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Statistics in the big data era: Failures of the machine  
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There is vast interest in automated methods for complex data analysis. However, there is 

a lack of consideration of (1) interpretability, (2) uncertainty quantification, (3) 

applications with limited training data, and (4) selection bias. Statistical methods can 

achieve (1)-(4) with a change in focus. 
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1. Introduction  

 

1.1 Different cultures 

The culture and ways in which the statistical community thinks of analyzing and 

interpreting data have been rapidly evolving in recent years, with the machine learning 

and signal processing communities having a fundamental impact on the rate and direction 

of this evolution.  To set the stage for this discussion article, it is helpful to first comment 

on the culture and background of the machine learning and statistical communities.  

These comments are meant to give a “cartoon” of a complex reality, with this cartoon 

helpful as a starting point for discussion. 

 

Machine learning (ML) community: tends to have its roots in engineering, computer 

science, and to a certain extent neuroscience – growing out of artificial intelligence (AI).  

The main publication outlets tend to be peer-reviewed conference proceedings, such as 

Neural Information Processing Systems (NIPS), and the style of research is very fast 

paced, trendy, and driven by performance metrics in prediction and related tasks. One 

measure of “trendiness” is the fact that there is a strong auto-correlation in the main focus 

areas that are represented in the papers accepted to NIPS and other top conferences.  For 

example, in the past several years much of the focus has been on deep neural network 

methods.  The ML community also has a tendency towards marketing and salesmanship, 

posting talks and papers on social media and attempting to sell their ideas to the broader 

public.  This feature of the research seems to reflect a desire or tendency to want to 

monetize the algorithms in the near term, perhaps leading to a focus on industry problems 

over scientific problems, where the road to monetization is often much longer and less 

assured. ML marketing has been quite successful in recent years, and there is abundant 

interest and discussion in the general public about ML/AI, along with increasing success 

in start-ups and industrial sector high paying jobs partly fueled by the hype.   

 

Statistical (Stats) community: made up predominantly of researchers who received their 

initial degree(s) in mathematics followed by graduate training in statistics.  The main 

publication outlets are peer-reviewed journals, most of which have a long drawn out 

review process, and the style of research tends to be careful, slower paced, intellectual as 
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opposed to primarily performance driven, emphasizing theoretical support (e.g., through 

asymptotic properties), under-stated, and conservative.  Statisticians tend to be reluctant 

to market their research, and their training tends to differ dramatically from that for most 

ML researchers.  Statisticians usually have a mathematics base including multivariate 

calculus, linear algebra, differential equations, and real analysis.  They then take several 

years of probability and statistics, including coverage of asymptotic theory, statistical 

sampling theory, hypothesis testing, experimental design, and many other areas.  ML 

researchers coming out of Computer Science and Engineering have much less 

background in many of these areas, but have a stronger background in signal processing, 

computing (including not just programming but also an understanding of computer 

engineering and hardware), optimization, and computational complexity. 

 

1.2 Canonical application areas 

Partly due to the different backgrounds and skill sets, the ML and Stats communities tend 

to focus on somewhat different application areas.  In general in ML, the focus is almost 

always on automatic processing of data without any focus on uncertainty quantification 

or hypothesis testing. For example, a canonical area of ML is signal processing – of 

images, videos and audio recordings.  One may want to automatically label an image with 

the objects in that image, identify items (e.g, an abandoned suitcase) specific to certain 

frames of a video, label time segments of an audio recording according to who is 

speaking, or convert audio into text.  Also, issues of compression of signals and 

reconstruction with de-noising are often of interest.  There is also a large focus on tech 

industry applications, such as recommender systems that exploit user databases and 

limited user information to make recommendations for new products the user may like.  

Other such problems include building accurate search engines, placements of ads on 

websites, choice of website content to maximize click through rates of ads, etc.  “Big 

data” in ML typically means that the number of examples (i.e. sample size) is very large 

– e.g, in the millions or more. 

