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Abstract—Data augmentation using 3D face models to syn-
thesize faces has been demonstrated to be effective for face
recognition. However, the model directly trained by using the
synthesized faces together with the original real faces is not
optimal. In this paper, we propose a novel approach that uses
a deep transfer network (DTN) with 3D morphable models
(3DMMs) for face recognition to overcome the shortage of
labeled face images and the dataset bias between synthesized
images and corresponding real images. We first utilize the
3DMM to synthesize faces with various poses to augment the
training dataset. Then, we train a deep neural network using
the synthesized face images and the original real face images.
The results obtained on LFW show that the accuracy of the
model utilizing synthesized data only is lower than that of the
model using the original data, although the synthesized dataset
contains much considerably images with more unconstrained
poses. This result shows that a dataset bias exists between the
synthesized faces and the real faces. We treat the synthesized
faces as the source domain, and we treat the actual faces as the
target domain. We use the DTN to alleviate the discrepancy
between the source domain and the target domain. The DTN
attempts to project source domain samples and target domain
samples to a new space where they are fused together such
that one cannot distinguish the domain from which a specific
image is from. We optimize our DTN based on the maximum
mean discrepancy (MMD) of the shared feature extraction
layers and the discrimination layers. We choose AlexNet and
Inception-ResNet-V1 as our benchmark models. The proposed
method is also evaluated on the LFW and SLLFW databases.
The experimental results show that our method can effectively
address the domain discrepancy. Moreover, the dataset bias
between the synthesized data and the real data is remarkably
reduced, which can thus improve the performance of the
convolutional neural network (CNN) model.

I. INTRODUCTION

Deep learning, particularly convolutional neural networks
(CNNs), has achieved promising results in face recognition in
recent years. Though CNNs are impressive, training a robust
and reliable neural network requires large-scale labeled data. The
reported CNNs, [1], [2], [3], [4] and so on, are trained on
different face databases; unfortunately, most of these databases
are not publicly available. One commonly used face dataset that
is publicly available is the CASIA-WebFace collection [5] with
only 495K images, which are not enough images to train many
large CNNs such as FaceNet [2]. Therefore, in most real-world
applications, harvesting and labeling large datasets have become
an effective approaches to enhance the performance of CNNs. Not
only the quantity but also the variation are of importance in data

Figure 1. Data bias across both domains can be alleviated by using transfer
learning. First, we maximize domain confusion by making the marginal
distributions of the two domains as similar as possible. Second, we match
the distributions of the labels given features.

collection. To train a model with good generalization ability, the
training data should simultaneously consider inter-class variations
(differences between different people) and intra-class variations
(differences within the same person), which is difficult and requires
considerable effort.

Masi I et al. [6] realize that collecting and labeling massive
training sets is not easy for improving networks. They synthesize
training data using a 3D generic face model to augment the training
dataset. The idea that face images can be synthetically generated
by using 3D rendering technology to aid face recognition systems
was proposed long ago. This idea was originally proposed in [7]
and then effectively used in [1] [8] [9]. In constrast to the above
method, Masi I et al. [6] use other transformations to generate new
images (e.g., other poses, different shapes, and facial expressions)
rather than generating frontal faces, which increases the size of
the CASIA WebFace collection to several times its original size.
Experimental results have demonstrated its effectiveness and have
achieved state-of-the-art performances on the LFW and IJB-A
datasets. Later, Masi I et al. [10] considered the computational cost
of rendering and proposed a new method for the rapid synthesis of
massive face sets for face recognition.

