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Samovar CNRS UMR 5157, Télécom SudParis
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Abstract—We are interested in the reproducibility of face
recognition systems. By reproducibility we mean: is the scientific
community, and are the researchers from different sides, capable
of reproducing the last published results by a big company,
that has at its disposal huge computational power and huge
proprietary databases?

With the constant advancements in GPU computation power
and availability of open-source software, the reproducibility of
published results should not be a problem. But, if architectures
of the systems are private and databases are proprietary, the
reproducibility of published results can not be easily attained.
To tackle this problem, we focus on training and evaluation
of face recognition systems on publicly available data and
software. We are also interested in comparing the best Deep
Neural Net (DNN) based results with a baseline ”classical”
system. This paper exploits the OpenFace open-source system
to generate a deep convolutional neural network model using
publicly available datasets. We study the impact of the size
of the datasets, their quality and compare the performance to
a classical face recognition approach. Our focus is to have a
fully reproducible model. To this end, we used publicly available
datasets (FRGC, MS-celeb-1M, MOBIO, LFW), as well publicly
available software (OpenFace) to train our model in order to
do face recognition. Our best trained model achieves 97.52%
accuracy on the Labelled in the Wild dataset (LFW) dataset
which is lower than Google’s best reported results of 99.96% but
slightly better than FaceBook’s reported result of 97.35%. We
also evaluated our best model on the challenging video dataset
MOBIO and report competitive results with the best reported
results on this database.

Index Terms—Deep Learning, Triplets, MOBIO, LFW, MS-
Celeb-1M

I. INTRODUCTION

In the last years, mainly due to the advances of
deep learning, more concretely convolutional networks, the
quality of image recognition and object detection has
been progressing at a dramatic pace. With the advent of
GPU computation and big datasets, neural networks saw
a huge resurgence. This results in huge improvements in
image recognition and consequently face recognition. Many
works [1]–[5] report near perfect biometric performance. But
in most cases, all systems are either proprietary or trained on
private datasets. This raises the problem of the difficulty of
reproducing published results [6].

In this paper we try to reach the best reported results
on the Labeled Faces in the Wild (LFW) [7] database, by
using the open-source OpenFace [8] software. This software
is based on the Google’s FaceNet architecture [5] that achieves

the best results on LFW, but is fully proprietary. CMU has
already worked in this direction, but their published results
of 92.92% are far from the 99.96% that Google got on LFW.
We have chosen to exploit the publicly available MS-celeb-
1M [9] dataset. We evaluate the performance of our newly
trained system on the (LFW), as well as the MOBIO [10]
dataset (a very challenging audio-visual dataset). The rest of
the paper is organized as follows: Section II summarizes the
latest achievements of Convolutional Neural Nets and DNN
based face recognition. Section III explains our approach to
try to reach best published and reproducible results. Our
experimental results are given in Section IV, followed by
conclusions and perspectives.

II. RELATED WORKS

Most of the state-of-the-art face recognition systems are
based on artificial neural networks. The best result on
the LFW is reported by Google’s team [5], exploiting
convolutional networks. With the OpenFace software the
researchers implemented the architecture of [5]. Therefore in
the following paragraph we will first provide a short history
related to convolutional networks, followed by a summary of
best performing DNN-based face recognition systems.

A. Convolutional Neural Networks

One of the very first convolutional neural networks is
LeNET5 [11]. It can be summarized as convolution, pooling
and non-linearity. The extracted features are fed into a
Multi Layer Perceptron (MLP) to do the final classification.
However, due to the low computational power at that time
and the fact that datasets were small, the architecture did not
find huge success. With the advent of GPUs, the training time
saw a drastic reduction. This resulted in many architectures
based on LeNET5, such as AlexNET [12], VGG network [13],
GoogleNET and Inception [14]. Inception was developed
at Google to provide state-of-the-art performance on the
ImageNet Large-Scale Visual Recognition Challenge and to
be more computationally efficient than other architectures.
The inception module acts as a multi-level feature extractor
by computing 1x1, 3x3, and 5x5 convolutions within the same
module of the network. The output of these filters are then
stacked along the channel dimension before being fed into the
next layer in the network.

978-1-5386-5239-8/18/$31.00 ©2018 IEEE

4th International Conference on Advanced Technologies
For Signal and Image Processing – ATSIP’ 2018
March 21-24, 2018 – Sousse, Tunisia

IVP-145



B. Deep Neural Network Based Face Recognition Systems

Table I summarizes the most prominent Deep Neural
Network (DNN) based face recognition systems. Most of them
are either proprietary, where only a description of the system
is provided and/or trained on private datasets.