 

In statistics, there has been and continues to be more focus on application areas in which 

scientific inferences are a primary goal and the over-arching emphasis is not necessarily 

on building a black box for prediction or optimization of some utility function (e.g. based 

on revenue).  For example, many statisticians work closely in collaborative projects with 

scientists, with a focus being on using data collected from new experiments or 

observational data sources to improve scientific understanding.  My own ongoing 

primary collaborative areas include genomics, neurosciences, and ecology.  In each of 

these areas, it has become common to collect high dimensional, complex and intricately 

structured data.  Often the dimensionality of the data vastly exceeds the available sample 

size, and the fundamental challenge of the statistical analysis is obtaining new insights 

from these huge data, while maintaining reproducibility/replicability and reliability of the 

results. It is crucial to not over-state the results and appropriately characterize the (often 

immense) uncertainty to avoid flooding the scientific literature with false findings.  

Experimental replicability is broadly recognized as a key challenge for science today, but 

ML does not typically think of replicability in the scientific sense.  In ML, replicability 

tends to mean that the code has been made available so that the results can be reproduced 

for the same examples, while for statisticians replicability means that another scientist 



can repeat the experiment, obtain new data, and reach the same scientific conclusions 

(meaning the statistical analysis results are similar). 

 

1.3 Dangers of ML in non-ML applications 

ML algorithms have clearly had dramatic success in a number of ML-style application 

areas, leading to understandable interest in the field and in the broader community in 

leveraging upon this success.  Particularly notable is the performance of so-called deep 

learning methods, such as convolutional neural networks.  These approaches define a 

highly complex and over-parameterized model that is built up in multiple layers, leading 

to the “deep” terminology.  Key characteristics of deep neural nets include: (i) huge 

numbers of parameters; (ii) substantial flexibility; and (iii) a multiscale specification.  

There have been dramatic developments in recent years in algorithms for fitting of deep 

neural nets to very large data sets, leading to state-of-the-art and arguably transformative 

performance in certain machine learning tasks.  Exploiting modern computational 

resources and TensorFlow, it has become straightforward to apply deep learning to a 

wide variety of data sets and settings.  Deep learning is most suited to applications in 

which (a) data have a clear spatial and/or temporal structure (as in image/video/audio 

processing); (b) huge labeled data sets are available (e.g, human labels of images via 

Mechanical Turk); (c) the interest is in a black box for prediction and there is no interest 

in statistical inferences or uncertainty quantification.   

 

In many ML application areas (a)-(c) hold, stimulating the excitement and hype related to 

deep learning.  However, in the “statistics-style” application areas that I have spent my 

career working on, it instead tends to be the case that the data are complex without such a 

clear spatial or temporal structure as one obtains in signal processing.  For example, I 

may have a very high-dimensional vector of biomarkers collected for each patient in a 

medical study, with these biomarkers including expression levels of different genes, 

single nucleotide polymorphisms (SNPs), demographic characteristics, etc.  In addition, I 

never have the luxury of having millions of labeled observations; instead I would be 

lucky to have 1,000 subjects and often I have more like 10 or 100.  Finally, scientists are 

essentially never satisfied with a black box for prediction; they focus their studies on 

improving mechanistic understanding even if better prediction (e.g., of a medical 

outcome) is a key part of the goal.  Hence, in sharp contrast to much of the hype, I find 

deep learning of no use whatsoever in the vast majority of application areas encountered 

in not only my own collaborative research but also that of most statisticians. 

 

Of course, deep learning is only one particularly popular class of ML algorithms, and 

there are many other ML algorithms that are more useful in the types of applications that 

I tend to encounter.  For example, there has been a huge emphasis in ML and in the 

associated statistical literature on developing methods for dimensionality reduction 

through feature selection, learning of lower-dimensional structure in high-dimensional 

data, and low rank approximations among others.  There has also been abundant interest 

in penalization methods that enable fitting of statistical models to high-dimensional data 

having insufficient sample size and/or labels.  I can use many of these methods in the 

applications that I work on, but there is a huge danger in doing so due to the lack of 

uncertainty quantification and reproducibility of the results.  If my collaborators were 



able to collect a new data set under similar conditions and I were to apply the same 

methods, I may obtain substantially different results.  This lack of reproducibility may be 

an intrinsic characteristic of high-dimensional low to moderate sample size data, but it is 

particularly problematic when there is nothing in the statistical results we provide to our 

scientific collaborators to warn them of the problems.  If uncertainty in inferences were 

appropriate characterized, the scientists may well decide that their inferences need to be 

made substantially less ambitious – e.g., through focusing on “coarser” scale hypotheses, 

a concept I will touch on later in this article.   