However, there are two limitations in the aforementioned meth-
ods. First, synthetic face images with a 3D face model are al-
ways “false” (virtual face images) and the images are not real
photographs taken from a real camera. Do the real data and the
synthesized data have the same distribution? Moreover, is there
a dataset bias between these data? In other words, can networks
trained by using synthesized images capture the features of the
real data? Second, Masi I et al. [6] synthesize face images for
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both training and testing. As is known, 3D synthesis techniques
that use a traditional 3D face model are related to the facial
landmarks [12] and pose estimate. When facial landmarks are
not accurately localized and the pose estimate is not proper, the
synthesized faces will be meaningless images. Even if the pose
was correctly estimated, warping images across poses involves
interpolating intensities, which leads to smoothing artifacts and
information loss. Although this may affect training, it is far more
serious at test time, particularly when multiple images represent a
subject, which may include lower resolution, extreme poses and so
on.

To solve the aforementioned problems, namely, the shortage
of labeled face images and the different distributions between
synthesized images and real images, we propose a novel approach
that uses a deep transfer network (DTN) with 3D morphable models
(3DMMs) for face recognition. Our approach performs transfer
learning across both domains, as shown in Fig. 1. An overview
of our proposed approach is illustrated in Fig. 2, which mainly
consists of two main components: data augmentation and DTN. We
first synthesize faces with various poses on the CASIA-WebFace
collection to augment the training dataset using the 3DMM [11],
which is similar to [6]. Then, we use the synthesized data and
the original data to train the same neural network and we test
the trained model on LFW [15]. The Experiments show that there
is a dataset bias between the synthesized data and the real data
(different distributions). We treat the synthesized faces as the source
domain, and we treat the original real faces as the target domain. To
alleviate the discrepancy between the source and target domains, we
use a deep DTN that attempts to project the source domain samples
and the target domain samples to a common subspace. We optimize
our DTN based on the maximum mean discrepancy (MMD) [16]
of the shared feature extraction layers and the discrimination layers
to reduce the dataset bias, which is conducive to training strong
classifiers by maximizing the data confusion.

For comparison, we choose two networks as our basic net-
work to evaluate our proposed approach: AlexNet model [17]
and Inception-ResNet-V1 model [18]. We evaluate our approach
on the LFW [15] and SLLFW [19] databases. The experimental
results show that the proposed method can effectively overcome
the shortage of training data and the dataset bias between different
domains.

II. DATA AUGMENTATION

A. Synthesizing Faces
Similar to [21], we employ 3DMM [11] as the parametric face

model to encode 3D face geometry and extend the shape model to
cover facial expressions by adding delta blendshapes. Specifically,
the parametric face model describes 3D face geometry S with
principal component analysis (PCA)

S = S+Aidαid +Aexpαexp, (1)

where S denotes the shape of the average 3D face. Aid is the
principal axes trained on the 3D face scans with a neutral ex-
pression, and αid is the shape weight. Aexp is the principal axes
trained on the offset between expression scans and neutral scans,
and αexp represents the expression weight. For diversity and mutual
complement, we use the Basel face model (BFM) for αid [13] and
FaceWarehouse [14] for αexp.

Given a 2D facial image, our goal is to predict the optimal
shape parameter and projection vector that minimize the difference
between the projected 3D shape and the ground truth. After
obtaining the optimal pose parameters R, identity parameters αid
and expression parameters αexp, we can render new facial images

in various poses. In addition, the appearance surrounding the face
region also contains discriminative information for face recognition
[20]. Inspired by [21], we aim to preserve the identity information
as much as possible by a 3D transformation in our work, which is
different from [6]. Fig. 3 shows synthetic examples of face images,
including ideal and unsatisfactory images. The typical failures
mainly come from poor facial landmark detection, as shown in Fig.
3(c), and strong facial expressions, as shown in Fig. 3(d), which is
a common situation and is not beneficial for testing.

B. Datasets Bias
After obtaining the synthesized faces, the most straightforward

way to use this information is to train the CNN with the synthesized
data and original data together. However, image datasets are inher-
ently biased [23]. In face synthesis process in particular, images
will be introduced with more or less deformation (smoothing
artifacts), as shown in Fig. 3(c)(d). Therefore, it is critical to
address the dataset bias between the real data and the synthesized
data for training the neural network. In our experiments, we use
the synthesized data and the original data separately to train the
AlexNet network and the Inception-ResNet-V1 network. Then,
we evaluate models that we trained on LFW. Fig. 4 shows the
performances on different networks which are trained by using
different datasets.