FaceNet [5] was developed by Google. It is a unified
system for face verification, identification and clustering.
It extracts Euclidean representations from images with the
advantage of being general purpose. The features are also
compact (with a dimension of 128) in comparison with
traditional representations (bottleneck features for example).
The system was trained on a huge private dataset of 260 M
images from 8 M subjects. It was trained for 1000 hours.
FaceNet has the best reported accuracy of 99.96% on the
LFW database.

DeepID2 [3] was developed by the Department of
Information Engineering of the Chinese University of Hong
Kong. The features are learned using deep convolutional
networks. The face identification task increases the inter-
personal variations by drawing apart DeepID2 features
extracted from different identities, while the face verification
task reduces the intra-personal variations by pulling DeepID2
together extracted from the same identity, both of which are
essential to face recognition. It was trained on a private dataset
consisting of 200k images from 10k subjects. Compared to
other datasets such as Google’s or Facebook’s systems, the
size of the database can be considered relatively small. It
gives 99.15% verification accuracy on the LFW dataset.

VGG-DeepFace [4] was developed by the Visual Geometry
Group (VGG) from the university of Oxford. The system
was trained on 2.6 M images containing 2.6 k identities. The
published performance on LFW is 98.95%. The VGG system
is essentially a very deep convolutional neural network.
It leverages two distinct methods for the training, N-way
classification and triplet embedding. In the case of this system,
the N-way has the advantage of faster training, while on the
other hand triplet embedding gives better overall performance.

DeepFace [1] is developed by Facebook. It processes
images in two steps. First it corrects the angle of a face so
that the person in the picture becomes forward facing, using a
3-D model of an ’average’ forward-looking face. The second
step is to propagate the face to the DNN in order to extract
it’s representation. The system was trained on a private dataset
consisting of 4.4 M images from 4 thousand subjects (average
of 1k per subject). It has 97.35% accuracy on LFW.

CASIANet [2] was developed by the Institute of
Automation, Chinese Academy of Sciences (CASIA).
The system is inspired from many recent successful
networks including very deep architecture, low dimensional
representation and multiple loss functions. It was trained
on the publicly available CASIA dataset which consists of
500 thousand images representing 10 thousand identities. The
reported performance of the system on LFW is 96.13%.

OpenFace [8] is an implementation of the FaceNet system
based on [5]. The source code is publicly available as well
as the trained model. It was trained on the CASIA-webfaces
and FaceScrub, publicly available databases. The system has
92.92% accuracy on LFW.

In the rest of this paper we limit the study to using
OpenFace as the DNN architecture for technical limitation and
limited time, and because it implements the best performing
architecture reported in [5]. In fact, the average DNN training
session takes one week thus preventing us from reproducing
multiple systems. Our goal was to obtain better results by
using a bigger publicly available database. In the next section
we will explain our approach to have a fully reproducible
training model and results using OpenFace.

III. APPROACH TO FULLY REPRODUCIBLE TRAINING
MODEL AND RESULTS

In order to detail our approach, first, we will explain
how the images were preprocessed before feeding them to
the neural network. Afterwards, we will expose the neural
network architecture, the training as well as the evaluation
datasets, the protocols that were followed in the evaluation
process, before finally giving the training conditions.

A. Preprocessing

The preprocessing is done using the Open Source Computer
Vision Library (OpenCV) [15] and the DLIB library [16].
First, the face is detected using DLIB face detector. Then,
landmarks of the face are detected also using DLIB. The
landmarks that are used for normalization are the eyes and the
nose. Using these landmarks, the face is rotated, scaled and
cropped. The resulting image has 96x96 pixels. Fig1 Shows
the effects of preprocessing on one image.