 

From my perspective statistics is increasingly contaminated by ML-style analyses applied 

to stats-style data sets and problems; this is leading to a crisis in progress and 

understanding in scientific fields, as well as in policy making.  In the subsequent sections 

of this short discussion paper, I will attempt to make some of the key issues clear through 

a couple of case studies (Section 2), a discussion of the role of UQ in scientific inferences 

(Section 3), comments on the crucial role of sampling and selection bias (Section 4), and 

a brief discussion (Section 5).  I have excluded references due to space constraints. 

 

2. Case Studies  

 

2.1 Neuroscience and brain networks  

In my (biased) view, one of the most exciting areas of scientific advancement in recent 

years relates to the understanding of the brain.  I have several collaborations that seek to 

better understand brain networks, and how these networks relate to variation among 

individuals in behavior and cognitive traits.  This problem can be attacked from different 

angles – (i) mouse electrophysiology studies: an array of electrodes are inserted into 

different regions of the mouse brain & brain activity is recorded through a wireless 

device, while also recording behavior through a video; (ii) human brain connectomes: 

using diffusion tensor and structural MRI, one estimates the locations of white matter 

fiber tracts (acting as highways for neural activity and communications) in the brain for 

each individual in a study; for these same individuals, many different traits are measured. 

 

These two application areas have a common feature with many “modern” scientific 

studies.  In particular, the number of study subjects (n) is vastly smaller than the 

dimension of the data being measured (p).  In addition, the data are complex and 

geometrically structured, and the choice of p is somewhat arbitrary. In particular, the 

measurement technology collects data at such a fine resolution that one would never use 

observations on the finest measurement scale directly in the statistical analysis, as this 

would lead to intractable computation and statistical problems.  In mouse 

electrophysiology studies conducted at Duke, each experiment on each mouse collects 

data for millions of time points or more, but there are typically only ~10 mice available.  

In brain connectome studies, we may have access to up to ~1,000 individuals, but it is 

intractable to statistically analyze the data on the individual voxel level due to (a) the 

impossibility of aligning different individuals’ brains at that resolution level; and (b) the 

absurdly massive number of pairs of voxels. 

 



Hence, in this and many other application areas, one can choose the resolution at which 

to analyze the data, and hence the value of p.  An interesting question is how would the 

typical “modern” statistician go about analyzing these data?  The primary scientific 

interest is in inferring how brain networks relate to outcome variables.  A usual approach 

would be to apply pre-processing to reduce the rich geometrically structured data into a 

simpler form amenable to automatic analysis using off-the-shelf machine learning 

algorithms.  In particular, we would like to reduce the data for individual i to a response 

variable    and a vector of predictors               .  The response variable may 

correspond to a particular trait of interest (e.g., IQ) for individual i, while     may consist 

of a binary indicator of any structural connections between the  th
 pair of brain regions, 

for                 , with   the number of regions the brain is segmented into.  

Then, one can use random forests or some other flexible regression/classification 

algorithm to predict    from   .  Such a predictive black box is interesting (if accurate) 

but one also wants to obtain interpretability.  Hence, it is important to also include 

variable selection – for example, Lasso or one of its many variants could be used to 

identify the pairs of brain regions whose connections relate to the response.  

Unfortunately, depending critically on the choice of   (and hence  ), such an approach 

will often be quite unreliable – producing many errors in practice, and leading to a 

tendency to badly over-interpret the results.  In addition, the analysis output does not 

warn the user of the lack of reliability and the substantial uncertainty in the results. 

 

2.2 Fair decisions and predictive algorithms 

There are numerous decisions that are made by various authorities based on their own 

judgment and experience; these decisions can have an enormous impact on society as a 

whole and on individuals.  Some examples include whether and how to regulate car 

emissions, patrol locations and decisions of who to stop and search in policing, 

sentencing and bail decisions in the criminal justice system, hiring decisions, salary 

levels, selection of grants to fund, and tenure decisions in academics.  Of course 

whenever there is an individual or a small group of individuals in charge of making such 

decisions, there is substantial room for the decisions to not be entirely “fair” and 

objectively based on the data at hand but instead driven in part by implicit or explicit 

biases.  Such biases may lead to under-regulation of pollution, policing that targets 

certain minority communities, more severe sentencing for individuals within those 

communities, and hiring/salary/tenure decisions driven in part by demographic factors. 

 

There has been some thought that machine learning algorithms can replace or augment 

decisions made by a judge or other authority to improve the fairness of the decisions.  