Interestingly, as shown in Fig. 4, the recognition rate has
decreased on both networks when using the synthesized face dataset
rather than the real face dataset, although the synthesized dataset
contains more diverse poses and faces. This result indicates that
image synthesis alone cannot improve the face recognition rate.
Moreover, this result proves that synthesized faces and real faces
have different distributions. In other words, there is a dataset bias
between them. In addition, the high recognition algorithms rely on
high- capacity CNN, which requires millions of supervised images
for initial training.

We extract the feature of the same person of synthesized faces
and real faces on the Inception-ResNet-V1 network, which is
trained by using synthesized faces and real faces. We use the PCA
to reduce the dimension. Fig. 5 shows the distribution of the first
two dimensions from PCA projections of the penultimate layer. As
shown, the distributions of features between the synthesized faces
and real faces are scattered.

We denote the synthesized faces as the source domain, and we
denote the original 2D real faces as the target domain. Our goal is
to minimize the distribution bias among different domains while
preserving the properties of the data.

III. DEEP TRANSFER NETWORK FOR FACE

RECOGNITION

A. Problem Description and Notations
For clarity, we formulate our problem and some notations. In the

following, upper-case and lower-case characters represent matrices
and vectors, respectively. Unless otherwise specified, the symbols
s and t used in superscript denote the source domain and target
domain, respectively. xs ∈R

d and xt ∈R
d represent samples in the

source and target datasets, respectively. Ds = {(xs
1,y

s
1), ..,(x

s
ns ,ys

ns)}
and Dt = {(xt

1,y
t
1), ..,(x

t
nt ,yt

nt )} represent the source dataset and
the target dataset, respectively, where ns and nt are the numbers
of the samples. y•i is their class label, and y•i ∈ {1,2, ...,c}. Denote

Xs = [xs
1, ...,x

s
ns ] ∈ R

d×ns
and Xt = [xt

1, ...,x
t
nt ] ∈ R

d×nt
as the data

matrices of Ds and Dt , respectively. P(xs) and P(xt) represent
the marginal distributions of the source and target datasets, while
P(ys|xs) and P(yt |xt) represent the conditional distributions.

Our task is to use 3D rendering technology with the limited
faces to generate faces with various poses and natural expressions
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Figure 2. An overview of our approach, which learns a representation to reduce classification error and improve domain invariance simultaneously based
on maximum mean discrepancy (MMD). Our approach consists of two main components: data augmentation and deep transfer network (DTN).

(a)Poses synthesis examples.

(b)Expression synthesis examples. First row: Original face images. Second row: Synthetic images with natural expression

(c)Examples render failures due to strong facial expressions

(d)Examples render failures due to poor facial landmark localization

Figure 3. Qualitative rendered faces

Figure 4. The performances of networks trained by using source domain
and target domain data.

to enhance the performance of our model. Our goal is that the 3D
synthesized data properties are preserved and the data distributions
in different domains are close to each other (marginal distribution).
Furthermore, to uncover the knowledge hidden in the relations
between the data labels from the source and target domains, we

(a) (b)

Figure 5. The distribution of the first two dimensions from principal
component analysis (PCA) projections of the penultimate layer. Red points
and blue points represent features of the original faces and the synthesized
faces after PCA, respectively, and (a) and (b) represent two different people.
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match the distribution of the labels given features (conditional
distribution), as shown in Fig. 1.

