaccuracy and its projection into the near future. Following this assumption, our 
419 approach tries to adapt the purely model-based forecasts by a feed-back loop from PV-reference systems. Two approaches have been 
420 followed in order to create this feedback loop based on online PV power measurements:
421

422 3.1. Error persistence method
423 First analysis of a comparison of the forecasts for single PV systems to the measured power, did show persisting trends (over few 
424 hours) of over- or underestimation of the real power. Although this is not generally the case, there was enough evidence to test whether 
425 a correction of the forecast, 1h to a few hours ahead, based on the assumption of a persisting error, would increase the accuracy of 
426 the power forecast. 
427
428 In order to adapt the forecast for a specific PV system, the error ε for each time step was calculated and the deviation from the real 
429 measurement was considered to be persistent over a certain time range:
430 Example: Forecast adaptation by 1h error persistence for the time t0
431
432 P’fc to = Pfc t0 + εabs t-1 Eq.  14
433
434 P’fc to = adapted power forecast for t0
435 Pfc t0 = original power forecast for t0
436 εabs t-1 = absolute error for t-1
437
438 Specifically after noon, when the maximum possible power production is declining hour by hour, this could result in an adaptation of 
439 the forecast above the theoretical possible maximum. To avoid this, the theoretical clear sky irradiance for each time step and system 
440 orientation has been calculated, the resulting maximum power production has been estimated and the forecast adaptation was limited 
441 to this theoretical value (results see 4.4).
442
443 3.2. Error movement vectors 
444 The assumption behind this approach is, that a main source of error in solar irradiance forecasting by NWP models arises from 
445 inaccurate forecasting of clouds and cloud movements (direction and/or speed) or thickness [9]. A cloud front moving into the forecast 
446 area over time might thus lead to over- or underestimations along its front-border, depending on whether it is moving faster or slower 
447 than predicted (or inaccurate in direction or less/more opaque). The errors, which can be derived for the single PV systems used as 
448 references, could thus be visualized on maps and might show graphical patterns propagating over the forecast area with time. If clear 
449 movement patterns could be identified, existing methods used to predict cloud movements [17] [36], could be used to forecast the 
450 propagation of error movements. The validation of this hypothesis and the evaluation to which extent a forecasting of these error 
451 patterns is possible and leads to more accurate predictions, was one of the main drivers behind this work (results see 4.5).
452
453 4. Results and Discussion
454 The technical and physical model, reflecting the irradiance data processing and the individual system behaviour of the PV-systems as 
455 described under 2.3, has been assessed by feeding measured irradiance data into the model and comparing the calculated power 
456 production to the smart meter data. The results of this evaluation were very promising and have been published in [24].
457
458 4.1. Efficiency of calibration factors and adaptation of system profiles
459 As described under 2.6, the technical and physical model for the PV systems describes their optimal functionality and assumes the 
460 accuracy of the given data, e.g. on orientation and inclination of the modules. As the PV reference systems are conventional, “real-
461 world” systems, deviations from the optimal functionality are to be expected and will be calibrated for. The calibration factors and 
462 adaptation of inclination and orientation of the systems parameter, as explained above, has proven to be very effective. The calibration 
463 led to a reduction of the monthly normalized error for all reference systems, with only few exceptions. The improvement ranges from a 
464 0.46% to a 8.5% difference for the examined time period. On average, the calibration reduced the error by 2.66% at a mean deviation 
465 before the calibration of -5.96% - hence, the mean deviation after calibration was -3.3%. 
466
467 4.2. Performance evaluation of the forecasts on reference system level
468 Assessing the actual accuracy of the PV power forecast, the focus is on the hourly performance of the forecasts as an important aspect 
469 for the grid operators and utility companies. The accuracy on forecasting the PV production on monthly sums or daily sums is obviously 
470 higher, as compared to hourly values. Furthermore, the accuracy of forecasts for specific single sites (single PV systems, such as the 
471 reference systems in our approach) is lower than for regional forecasts, as in larger forecast areas local phenomena (e.g. cloud 
472 movements) can level out [6] [7] [9] [14].
473
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474 Although the final output of this PV power forecast model described here are regionalized forecasts, only accuracy on single site 
475 forecasts are evaluated. The simple reason for this is the lack of hourly measurement data for the entirety of PV systems in the 
476 forecasting region to which we could compare our forecasts. Even though the calculations have been done for three forecast horizons 
477 (0-24h, 24-48h, 48-72h), the focus of the assessment is on the intra-day forecast, 0-24 h ahead.
478
479 Performance averaged on monthly basis
480 In order to evaluate the performance of the forecasting model, the error on hourly forecast values ε for each reference system, as 
481 compared to the measured value, has been calculated and normalized to its nominal power (considering the intra-day forecast, 0-24h 
482 ahead). The hourly, normalized error ε is evaluated on a monthly basis over 2 years, 2014 and 2015.
483 In Fig 3 the performance evaluation criteria for reference system nr. 0067 are exemplarily depicted. RMSE and bias, related to the left 
484 axis, illustrate the accuracy of the forecast for the respective reference system and can be set in relation to the mean power for each 
485 month (right axis).
486
487 Mean monthly power, normalized to the nominal power of the system, gives the average power the system delivered in the respective 
488 month. The value is given in order to set the other evaluation criteria into relation with the mean power, as deviations from the forecast 
489 could be larger in months with relatively high irradiance. The system shown here has a typical curve, as compared to the other reference 
490 systems. The system reaches its peak production when “mean P” lies around 20% of its nominal power (30% if only day time values 
491 are considered). On first sight this seems relatively low, but as the systems reach their nominal power only a few hours a month, even 
492 during summer, this is a normal value that can be validated by literature. 
493
494 The “bias” evaluates the actual mean error of the forecast, without specific weighting. A low bias means that there is low systematic 
495 error in the forecast – the system is neither over- nor underestimating the actual PV power constantly. Anyway, there can be large 
496 deviations in the single hourly forecasts that might compensate each other and are not visible in bias only. Over the two years, the 
497 monthly bias of this exemplary PV system forecast ranges from 2.7% to -1.0% - a representative value for the set of reference systems. 
498 Bias shows no clear seasonal deviation over the two years, which can be confirmed by the other systems. If curves of the different 
499 systems are compared, similar bias curves can be observed. This hints to a bias originating from the irradiance forecast for the specific 
500 months and confirms the suitability of our model throughout the seasons. 
501