Fig. 1. Example of the preprocessing of an image from LFW using eyes and
nose positions

B. OpenFace Neural Network Architecture

The DNN architecture used in OpenFace is an
implementation of the FaceNet model based on [5]. It
is a deep convolutional neural network. It was inspired from
the inception network [17]. For our work we have chosen
the nn4.small2 architecture because it is less complex than
the default architecture nn2 and because our tests show
better overall performance given the same data and the same
training time. It consists of an input layer, an output layer and
24 hidden layers among which there are 7 inception layers.
The whole network counts 3733968 parameters. It aims to
extract feature vectors that give the best possible separation
between subjects. It uses triplet embedding to optimize the
representations. [5] details the process of the triplet selection
and optimization. The loss function defined in Eq.1 is based
on the triplet loss optimization scheme which consists of
choosing two samples from the same class (the anchor and
the positive) and a sample for a different class (the negative).
The goal of the training is to separate the Anchor-Positive
pairs from the Anchor-Negative pairs by at least the margin
α. The triplet mining is done online by selecting the triplets
that are not arranged correctly. We select the hard negative



TABLE I
STATE-OF-THE-ART DEEP NEURAL NETWORK BASED FACE RECOGNITION SYSTEMS

System Availability of the source code Training Dataset Validation Set Results Reproducibility
FaceNet [5] Private 260M images, 8000k subjects, private LFW 99.96% No
DeepID2 [3] Private 0.2M images 10k subjects , private LFW 99.15% No

VGG-DeepFace [4] Public 2.6M images 2.6k subjects, public LFW 98.95% Yes
DeepFace [1] Private 4.4M images 4k subjects, private LFW 97.35% No
CASIANet [2] Public 0.5M images 10k subjects, public LFW 96.13% Yes
OpenFace [8] Public 0.6M images, 11k subjects, public LFW 92.92% Yes

triplets where the anchor negative-distance is less than the
anchor-positive distance.

L(θ) =

N∑
i

[
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2
2 − ‖f(x

a
i )− f(xni )‖22 + α

]
(1)

In Eq.1, θ represents the network parameters, xai is the anchor
sample, xpi the positive sample, and xni the negative sample
for subject i. f(x) is the DNN representation of the image x.
In order for the training to be efficient (to save computing
time), only the triplets that verify Eq2 rule are selected, as
other triplets will not improve the network performance.

‖f(xai )− f(x
p
i )‖

2
2 − ‖f(x

a
i )− f(xni )‖

2
2 + α > 0 (2)

This selection process allows for the training to run faster and
be more efficient because we won’t need to backpropagate
triplets that have little effect. If a triplet does not verify the
inequality from Eq.2 then the considered samples contain too
little intra-class variance and a high inter-class variance. As a
result of such training, the network outputs a low-dimensional
representation of an input image which consists in a feature
vector of size 128 and norm 1. This representation can be
leveraged to do either verification, identification or clustering.
In this article, we will focus on the verification performance.

C. Training Datasets

The training datasets that were used in this work are the
FRGC dataset (because it is a relatively big dataset at the time
that it was introduced), and the MS-celeb-1M [9] (because
this is to our knowledge among the biggest publicly available
datasets). More details about these databases are given below.

1) FRGC: The Face Recognition Grand Challenge
(FRGC) [18] dataset contains 568 subjects with a total of
39328 images. The dataset was captured under controlled
and uncontrolled conditions. In the controlled conditions, the
face orientation and the illumination as well as the pose were
fixed, which is not the case for the uncontrolled conditions as
the pictures were taken in different settings. The dataset was
labeled manually, thus there is almost no mislabeling. We
decided to exploit the whole dataset for the training of the
OpenFace model. This databases offers a reasonable number
of subjects (568), with variable acquisition conditions, as well
as enough images per subjects to allow the triplet training that
we intend to use.

2) MS-celeb-1M: The MS-celeb-1M is one of the largest
publicly available datasets. It has 100K subjects and almost
10M images. Popular search engines are used to provide about
100 images for each subject. The images are collected based

on metadata. This results in the dataset having a considerable
amount of mislabeled images. The dataset is constructed by
Microsoft and is available for noncommercial use. [9] further
describes the process of assembling the images and the metric
used for the choice of the 100K celebrity provided in the
dataset. We used the whole dataset for the training of our
neural network.

D. Evaluation Datasets

We report our results on two datasets. Labeled Faces in the
Wild (LFW) [7] and MOBIO [10]. Both datasets are publicly
available for noncommercial use. LFW is one of the most
used benchmarking datasets. As for MOBIO, we decided to
use this dataset because it is a hard bimodal dataset where
faces are hard to detect in opposition to LFW. Compared to
LFW where only still images are given, the MOBIO dataset is
providing videos, as faces were captured while subjects were
speaking. We can also exploit those multiple images extracted
from videos in order to study their influence on the triplet loss
optimization.