B. Maximum Mean Discrepancy
To match the distributions, a metric of difference between two

distributions needs to be defined. Suppose that we are given
two sets of samples X := {xi} ∈ R

d×N and Y := {y j} ∈ R
d×M ,

independently and identically distributed (i.i.d) from p and q,
respectively, and asked whether the generating distributions p = q.
Many criteria exist that can be used to estimate the distance. MMD
is a commonly used metric of discrepancy of two distributions due
to its efficiency in computation and optimization [25]. Most MMD-
based approaches can be viewed as minimizing a certain distance
between the weighted sum of all raw moments. In this paper, we
adopt the empirical MMD as the conditional distributions metric
(Eq. 2) and the MMD in reproducing kernel Hilbert space (RKHS)
as the marginal distribution metric (Eq. 3)

MMDb[F ,X ,Y ] := sup
f∈F

(
1

N

N

∑
i=1

f (xi)− 1

M

M

∑
j=1

f (x j)), (2)

MMD2[F , p,q] = Ex,x′ [k(x,x
′)]−2Ex,y[k(x,y)]+Ey,y′ [k(y,y

′)],
(3)

where x′ is an independent copy of x with the same distribution
and y′ is an independent copy of y.

C. Deep Transfer Network
The entire network structure is illustrated in Fig. 2. Not only

do we want to minimize the distance between real images and
synthetic images (or maximize the data confusion), but we also
seek to find a representation that is conducive to training strong
classifiers. We choose the deep neural network to model and match
both the marginal and conditional distributions, which makes our
model more suitable for achieving domain transfer. We achieve
this using two different types of layers in the CNN model: the
shared feature extraction layer, which learns a subspace to match
the marginal distributions of the source and target samples, and the
discrimination layer, which matches the conditional distributions by
the average labels given features. We first calculate the classifica-
tion loss for all face images. Given n labeled training data {xi,yi},
where yi ∈ {1,2, ...,c} represents the label with one active output
node per class, the objective function of DTN in the form of the
empirical log-likelihood loss function is given as

L(W) =−1

n

n

∑
i=1

c

∑
k=1

y(i)k log([g(x(i))]k), (4)

where n= [nsnt ] is all data including the source and target datasets.
W is the projection matrix of the neural networks.

We use MMD2
mar and MMD2

con to represent the metrics of the
marginal and conditional distributions, respectively. The definitions
of MMD2

mar and MMD2
con are described in detail below. Therefore,

our overall objective function of DTN is

J(W) = L(W)+λMMD2
mar +μMMD2

con, (5)

where λ and μ are regulation hyperparameters that determine how
strongly the marginal distribution and the conditional distribution
influence the optimization. The larger the values are, the less the
difference of the data bias is. Such an optimization would enable
the model to learn a strong classifier that transfers knowledge
across datasets. The optimization of MMD2

mar and MMD2
con is

similar to [29] and [24], respectively. Once the model is trained, we
do not use the synthesized images at test time, which is different
from [6], because using the 3D model does not guarantee that all
the images in the test dataset are accurately synthesized.

1) Matching Marginal Distributions: Suppose that we
choose the CNN model with l layers and that the first l−1 layers
are all considered to be feature extraction layers. We use φl−1(x)
to express the feature in the l−1th layer. Denote P(φl−1(x)) as the
distribution of the feature space. The goal of our algorithm is to
force P(φl−1(x

s)) and P(φl−1(x
t)) to be close. We use the MMD

in RKHS to minimize the feature mapping function. The distance
between P(φl−1(x

s)) and P(φl−1(x
t)) is modeled by the marginal

MMD as follows

MMD2
mar(X

s,Xt) =
Tr(Kxss)

(ns)2
+

Tr(Kxtt)

(nt)2
−2

Tr(Kxst)

nsnt , (6)

where [Kx••]i j = k(φl−1(x
•
i ),φl−1(x

•
j)). In our experiment, we

choose the Gaussian RBF kernel, which is considered to be
a universal approximator, with the kernel function as k(x,y) =
exp(−‖x−y‖2

2δ 2 ), where δ is the bandwidth.