502

503
504 Fig 3 - evaluation criteria of the hourly performance for the two years 2014 and 2015 (here for reference system nr. 0067)

505 The root mean square error RMSE represents a mean error, weighting larger deviations much stronger than small deviations. The 
506 RMSE shown in Fig 3 ranges from values around 4% in January and December, up to 10% in April/May 2014 (for night- and day time 
507 values). The graphs show representative curves for the set of reference systems, generally increasing during months of high solar 
508 power, as RMSE is specifically sensitive to large deviations which occur more frequent in this period.
509
510 Obviously, in February 2015 the RMSE shows an atypical increase for this period, which is not related to a technical problem on this 
511 specific reference system, as the same increase can be observed for the other PV systems. This effect is due to snow cover in February 
512 2015 (confirmed by the national meteorological organisation MeteoLux). Hence, the solar irradiance forecast is predicting the irradiance 
513 independent from the snow cover, but the PV-systems throughout the country underperform due to snow cover. This is a well-known 
514 weak point of PV power predictions based on irradiance forecasts only.
515
516 Comparing all reference systems over the two years (Fig 4), the mean performance in terms of RMSE and bias is relatively similar with 
517 few exceptions. The mean bias over all systems is 1.1% (biasdt = 2.2%), while the values might range from -0.12% (nr. 1075) up to 
518 2.45% (nr. 1134). Generally, the bias is positive in the range of 1%, which means an overestimation of the systems expected PV power. 
519 Considering bias, there are no extreme exceptions from that trend, but it will be checked if (for some systems, e.g. nr. 1134) a stronger 
520 calibration factor might reduce the bias.
521
522 On average, the RMSE over all systems lies at 7.4% (RMSEdt = 10.0%) and ranges from 6.00% (nr. 1159) to 14.09% (nr. 1173). Except 
523 for system nr. 0138 and nr. 1173, all systems perform comparably similar and their RMSE lies around 6.9%. The reason for the 
524 comparably high RMSE for the two outlying systems is yet unknown but further analysis is ongoing.
525
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526 In comparison to other literature data for the accuracy of single site forecasts (not regional forecasts), the values given above seem 
527 reasonable and the model seems to work comparably well (see e.g [1] [9] [8]). Although, a simple direct comparison is not very 
528 reasonable, since the performance evaluation thought out the studies is done on different basis for normalisation, using or not 
529 considering night values, under versatile climatic conditions and for varying testing periods. 
530

531
532 Fig 4 - mean evaluation criteria over 2 years (2014 & 2015) for the reference systems 
533 (numbers below is the internal numbering of the reference systems)