1) Labeled Faces in the Wild: The LFW dataset contains
13233 target face images with a very large degree of
variability in facial expressions, age, race, occlusion and
illumination conditions. 1680 of the people pictured have
two or more distinct photos in the data set. The only
constraint on these faces is that they were detected by the
Viola-Jones face detector [19]. The protocol specifies two
views of the data set. View 1 is for model selection and
algorithm development. It contains two sets: 1100 pairs per
each class (matched/mismatched) for training and 500 pairs
per each class for testing. View 2 is designed for performance
reporting. It is divided into 10 sets (folders), each with 300
matched pairs and 300 mismatched pairs. The cross-validation
evaluation can be adopted among these 10 folders. The final
verification performance is reported as the mean recognition
rate and standard error over the 10 fold cross validation. It
has to be noted that the task is to do pair matching: given
a pair of images the goal is to decide weather they belong
to the same subject. This task is similar to face verification,
except that the evaluation metrics proposed by the database
collectors is to report the accuracy of the pair matching.

2) MOBIO: The MOBIO database [10] is a bi-modal
(face/speaker) database recorded from 152 people. The
database has a female-male ratio of nearly 1:2 (52 females
100 males). In total 12 sessions were captured for each
individual. It consists of 3 sets; training, development and
evaluation. In our experiments we used only the development
and evaluation sets. We report the result on the protocol



described in [20]. The results are reported separately for males
and females because for speaker recognition separating males
from females gives better results. Therefore face recognition
experiments follow the same principle.

E. Training Conditions

The main target of this study is to understand the impact
of the training dataset on the performance. In order to be able
to study the effect of the database we first made a baseline
system based on recommended parameters from [5]. We set
the parameters as follows. The embedding size, meaning the
length of the representation, was set to 128. We decided to
stop the training based on two criteria, either we reach 1000
epochs or after 170 hours with the condition that results are
stagnant. Each epoch consisted of 250 batches. 20 subjects
were uniformly sampled in each batch from the dataset and
18 images per subject were also uniformly sampled form
the available images for each subject. If less than 18 images
are available, we take all available images. Because we are
using the triplet loss function we need at least 2 images per
subject. Before the training we removed all subjects from the
dataset who have less than 2 images where DLIB successfully
detected a face. α is a margin used in the process of triplet
selection and serves also in separating the anchor form the
negatives. α’s impact is further explained in [5]. It is set to
0.2 which constitutes a compromise between the complexity
of the triplet mining and the separation between the triplets.
The hardware configuration is as follows: an Intel core i7
7700k, 64 Go of DDR4 RAM, 1 TB SSD for storage and a
NVIDIA Geforce GTX 1080Ti with 12 GB of VRAM. Each
epoch of the training consists in optimizing the loss function
250 times (once every batch). The batch training is done as
follows:

1) Generate a batch by random sampling from the
database.

2) Represent every image in the batch (forward
propagation).

3) Select triplet verifying Eq.2. If no triplets are found,
return to step 1. Else compute the loss function.

4) Optimize the network parameters (backward
propagation).

For the specified training parameters, the batch generation
takes 0.02 seconds. The forward propagation takes 0.4
seconds. The triplet selection, if enough triplets are found,
takes 0.001 seconds and the backward propagation takes 0.3
seconds. Thus, the batch lasts for almost 0.7 seconds on
average. However, if no triplets are found (for example due to
not enough variability in the training dataset) the processing
time for the batch increases considerably.

Fig 2 illustrates the evolution of the epoch time
(250 x average batch time) where there are not enough triplets.
This training was done to study the limits of the triplet
selection process. We used a small dataset with 50 subjects
with 4000 images taken from the MOBIO database. In the
beginning, the model can not separate the dataset correctly,
thus we find enough triplets to optimize the network. As the
network performance improves, it becomes able to discern
the identities. This results in less triplets verifying Eq.2. The

training process is stacked at step 1, trying different samples in
order to find the triplets it needs to compute the loss function.
The process may try thousands of configurations before
finding hard-negative triplets. This results in exponential
increase of the training time. This made us decide to add
another condition to stop the training: if the training period
exceeds one week (170h) and the results are stagnant.