2) Matching Conditional Distributions: We consider the
logistic regression as the model of the discrimination layer and
use the softmax function to calculate the posterior probability of
each category. Assume that there are a total of C categories. For
an arbitrary c, the hyperplane of category c is denoted wc. The
posterior probability of y = c given feature x can be written as

P(y = c|φl−1(x)) =
ewT

c φl−1(x)

∑k ewT
k

φl−1(x)
. The distance between the condi-

tional distribution of the source and target datasets is measured by
the conditional MMD, defined as

MMD2
con(X

s,Xt) =
C

∑
c=1

‖ 1

ns

ns

∑
i=1

P(ys = c|φl−1(x
s
i ))

− 1

nt

nt

∑
j=1

P(yt = c|φl−1(x
t
j))‖2

2

=
C

∑
c=1

Tr(qT
c Mqc),

(7)

where qc ∈R
ns+nt

is the posterior distribution output vector of the
cth category for all data samples, and M is the MMD matrix. Let
Mi j be one element of M. Mi j can be calculated as

Mi j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

(ns)2
i � ns, j � nt

1

(nt)2
i > ns, j > nt

− 1

nsnt otherwise.

(8)

D. Details of Deep Transfer Network
To illustrate the effectiveness of our method and ensure fast

convergence of the model, it is crucial to appropriately select the
model and training data.

1) Data Selection: When computing the marginal MMD and
the conditional MMD, in theory, we need to take all the source
and target samples into consideration. However, this approach is
inefficient and not applicable because of its expensive complexity.
Inspired by the idea of [24], we divide the samples into mini-
batches. Rather than computing MMD over the entire datasets, we
compute MMD over every single batch.

Assume that there are C subjects in the source and target
domains. The batch size is set to 2S with half from the source
domain and half from the target domain. Each batch contains N
subjects, and each subject has M images. We upsample the target
domain when certain subjects have fewer images than M.
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2) DCNN Model Selection: We choose AlexNet [17] and
Inception-ResNet-V1 [18] as our deep transfer network models.
They have achieved very good performance in image recognition.
The latter has a deeper structure than the former. Two classic
networks were chosen to prove that the performance of our method
is not accidental, while the network through transfer can achieve
good recognition results on the LFW and SLLFW databases.

After the structure of the networks is determined, we can
optimize the parameters of the networks using stochastic gradient
descent (SGD) with backpropagation.

IV. EXPERIMENTS

A. Network Parameter Settings
All implementations are produced using the open source Ten-

sorFlow [26] framework. The initial learning rate is set to 0.01,
and it is decreased by a factor of 10 when the loss flattens. We
set the hyperparameters to λ = μ = 10 throughout the training.
We set the batch size as 2S = 300, which means that every mini-
batch consists of 150 source samples and 150 target samples, where
M = 15 and N = 10. Why the regularization parameters and batch
size need to be set to such values will be described in detail
later. The bandwidths δ of the Gaussian RBF kernel are set to
{1;2;5;10;20;40}. All input images are z-scored to have zero mean
and unit variance. We use the output of the penultimate layer of
the network as the features to perform face verification. For the
two different networks, the image size and feature dimensions are
shown in Table I.

Table I
INPUT AND OUTPUT OF NETWORK.

AlexNet Inception-ResNet-V1
Image size 227x227x3 160x160x3
Feature dimensions 4096 1792

B. Results on Labeled Faces in the Wild
LFW was the standard benchmark for unconstrained face veri-

fication. Recent methods [2] [3] are almost reaching near-perfect
performances with deep learning using millions of images. To test
our approach, we follow the standard protocol for unrestricted,
labeled outside data and report the mean classification accuracy.