534 Hourly performance & averaged on daily basis
535 Although RMSE and bias give already a good impression of the accuracy of the forecast over a larger time scale, only the daily forecast 
536 curves give real insight in the daily performance. Therefore, similar plots as Fig 5 have been created for all reference systems and 
537 every day in 2014 and 2015.
538
539 The plots of Fig 5 exemplarily show six days in July 2014 (01.07 – 06.07.) and their respective curves for the three forecast horizons 
540 (red/orange/yellow) and the measured production (grey) of system nr. 0067. Obviously, the forecasts fit relatively well the real 
541 production on clear days (02.07. & 03.07.). Larger deviations occur on overcast days – this observation correlates with the reported 
542 accuracy of the irradiance forecasts from literature.
543  

544
545 Fig 5 - example for system nr. 0067, six days in July 2014, showing the correlation of the three forecast horizons (0-24h in red solid 
546 line / 24-48h in orange dashed line / 48-72h in yellow dotted line) and the measured values (grey line)

547 The plot for 05.07.2014 shows a rather cloudy day, resulting in relatively large hourly deviations from the real power, although the mean 
548 production fits well. But as the mean power on such cloudy days is relatively low, the normalized error (see Fig 6) remains in an 
549 acceptable range.
550
551 The boxplot in Fig 6 illustrates the normalized error εdt and its variation on the hourly value. The grey boxes for each day depict 50% of 
552 the forecast values around the median. The thin lines above and below the box show the upper, respectively lower 25% of the single 
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553 values. Boxplots allow to give a quick overview on the quality of the hourly forecasts over a full month – they illustrate the bias as well 
554 as the scatter of the majority of the values and the extreme outliers. These plots have been evaluated for each month in 2014 and 2015 
555 for each system.
556
557 It can be seen that for the large majority of hourly forecasts, the normalized error lies within a range of +/- 10%. But, single hourly 
558 forecasts can, in extreme cases, deviate from the real power in a range of more than 50% of the nominal power.
559

560
561 Fig 6 - Boxplot of the normalized error ε of the hourly forecast for reference system nr.0067 for July ‘14

562 4.3. Comparison of the forecast performance for synthetic profiles of reference systems and different forecast horizons
563 As explained under 2.5, due to lack of detailed information on some reference systems, the concept of synthetic profiles has been 
564 introduced. As these system profiles work with standardized and estimated parameters, the synthetic reference systems were expected 
565 to have larger deviations to their actual measured power. But surprisingly, the evaluation of the forecast quality for the reference 
566 systems shows no significant difference in their performance: Fig 4 indicates the 2-years performance for all reference systems – the 
567 ID numbers above 1000 are synthetic profiles. 
568
569 Further comparisons have been made between different irradiance forecast horizons. Since the irradiance forecast covers 72 hours 
570 and the forecast has been retrieved from the server once a day, the data covered an intra-day forecast, a 1-day-ahead and a 2-days-
571 ahead forecast. Comparing the performance of our PV power forecast over the three forecast horizons resulted in relatively small 
572 differences. Over the two years data set, the intra-day forecast fitted best the measured power production, as expected, but the 
573 differences to the other two forecast horizons were in a range of 0.7% for the normalized mean error, only. 
574
575 4.4. Performance evaluation of the history-based forecast adaptation – “error persistence”
576 The analysis of the error ε over time for single reference systems, revealed that for a considerable amount of days, the forecasts tended 
577 to repeatedly over- or underestimate the real power for a time span of several hours. This led to the development of the approach of 
578 error persistence explained under 0. This approach was not expected to deliver appropriate forecast adaptations for longer time spans, 
579 but was tested for 1 to 4 hours ahead.
580
581 As depicted in Fig 7, the 1-hour ahead forecast adaptation decreases the deviations from the measured value significantly (in this 
582 example). The 2-hours-ahead forecast adaptation is already performing considerably worse. Obviously, the approach works in cases 
583 of continuous under- or overestimation of the PV production, but can even be counterproductive if the deviations are fluctuating between 
584 positive and negative values.