0 10 20 30 40 50 60

Epoch number

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T
im

e
 i
n

 s
e

c
o

n
d

s

Fig. 2. Illustration of the evolution of the epoch training time using a low
variability dataset originating from the MOBIO dataset

IV. EXPERIMENTAL RESULTS

In this section we detail the performance of the different
DNN models we obtained by training the architecture using
the datasets mentioned in III.3 on the LFW dataset and the
MOBIO dataset. We also compare the result of the DNN with
a ”classical” (not DNN based) approach. For this purpose
we have chosen the Direct Linear Discriminant (DLDA) [21]
based system, because it has a similar strategy of building
a compact image (face) representation model (at the training
phase) that we can use to project the new incoming faces in
order to be able to compare two face images.

A. Performance on the LFW dataset

Our goal is to obtain the best performance with the
available datasets. We achieved a pair matching accuracy of
97.6% on LFW using all of the available images from the
MS-Celeb-1M for training the DNN.
We used the preprocessing of OpenFace. As the preprocessing
is based on DLIB face detector, it was not able to detected
faces in 58 images from LFW. As a fallback, we used images
from the deep funneled set of LFW in order to do the
verification tests.
We followed the 10-folds cross validation protocol provided
by LFW on the view two. In which, 6000 pair matching tests
are split in 10 partitions. The accuracy is defined as the mean
value of correctly matched pairs divided by the number of
pairs in each of the 10 folds.

Table II summarizes the most interesting experiments we
did using OpenFace. In Exp.1, we used the FRGC dataset,
we stopped the training process at 700 epochs because the
training time became too long due to not finding enough
triplets satisfying the constraint defined in Eq. 2. In Exp.2, we
tried to get better results using the same dataset by pushing
the training further. The loss on the training partition and the
accuracy on the LFW were both improved by 3 percentile.



TABLE II
OUR RESULTS ON THE LFW DATASET REPORTING THE INFLUENCE OF THE TRAINING IMAGES COMPARED WITH GOOGLE AND CMU RESULTS

Exps Preprocessing Training Dataset subjects images/subject Total number Epochs Loss on Accuaracy
of images training dataset

Google FaceNet private 8 M 30 260 M - - 99.96%
CMU OpenFace FaceScrub 11k 50 600k - - 92.92

CASIA-WebFace
Exp.1 OpenFace FRGC 568 70 39328 700 6% 77%
Exp.2 OpenFace FRGC 568 70 39328 1000 3% 80%
Exp.3 Microsoft MS-celeb-1M 100k 80 8 M 1000 19% 86%
Exp.4 OpenFace MS-celeb-1M 100k 40 4 M 1000 19% 96.82%
Exp.5 OpenFace MS-celeb-1M 100k 80 8 M 1000 18% 97.52%

Nevertheless, the results were not convincing. This made
evident the need for bigger datasets. The biggest public dataset
that we found was MS-celeb-1M. This dataset was the core of
the remaining experiments. Microsoft provides a pre-aligned
version as well as a raw version of the dataset. In Exp.3
we used the pre-aligned version by Microsoft. However, the
preprocessing was not adequate to the input of the DNN.
The images were of varying sizes. After 1000 epochs we
obtained 86% accuracy on LFW. The results are better than
when using only FRGC as trainig data, but still not at the
level of the reported results in the literature. Thus we decided
to apply OpenFace alignment on the raw data. This resulted
in better overall performance as shown in experiments 4 and
5. In Exp.4, only half of the images were used, and at 1000
epochs we obtained 96.82% accuracy on LFW. When we used
the whole dataset in Exp.5 we got 97.52% accuracy on LFW
after 1000 epochs. The performance only improved by less
than 1 percentile even when doubling the number of images
used. We deduced from both this experiments that the most
important aspect is the variability in the dataset. It is more
beneficial to have more identities than to have more samples
per person as the limit for the intra-class variability is achieved
fast. We retained the model created in Exp 5 for the remaining
tests. Further on we will refer to it as OpenFace best.

B. Performance on the MOBIO dataset

The MOBIO dataset is divided into 3 partitions: training,
development and evaluation. For the purpose of this work we
did not use the training partition as we wanted to validate the
model obtained from training on the MS-celeb-1M. TableIII
details the results on MOBIO of our model with the best
performance on LFW (OpenFace best). In the table we
report the verification performance on both still and automatic
protocols. Both these protocols are described further in [20].
For the still protocol we used the still images provided in
the framework of the ICB2013 challenge. For the automatic
protocol we used 3 and 10 frames from the videos. The
frames were selected uniformly from the videos, ie: for 3
frames we took the first, the middle, and the last frame. The
results that we obtained on MOBIO are equivalent if not better
than the commercial system studied in [20]. To measure the
performance on MOBIO we used the HTER metric which is
defined as follows:

HTER =
FAR(θ) + FRR(θ)

2
(3)

θ is the threshold at the Equal Error Rate (EER) defined on
the development partition. The False Acceptance Rate (FAR)
and the False Rejection Rate (FRR) are then computed on the
evaluation dataset using the threshold θ.