1) Performances on Different Networks: We implemented
two well-known DCNNs for comparison, namely, AlexNet and
Inception-ResNet-V1. After the model is trained, we align the
LFW data according to the size of the training model image
and then feed it into the appropriate trained model to extract the
features. The recognition rates on LFW are shown in Table II.
Non-transfer represents that the model is directly trained by using
the synthesized faces together with the original real faces, and
DTN represents the deep transfer network used in this paper. We
observe that the accuracy increases 1.22% and 0.22% using DTN
compared to using no-transfer, respectively, as shown in Table II.
Adding synthesized images to the original training set increases the
performance by 0.97% and 0.38%. This result indicates that data
augmentation using a 3D face model to synthesize virtual faces is
an effective approach for face recognition. Interestingly, as shown
in the second row, the performance has decreased on both networks
using the synthesized face dataset rather than the real face dataset,
although the synthesized dataset contains more diverse poses and
a greater number of faces. This result shows that the synthesized
images and real images have different distributions, and using the
proposed DTN mitigates the differences between both distributions
as much as possible. Moreover, the Table II shows that the accuracy
rate is not enhanced too much in Inception-ResNet-V1 because the
network itself has achieved a good recognition rate.

Table II
PERFORMANCES ON DIFFERENT NETWORKS

AlexNet(%) Inception-ResNet-V1(%)
OD 89.23 98.60
SD 88.33 97.90
OS+SD (non-transfer) 91.20 98.98
OS+SD (DTN) 92.42 99.20

We extract the same person’s features of the original image and
synthesized image from the trained DTN and then use PCA to
project the output features. Fig. 6 shows the distribution of the first
two dimensions of the same person’s features after PCA. As shown,
after using the DTN, the same person’s features of synthesized
images and the original images are more concentrated, and the
features of the original images are fused with the features of the
synthesized images.

(a) (b)

Figure 6. The distribution of the first two dimensions from PCA projections
of the same person’s features that are extracted from the trained DTN.

2) Comparison with the State-of-the-art: We have also
compared our approach with the existing methods that have
achieved a high recognition rate. Our comparison results are shown
in Table III. As shown in this table, the Inception-ResNet-V1
network can reach a 98.60% accuracy rate, which is trained on
the original CASIA WebFace alone. The recognition rate is higher
than [1] [27] [6]. This result shows that the Inception-ResNet-
V1 network is already a very effective network. We use it as
the basic network to optimize our DTN by using MMD between
synthesized face images and the original real face images. The
DTN can achieve a 99.20% recognition rate on LFW, which
improves 0.6% compared to the original Inception-ResNet-V1. The
experimental results show that synthesizing training images leads
to an increase in recognition accuracy, as in [6] and our results.
This may be attributed to the potential of specific augmentation
to infuse training data with significant intra-subject appearance
variations. More importantly, performance can be further improved
using DTN to mitigate the difference between both distributions.
In addition, using the synthesis method also has another benefit
in that it is a more accessible means of increasing training set
sizes than downloading and labeling millions of additional faces.
Note that the reasons why we did not used the VGG network
as a basic network are as follows. First, compared to [6], our
proposed method requires learning a network from scratch, which
becomes quite time consuming if using VGG. Second, since basic
Inception-ResNet-V1 has outperformed all improvements on VGG,
performing experiments on an old baseline does not make much
sense. Thus, a higher baseline is chosen in our paper to demonstrate
our methods ability to improve a state-of-the-art result.
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Table III
COMPARISON WITH THE EXISTING METHODS

Method Real Synth Acc.(%)
DeepFace[1] 4M - 97.35
Fusion[27] 500M - 98.37
FaceNet + Alignment[2] 200M - 99.63
VGG Face[3] 2.6M - 97.27
VGG Face(triple loss)[3] 2.6M - 98.95
no Aug.(VGG)[6] 495K - 95.31
Aug.data(VGG)[6] 495K 2.4M 98.06
Inception-ResNet-V1 495K - 98.60
Ours,non-transfer 495K 4.8M 98.98
Ours,Inception-ResNet-V1(DTN) 495K 4.8M 99.20

C. Results on the SLLFW Database
Deng et al. [19] realize that almost all the negative face pairs

are quite easy to distinguish in the original LFW. They deliberately
select 3000 similar-looking face pairs within the original image
folders by human crowdsourcing to replace the random negative
pairs, generating the new SLLFW database.