585
586 Fig 7 - Example: 1st of May 2014, reference system Nr. 0067, showing the adaptation of the forecasts (red line), 
587 based on previously measured deviations (1 hour into the future (blue) / 2 hours into the future (green)) 
588 and the deviations from the measured values (grey line)
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589 The performance of the approach needed to be evaluated over longer periods: Shown in Fig 8 are the results for a forecast adaptation 
590 based on 1 hour- and 2 hour-error persistence. With this simple approach, it was possible to reduce bias very effectively, which could 
591 have been expected. Both, the 2 hours ahead and 1 hour ahead error persistence adaptation reduced the bias considerably. Evaluated 
592 over the two years, exemplarily for system 0080, the bias dropped from 1.00% (2.05% for biasdt) to 0.14% (0.27% biasdt) for the 1 hour 
593 ahead error adaptation and to 0.40% (0.74% biasdt) for the 2 hours ahead adaptation.
594
595 RMSE is less well improved, since this simple approach does reduce systematic error as well as short term persistent over- or 
596 underestimations, but does not reduce outliers which influence RMSE to a greater extent. Anyway, for the 1 hour ahead adaptation, 
597 mean RMSE over the full two years does decrease from a value of 6.57% (8.95% for RMSEdt) to 5.81% (7.62% for RMSEdt). The 2 
598 hours ahead forecast adaptation based on error persistence did not generally improve the RMSE. Fig 8 shows months with lower RMSE 
599 as well as higher RMSE in other months for the 2 hours ahead adaptation. For longer time periods, 3 hours ahead or 4 hours ahead 
600 forecast adaptations, the approach didn’t result in any improvement of the forecast. 
601
602 The very short term error adaptation based on error persistence is hence able to reduce systematic error – which is obvious. This effect 
603 is visible in Fig 8 for February 2015. The strong increase in bias and RMSE for Feb.’15 of the original forecast is due to snow cover on 
604 the PV modules, which is not represented in the model. This systematic overestimation by the forecast model is being effectively 
605 compensated by the error persistence adaptation – which could be a suitable application for this approach. 

606
607 Fig 8 - Evaluation criteria on forecast accuracy for system Nr. 0080 in 2015 without adaptation based on error persistence (top), 
608 based on 1h error persistence (middle) and 2h error persistence (bottom)

609 4.5. Performance evaluation of the history-based forecast adaptation – “error movement vectors”
610 In order to assess the possibility of identifying error movement vectors (as described under 3.2), the individual normalized error ε for 
611 each time step needed to be estimated and visualized on a map. The data points representing the error at each reference system were 
612 calculated and spatial referenced, while the points in between were interpolated. For each hour of the two years under survey, a map 
613 similar to Fig 9 has been established. 
614

615
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616 Fig 9 - map illustrating the regional deviations of power forecast from the measurement of reference systems

617 The error map above (Fig 9) shows the distribution of deviations over the region. The forecast did, for the PV reference systems in the 
618 South and South-East of Luxembourg, overestimate the PV power (red), while for the North and middle of the country, the power was 
619 underestimated (blue).
620 The individual hourly error maps are sequentially concatenated to create a video sequence to analyse the changes of the occurring 
621 error distribution over time. Monthly video sequences were screened in order to evaluate the possibilities to identify and track error 
622 movements on specific days.

623
624 Fig 10 - picture series from an error map video sequence for the 10.08.2014 07:00 (top left) until 14:00 (bottom right)

625 For only few days, as e.g. shown in Fig 11, error movements are relatively clearly identifiable. On 05.09.2015, the forecasts were 
626 relatively well suiting around 08:00 (indicated by pale colours) – the following hours show underestimations of the forecasts in the 
627 southern part of Luxemburg and overestimations in the North. The area of overestimation sweeps over the forecast area from North to 
628 South within 4-5 hours. Such movements could be identifiable and might be forecasted into the short term future, but even here, an 
629 improvement of the forecast might only be possible 1-3 hours ahead.
630

631
632 Fig 11 - error maps video sequence showing clear movement of areas of different deviations (05.09.2015)

633 The conclusion of the analysis of video sequences of error maps is therefore negative, concerning the approach of forecast 
634 improvements by “error movement vectors”. Some days show forecast error patterns where the described method might make sense, 
635 but most of them not. The single error maps change too drastically from one time step to the next. This leads also to the thesis, that 
636 this approach could be more promising at higher time resolutions (e.g. 5 min), which would increase the potential set of pictures that 
637 serve as basis to identify movements [17]. The technical possibility to apply this approach would surely increase with the resolution in 
638 time, but the absolute forecast horizon for which the method might improve the forecast remains limited (minutes to app. 3-hours-
639 ahead).
640
641 4.6. Results of the upscaling to the regional scale (Luxembourg)
642 The final result of the whole PV power forecasting algorithm is a dynamic and regionalized power forecast. Based on an upscaling 
643 procedure (not described here), using a full list of all PV systems installed in the grid of the two largest grid operators, giving their 
644 nominal power and location, an artificial power forecast for each system is generated. These powers could be aggregated on different 
645 regional or technical scales, e.g. per street, per village, per municipality or if the information would be available, per transformer station. 
646 Currently, the expected PV power is aggregated on communal level, as shown in Fig 12.
647
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648
649 Fig 12 - forecasted PV power [kW] for 03.07.2014 12:00, aggregated per municipality