Unfortunately, off-the-shelf ML algorithms applied to existing data sources will inherit 

issues present in the data upon which they are trained.  Hence, if the data are obtained 

through a biased measurement process, then the ML algorithm-based predictions will 

inherit those biases.  For example, suppose that African American men commit no more 

crimes than Caucasian women but that police (a) assign their patrols predominately 

within African American communities; and (b) are significantly more likely to stop an 

African American man for questioning and/or search.  Then, effectively, the police are 

over-sampling African American men, and unless this sampling bias is accounted for, any 

ML algorithm will predict that an African American man is much more likely to commit 



a crime.  An “objective” ML-driven policing and sentencing strategy may then decide it 

is appropriate to target African American men, potentially even increasing the bias 

through a feedback loop.  In general, issues of selection bias are hugely important and are 

almost always ignored in the ML literature.  Selection bias is particularly problematic in 

large observational data sets, as the sampling process is often complex and unknown, and 

hence difficult to adjust for in the analysis.   

 

3. Uncertainty Quantification in Scientific Inferences  

 

One of the key disadvantages of most ML methods, which also include approaches 

developed by statisticians and published in the statistical literature, is the inability to 

quantify uncertainty.  It has become standard practice in high-dimensional data settings to 

focus on producing a point estimate – e.g., via solving an optimization problem, which 

incorporates a penalty to effectively reduce the dimensionality of the problem.  There is 

an immense literature defining different types of penalties and efficient algorithms for 

optimization in an amazing variety of cases.  Statistical articles proposing such 

approaches in leading journals tend to include asymptotic theory justifying the 

methodology.  As opposed to traditional asymptotics, which let     while fixing the 

dimensionality   of the parameter of interest    modern asymptotics attempt to mimic the 

high-dimensional nature of the problem by letting     with  , potentially even at a 

faster rate.  Under some serious restrictions (e.g., the truth is sparse, the design matrix is 

nearly orthogonal, the non-zero signals are large enough, etc), it is often possible to 

provide positive asymptotic support in terms of (a) ability to find the true low 

dimensional structure (e.g., zero coefficients); and (b) accurately estimate the parameters. 

 

Such a seemingly strong asymptotic justification can obscure the fact that the 

methodology being proposed (a) just produces a point estimate with no measure of 

uncertainty; and (b) is justified in finite samples only through some limited simulation 

study assessing error rate relative to other point estimation methods.  Consider the human 

brain connectomics case study.  If we apply such point estimation methods to obtain a 

single sparse point estimate without any notion of uncertainty, we and our scientist 

collaborators are almost fully in the dark in terms of how confident we should be in the 

results.  Obtaining perfect results when the sample size goes to infinity under overly 

idealized conditions gives us very little reassurance in the small sample sizes we are 

faced with.  In fact, we know given the huge statistical challenges that we likely have 

many false positives and negatives in our results.  If we try simple heuristics, such as 

holding some observations out and repeating the analysis, we often obtain significantly 

different results.  Unfortunately, the culture within the statistical community is overly 

focused on producing strong positive results even if this requires making unrealistic 

assumptions.  It would be substantially more impactful to have theory that really attempts 

to describe positive or negative behavior depending on realistic science-based 

assumptions.  If the problem is simply too ill-posed given the data at hand and the focus 

of inferences, then I for one would really like to know that I am attempting an impossible 

task – suggesting we must be less ambitious. 

 



There is a small and growing literature seeking to address the lack of uncertainty 

quantification in high-dimensional inferences; for example, focused on penalized 

optimization methods, such as Lasso.  There is also a Bayesian literature, which attempts 

to approximate the full posterior distribution quantifying uncertainty instead of simply 

producing a point estimate.  However, the frequentist literature on uncertainty 

quantification in high-dimensional settings is still quite young and limited in scope, while 

current Bayesian methods have key unresolved issues – (i) it is difficult to scale up 

sampling methods, such as MCMC, to very high dimensions, while fast approximations 

to posterior distributions (e.g., variational methods) can badly under-estimate uncertainty; 