TABLE III
RESULTS OF OUR OPENFACE BEST MODEL ON MOBIO

Openface best Eval Female (HTER) Eval Male (HTER)
Still 14.57% 6.43%

3 frames 10.04% 4.79%
10 frames 8.84% 3.99%

The MOBIO dataset is biased towards males with females
representing about 30%. We trained OpenFace on a gender
independent database. However we find relatively different
results when comparing the performance between males and
females. The same tendency appear in the systems studied
in [20]. The best reported results are 9% on the eval female
partition and 5.5% on the eval male partition when using 10
frames, whereas we got 8.8% on the eval female partition and
4% HTER on the eval male. We can attribute the difference in
the performance to the poor performance of the face detector
on the female images. OpenCV fails to detect the face in
80 female images and only 19 in male images. This may
be explained either by a bias in the pretrained face detector
module or by bad illumination in the female images.

C. Comparaison with a Traditional Approach (DLDA)

We studied the impact of the size of the training data on
the performance in both cases of traditional DLDA approach
using the SudFrog software and the deep neural network
architecture provided by OpenFace. We decided to compare
OpenFace to the DLDA approach because of fundamental
similarities. Both, triplet embeddings and DLDA try to reduce
the intraclass distance and enlarge the interclass distance.
SudFrog is a face recognition system that was developed
in Institut Mines Telecom, Telecom SudParis1. It is based
on space reduction techniques SudFrog does not do neither
face detection nor landmark detection. Moreover, SudFrog
aims to construct an Euclidean projection space, similar to
OpenFace. It must be provided with the eyes, nose and
mouth positions for it to do face recognition. For face
detection and landmark detection, we use a combination of
OpenCV and DLIB. OpenCV was used for face detection.

1https://github.com/sudfrog/sudfrog



TABLE IV
COMPARISON OF OUR RESULTS OF THE DNN AND THE DLDA ON MOBIO STILL IMAGES AND LFW

System Training Dataset Subjects Images MOBIO LFW
Eval Female (HTER) Eval Male (HTER)

SudFrog 1 FRGC 568 39328 17.43% 10.9% 79.94%
OpenFace 1 FRGC 568 39328 21.87% 18.97% 80%

SudFrog best Mobio train set + FRGC 100 4000 12.64% 7.68% 86%
OpenFace best MS-celeb-1M 100K 10M 14.57% 6.43% 97.52%

DLIB was used for landmark detection. We used the
default detectors provided by the software (front face.xml for
face detection and shape predictor 68 face landmarks.dat
for landmark detection). In comparison, OpenFace uses DLIB
both for face as well as landmark detection. OpenCV is slower
but detects more faces than DLIB on the somehow difficult
MOBIO dataset. This results in fewer errors for SudFrog
as shown in table IV on the MOBIO dataset. Using the
same amount of data, SudFrog outshines the DNN. However,
once we use the huge MS-celeb-1M dataset, the positions are
reversed. We can not train SudFrog with MS-celeb-1M dataset
as it is technically infeasible. The feature space becomes too
huge for the memory.

V. CONCLUSIONS AND PERSPECTIVES

This paper details how to obtain a state-of-the-art face
recognition system based on publicly available software and
using public datasets. We try to give the most possible details
to allow for the reproducibility of the results. When CMU
implemented OpenFace, reproduciblity was one of their main
goals. Thus we were able to reproduce their results and
improve upon them. However, we couldn’t get the same
results as Google who used huge proprietary datasets and
a proprietary face alignment system. Our OpenFace best
DNN model gives good verification results on both evaluation
datasets, MOBIO and LFW. From the results that we obtained
we can infer that the performance bottleneck lays in the
preprocessing, notably the face detection phase. Given enough
data, the DNN is unmatched. Nevertheless, in situations where
the data are not available classical approaches give better
performance. In order to improve our results, we plan to
study further the preprocessing and use neural networks for
the face detection. We also plan to reduce the mislabelling of
the MS-celeb-1M dataset in order to study the effect of the
mislabelling on the generalization of the system.
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