650 The visualization of the predicted PV power on communal level gives a rather varying picture, as the differences in installed power per 
651 municipality are relatively high (larger PV capacities installed in the northern, rural municipalities). Therefore, the high differences in 
652 between the actual PV production of the municipalities are mainly due to the installed nominal power and only to a minor extend caused 
653 by different conditions of irradiance. The municipality in the North (Wincrange), illustrated in deep red on the map, has by far the largest 
654 installed PV capacity with 6’599 [kWp] nominal power and therefore sticks out of nearly every map, relatively independent of the 
655 irradiance.
656
657 More meaningful is the dynamic dimension of the forecast. Based on these single pictures, video sequences have been produced to 
658 illustrate the daily variation in PV power over the two year periods.
659
660 5. Conclusions and Outlook
661 Finally, the performance of the individual hourly power forecasts for the 23 reference systems, evaluated over a period of 2 years, is 
662 already quite promising. Without any adaptations of the forecast, based on the measurements of the reference systems, the mean 
663 deviation (bias) of the forecast was 1.1% of the nominal power (biasdt = 2.2%) – indicating low systemic error. Also the overall mean 
664 RMSE of 7.4% (RMSEdt = 10.0%) indicates a low dispersion of the power forecast. A huge collection of performance indicators for 
665 different forecast schemes can be found in recent review papers, such as [1] and [8], but a direct comparison is difficult. As Antonanzas 
666 stated [1], besides the large set of different indicators used and lack standardisation in their calculation, there are many factors which 
667 hamper a comparison: Climate conditions, day- and night-time values used, base of normalisation, sample aggregation, spatial 
668 aggregation level and testing period. Generally, it has been found that, by far, the main uncertainties arise from the irradiance forecast, 
669 which is not surprising, but nevertheless the accuracy of the technical part of the model is very satisfactory.
670
671 The adaptation of the forecast by the feedback from the reference systems brought ambivalent results. As mentioned above, at least 
672 on the time scale of a few hours ahead (1-2h) the error persistence approach did have a positive effect on forecast accuracy. But, the 
673 main advantage is rather the reduction of systemic errors, as e.g. in the case of snow cover or soiling, which is a known drawback of 
674 purely irradiance forecast depending approaches [1] [4] [14] [37]. 
675
676 The concept of error movement vectors was found to be not applicable for the temporal resolution of hourly forecasts and the given 
677 spatial resolution of this study. Also other authors concluded, although using different methods, that cloud movements over rather small 
678 regions pass too fast to reach acceptable results, at the respective temporal resolution of their data [17] [18] [19]. But we consider it 
679 worth to test the concept again, once the temporal resolution of the irradiance forecasts would increase. Also, the further rollout of 
680 smart meters and hence a higher spatial and temporal resolution of reference systems will be beneficial for this approach. 
681
682 Furthermore, the smart meter rollout would lead to more suitable reference systems than those used in this project, since currently only 
683 large scale, complex systems were equipped with adequate meters. A high degree of details on the individual reference systems might 
684 even not be necessary, since the concept of synthetic system profile was found to be similarly performant. 
685
686 The bottom-up structure of the model allows for the free choice of the aggregation level, if the degree of detail on the PV-systems is 
687 adequate. It depends on the specific purpose for which the forecast model would be used, if it might make sense to change the 
688 aggregation level of the up-scaled power forecast. For an energy provider/retailer the regionalized forecast would even not be 
689 necessary, hence the forecast can be aggregated on the level of their customers. For grid operators, if the necessary information on 
690 the localisation of individual PV systems is available, the forecast could be aggregated on level of transformer stations or street level, 
691 which would enable a very advanced grid management where this model would be applied.
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692
693 The method described in this paper is easily transferable to other countries or regions, wherever data on the installed PV systems (at 
694 least nominal power and location) is available. Numerical weather prediction data can be retrieved from different sources, although in 
695 varying quality and resolutions (temporal as well as spatial), for all regions worldwide. Access to smart meter data of PV-systems is not 
696 yet state-of-the-art for many regions, but the European smart meter roll-out and the rapid digitalisation of the grid in many other regions 
697 of the world (e.g. the U.S.A. and Japan) will hold huge potential to make use of those data to increase accuracy of the NWP based 
698 forecasting in the short term time frame.
699
700 Targeting on retailers and trading, a further development step will be to change from a deterministic forecasting (point forecasts) to 
701 probabilistic forecasts, enabling an improved risk management, which will be tested in a next step.
702
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Highlights

 A hybrid approach for PV-power forecasting, using metered PV-systems as references 
 Demonstrating a comparably accurate forecast performance on our case study over a two 

years period
 Bottom-up model, able to reach high spatial resolutions if the data is available