(ii) even scalable sampling methods may have considerable errors in approximating 

posterior summaries quantifying uncertainties of interest; and (iii) it is not at all clear how 

well the exact posterior under a Bayesian method for high-dimensional data actually does 

quantifying uncertainty – in order to get good performance (empirically and in terms of 

asymptotic guarantees), it is often necessary to employ strong priors (e.g., favoring very 

sparse values); such priors may lead to an overly concentrated posterior distribution that 

only provides reasonable UQ under unverifiable and strong assumptions about the true 

data generating model.  Ideally, our priors would be chosen to accurately reflect the 

actual knowledge and science available in an application area – usual high-dimensional 

variable selection and/or shrinkage priors do not make much sense in this regard.  We 

should avoid putting too much information in the prior even if this means the resulting 

posterior is too vague to distinguish between competing hypotheses of interest.  It is a 

fact of life in high-dimensional settings that available data often will not be definitive -

such “negative” results should be embraced and not hidden. 

 

Given these issues, I would say that in the brain network applications and in many other 

areas (indeed most scientific areas), we currently lack the necessary tools to provide 

useful and reliable results to our scientist collaborators.  We certainly do not want to only 

provide a predictive black box, along with an estimate of the important variables.  

Instead, we crucially need tools to tell us how reliable our variable selection decisions are 

given the sample size, dimensionality, and correlation structure of the data at hand.  We 

need negative results that will tell us to be less ambitious about the types of inferences we 

are attempting – perhaps we simply cannot examine brain networks at too fine of a 

resolution given statistical limitations, and hence R should be chosen to be less than some 

bound.  How do we choose this bound in a principled manner?  We need accurate and 

interpretable measures of uncertainty in our results.  We need tools to include more 

knowledge and structure into the analysis to improve performance.  Often the data are not 

a matrix in their “native” form and by including more geometric constraints, and limiting 

ad hoc pre-processing, we may improve efficiency and insights.  Often scientists know a 

lot about constraints that should be imposed other than simple sparsity, low rank and 

other black box assumptions.  It is likely not possible in most scientific fields to make 

progress using generic machine learning methods that are agnostic to how the data are 

collected and to the background knowledge in the field.  Instead we need carefully 

thought out and targeted statistical approaches developed for scientific applications.   

 

4. Issues with Sampling, Selection Bias and Measurement Error 



There has been huge interest and hype around the potential of mining large datasets using 

ML methods to address many different types of problems.  One big issue with such 

attempts is the selection and measurement process under which such large datasets are 

collected.  Typically, in conducting statistical inferences, the focus is on estimating a 

particular parameter of interest (say  ), which represents a characteristic of some 

population   of interest.  For example,   may represent the proportion of obese 

individuals in the US population or some particular sub-group of interest, such as males 

aged 13-18.  If we had a simple random sample             from  , with   =1 

indicating the i
th

 individual in the sample is obese and   =0 otherwise, then we could 

simply estimate   using the sample average.  However, “big” datasets are essentially 

never simple random samples, but are instead collected under some complex and 

unknown measurement process.  For example, suppose instead of a simple random 

sample, you conduct a web survey in which individuals choosing to answer the survey 

indicate whether or not they are obese.  Then, the average of the resulting sample may be 

very far from the true parameter of interest even if the sample size is enormous due to 

selection bias and measurement errors.  Selection bias comes in because the individuals 

responding to the survey represent some population   that may differ very substantially 

from the population of interest   in all sorts of factors including obesity.  Perhaps   has 

significantly greater proportions of high SES Caucasian males over 40.  Measurement 

error comes in because individuals may not know their obesity status and/or may 

misreport their status.  Without having some notion of how   differs from   or the 

magnitude of measurement error, statistical estimators of   based on the available sample 

may be completely flawed to the point of being useless.  Having bigger data does not 

really solve this issue – it just decreases the statistical uncertainty in estimating the 

wrong quantity (in this case, an attribute of   instead of   . 

  

The issue of selection bias and measurement error in estimating a simple quantity such as 

the proportion of obese individuals is relatively obvious, but such issues are common 

broadly in much more complex settings.  Consider, for example, the recent strong interest 

in using medical records data to improve health care practice and medical knowledge.  

The “old school” way to conduct a medical study comes in one of several flavors.  The 

gold standard is the randomized clinical trial – in this case, there are a variety of 

treatments that can be given to a patient having some condition and patients are 

randomized to treatment groups.  This randomization significantly reduces issues with 

selection bias and unmeasured confounding making treatment efficacy comparisons 

relatively straightforward.  However, randomized clinical trials are very expensive and 

can only be conducted in specialized settings in which there is a new treatment of 

interest, but not yet evidence that the treatment is better than a previous treatment.  