We use 3D a model to synthesize new face images that focus on
changes within the class, which is useful for dealing with datasets
such as SLLFW. We train two different networks with synthesized
face images and original real face images, which are non-transfer
network and DTN based on Inception-ResNet-V1. The accuracy
rate using DTN improves by 1.50% compared to the non-transfer
network. Fig. 7 provides ROC curves for two different methods
used in our paper. The green curve represents our DTN method,
and the blue curve represents the non-transfer method. Table IV
shows some results compared to the existing method, whose results
are provided by [19]. From the experimental results, we can note
that our method achieves a state-of-the-art accuracy rate.

Figure 7. The ROC curves of two different methods.

Table IV
COMPARISON WITH THE EXISTING METHODS ON FGLFW

Method Real Synth Acc.(%)
DeepFace[1] 0.5M - 78.78
DeepID2[28] 0.5M - 78.25
VGG-Face[3] 2.6M - 85.78
DCMN[19] 0.5M - 91.00
Ours,Inception-ResNet-V1 0.5M 4.8M 94.30
Ours,Inception-ResNet-V1 (DTN) 0.5M 4.8M 95.80

D. Parameter Sensitivity Analysis
We conduct a parameter sensitivity experiment on the LFW

dataset. Distribution matching parameters λ , and μ and size of
the mini-batch S are evaluated.

1) Distribution Regularization Parameter Analysis : In
our paper, there are two regularization parameters λ and μ . λ
controls the level of marginal matching, and μ controls the level
of conditional distribution matching. Setting λ and μ too low will
cause the MMD regularization to have no effect on the learned
representation, but setting λ and μ too high will regularize too
heavy and learn a degenerate representation in which all points
are too close together. Fig. 8(a)(b) show the recognition results
when λ and μ take different values from {0.1,1,10,20,50,100}.
As shown in Fig. 8(a)(b), λ and μ show the same trend as the
theoretical analysis. For simplicity, we set λ = μ = 10 in all of our
all experiments. ’lambda’ and ’mu’ denote λ and μ in Fig. 8(a)(b),
respectively.

(a) (b)

(c)
Figure 8. Distribution regularization parameter analysis. (a)The effect of
the size of λ on the recognition result. (b)The effect of the size of μ on
the recognition result.(c)The effect of batch size on the recognition rate

2) Batch Size: The mini-batch is the basic unit for evaluat-
ing the distribution of the database and optimizing the objective
function. The size S should be large sufficient to contain enough
samples in the batch such that it can reflect the distribution of the
entire dataset. For simplicity, the number of people that we choose
every time is fixed; we only change the number of pictures per
subject. We set N = 10 in all of our all experiments. Fig. 8(c) shows
the recognition accuracies when M takes different values from
{5,10,15,20,30}. We observe that the larger batch always leads to
better performance. However, the size of the batch should not be
too large because of the limitation of GPU memory. Therefore, we
set S = 150(N = 10,M = 15), which can not only achieve a good
recognition rate, but also meet the needs of GPU memory.

V. CONCLUSIONS

In this paper, we mainly elaborate on two issues. First, we
synthesize face images with various poses and natural expressions
using the 3DMM method. We have experimentally demonstrated
that there is a dataset bias between synthesized faces and real
faces. Second, we address the dataset bias between synthesized
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data and real data with the help of DNT. DTN combines the
best paradigms in object recognition (neural network) and domain
adaptation (matching the marginal and conditional distributions of
different domains). Our experiments show that the dataset bias
between the synthesized data and the real data is remarkably
reduced, which can thus improve the performance of the CNN
model.
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