Hence, it is more common to conduct observational epidemiology studies, with the most 

common design being the case-control study.  Such studies collect data on a sample of 

cases (e.g., individuals having some disease or condition of interest) along with a set of 

controls that are chosen to be similar to the cases except they do not have the disease.  

The typical focus of inference is the exposure odds ratio obtained from a logistic 

regression model, adjusting for covariates.  Epidemiologists tend to think carefully about 

the covariates to adjust for and try to limit the impact of unmeasured confounders.  When 



the covariates have a very different distribution for cases and controls, propensity score 

matching or adjustment methods are often recommended. 

 

In general, medical records data are automatically collected by a medical system, and it is 

typically very difficult to retrospectively ascertain based on the records the selection 

mechanism by which patients end up in the database.  For example, I have been recently 

involved in projects focusing on analyzing medical records data collected at Duke 

including detailed monitoring information (e.g., on blood pressure) while the patient is in 

the operating room, along with information on the type of procedure and some limited 

additional information on the patient and their stay in the hospital.   Suppose that the   of 

interest is the increase in risk of morbidity following surgery for patients having a high 

A1C value relative to patients with a low A1C value, and that the population of interest   

is all patients having non-cardiac elective surgeries.  Estimating   based on the available 

Duke medical records database, we encounter multiple challenging selection bias issues.  

These include that Duke is in general a referral hospital, and hence may not obtain an 

“average” selection of patients even from among our region of North Carolina.  There 

may be less routine surgeries and a mix of patients having more extreme health 

conditions at Duke than other health centers.  In addition, physicians are already applying 

some process in selecting patients eligible for surgery.  Patient with indicators of 

metabolic syndrome (high A1C is one indicator) may be recommended to delay surgery 

until symptoms of the syndrome are reduced.  It is very difficult to properly think through 

and statistically adjust for all of these issues retrospectively using a database that has 

been collected over an extended period of time using a varying, complex and unknown 

selection process.  The resulting inferences may be highly unreliable and biased. 

 

My goal in presenting these issues is not to rule out the use of medical records and other 

big data sets (e.g., from the web) to conduct scientific inferences and inform policy.  

However, it is very important to keep in mind the enormous impact that selection bias 

and measurement errors can have on statistical inferences.  Big data that are subject to 

substantial selection bias and measurement errors, without information in the data about 

the magnitude, sources and types of errors, should not be used to inform important 

decisions without substantial care and skepticism.  Currently many ML researchers are 

charging ahead aggressively without a full knowledge of such issues.  The fair prediction 

algorithms case study provides another example of the dangers of such a practice.  It is 

crucial to at least be aware of such issues and attempt to the extent possible to adjust for 

them, and include as a crucial component of uncertainty quantification the impact of 

selection and measurement error. 

 

5. Discussion  

 

In this short discussion article, I have attempted to provide a brief overview of what I see 

as the role of statistics in the era of big data – the theme of this special journal issue.  I 

view myself as a statistician with an active interest and research agenda focused on 

developing and applying machine learning methods.  My own research tends to be 

fundamentally application-driven, and I want to develop practically useful methods that 

can lead to new scientific insights and that can ideally inform policy.  I work closely with 



scientists in a wide variety of research areas ranging from neuroscience to genomics to 

epidemiology to ecology.  In scientific applications collecting high-dimensional and 

complex data, there is a fundamental danger to applying current ML-style statistical 

methods.  These include the lack of uncertainty quantification, the inability to provide a 

warning that we are being too ambitious and should attempt “coarser scale” inferences, 

and the lack of accounting for selection bias and the sampling frame under which the data 

were developed.  “Modern” statistical theory and methods essentially take a ML mindset 

to attacking high-dimensional data problems, and hence also do not currently provide 

much in the way of useful solutions to these pressing problems.  I am hoping that this 

article and the corresponding discussions in this special issue stimulate much more of a 

focus on developing statistically well grounded methodology for reliably and 

reproducibly conducting scientific inferences and making policies on the basis of “big 

data.”  Such developments will likely require a close collaboration between the Stats and 

ML-communities and mindsets.  The emerging field of data science provides a key 

opportunity to forge a new approach for analyzing and interpreting large and complex 

data merging multiple fields. 
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