
2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2825996, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

DeepPolyA: a convolutional neural
network approach for polyadenylation
site prediction
XIN GAO1,*, JIE ZHANG2,*, ZHI WEI1, (Senior Member, IEEE), and HAKON HAKONARSON3,4
1Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
2Adobe Systems, San Jose, CA 95110, USA
3The Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
4Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19102, USA
*Both authors contributed equally to this work

Corresponding author: Zhi Wei (zhiwei@njit.edu)

ABSTRACT Polyadenylation (Poly(A)) plays crucial roles in gene regulation, especially in messenger
RNA metabolism, protein diversification and protein localization. Accurate prediction of polyadenylation
sites and identification of motifs that controlling polyadenylation are fundamental for interpreting the
patterns of gene expression, improving the accuracy of genome annotation and comprehending the
mechanisms that governing gene regulation. Despite considerable advances in using machine learning
techniques for this problem, its efficiency is still limited by the lack of experiences and domain knowledge
to carefully design and generate useful features, especially for plants. With the increasing availability
of extensive genomic datasets and leading computational techniques, deep learning methods, especially
convolutional neural networks, have been applied to automatically identify and understand gene regulation
directly from gene sequences and predict unknown sequence profiles. Here, we present DeepPolyA, a
new deep convolutional neural network-based approach, to predict polyadenylation sites from the plant
Arabidopsis thaliana gene sequences. We investigate various deep neural network architectures and evaluate
their performance against classical machine learning algorithms and several popular deep learning models.
Experimental results demonstrate that DeepPolyA is substantially better than competing methods regarding
various performance metrics. We further visualize the learned motifs of DeepPolyA to provide insights of
our model and learned polyadenylation signals.

INDEX TERMS Polyadenylation prediction, deep learning, multi-layer neural network, motif discovery,
genomics and machine learning algorithms.

I. INTRODUCTION
Polyadenylation is a vital process that occurs after gene
transcription and produces mature messenger RNA (mRNA)
for translation by synthesizing the polyadenylation tail at
the RNA’s 3’-end [1]. Recent discoveries have revealed
that the 3’-end of most protein-coding and long-noncoding
RNAs (lncRNAs; noncoding transcripts of 200 nucleotides
or longer) is cleaved and polyadenylated [2]. In addition,
alternative polyadenylation (APA) is prevalent in all eukary-
otic species and plays critical roles in gene regulation, espe-
cially in the processes such as mRNA metabolism, protein
diversification and protein localization [3]. Specifically, in
addition to conducing to the intricacy of transcriptome by
producing isoforms of distinct properties, it can regulate the
translation efficiency, function, stability and localization of

target RNAs [2], [4]. The polyadenylation site, also called
the poly(A) site, is defined by surrounding RNA segments
and conserved across metazoans with some minor variations
in mammals [1]–[3]. Accurate prediction of poly(A) sites and
identification of motifs that controlling them are fundamental
for interpreting the patterns of gene expression, improving
the accuracy of genome annotation and comprehending the
mechanisms that governing gene regulation [5], [6].

However, this remains a challenging problem, especially
for plants, to precisely identify the poly(A) signals and pre-
dict poly(A) sites. Unlike animals, plants possess much less
conserved signal sequences in such regions [7]. For example,
the upstream element signal “AAUAAA” (or “AATAAA”
in DNA sequence), which has been identified as the best
signal in plants, can only be found in approximately 10%

VOLUME 4, 2016 1



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2825996, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

of Arabidopsis genes [8], [9]. In contrast, the same signal is
utilized by 50% of human genes [10]. The variable structures
composed of functional motifs [11], [12] also increase the
difficulty in identifying poly(A) sites. In addition, because
of the epidemic presence of alternative polyadenylation in
intron and coding sequence (CDS), the poly(A) sites may
locate in the genomic regions other than 3’ untranslated
region (3’-UTR). Thus, an ideal predictive model should
be powerful and robust enough to overcome all barriers as
mentioned above to achieve decent performance.

Quite a few methods have been proposed to predict
poly(A) sites across diverse species. Among these studies,
most of them focus on human sequences. Akhtar et al.
proposed POLYAR, which applied the linear discriminant
function (LDF) to classify poly(A) sites into three groups
with distinct poly(A) signals [13]. A stand-alone program
named polya_svm was developed for poly(A) sites prediction
using the 15 cis-regulatory elements based on a Support
Vector Machine (SVM) model [14]. Chang et al. proposed
a predictive model of two SVMs for features extraction
and poly(A) sites prediction [15]. All these three studies
are conducted based on human genomic sequences dataset
polya_DB1 [16]. More recently, Xie et al. proposed a novel
machine-learning method by marrying generative learning
(hidden Markov models) and discriminative learning (sup-
port vector machines) [17]. Methods for analyzing other
species, such as yeast and plants, were also proposed. Graber
et al. proposed a contextual model to predict yeast poly(A)
sites via a hidden Markov model (HMM) [18]. In view of
the features of plant poly(A) signals, Ji et al. proposed a
generalized hidden Markov model (GHMM) to effectively
predict the poly(A) sites in Arabidopsis genes [7]. It yielded
both high specificity and sensitivity in the testing datasets
[8]. Later, the model was updated and re-trained for rice [19].
Recently, Ji et al. proposed a user-friendly framework called
poly(A) site classifier (PAC) for predicting poly(A) sites in
Arabidopsis genes [20]. PAC demonstrates the best perfor-
mance with high specificity and sensitivity in the real data
experiments. In addition, sub-models, like feature generation,
feature selection and classification in PAC, could be replaced
and updated, making it adaptable to different datasets [20].

Although methods mentioned above could achieve decent
performance in solving the specific problem, researchers are
required to carefully design and generate useful features
based on their experiences and domain knowledge. Fea-
ture generation and extraction methods, including K-gram
pattern, Z-curve, and position-specific scoring matrix, are
critical components for previous SVM-based or HMM-based
methods [7], [20], and the power of the method could be
significantly reduced due to an inappropriate feature genera-
tion procedure. Thus, special efforts are needed to apply one
method to another species.

With the increasing availability of extensive genomic
datasets and leading computational techniques, deep-

1http://polya.umdnj.edu/PolyA_DB1/

learning-based methods have been proposed to automatically
identify and understand regulatory regions of the genome
directly from DNA sequences, and predict the profile of
unknown sequences based on learned knowledge [21]. Deep
learning, in general, refers to methods that learn a hierarchi-
cal representation and detect complex patterns from feature-
rich datasets through multiple layers of abstraction.

Amongst a set of deep neural networks, convolutional
neural networks (CNN) are extensively employed in both
academia and industry. It can achieve superb results in com-
puter vision, video analysis and speech recognition for its
efficient feature extraction capability [22], [23]. CNN has
also been applied as the premier model in piles of genomic
problems, for example, motif discovery [24], HLA class I-
peptide binding prediction [25], and identifying functional
effects of noncoding variants [26], [27]. Zeng et al. proposed
a series of CNN architectures to identify DNA sequence
binding with a large compendium of transcription factor
datasets [28]. Basset, a powerful computational tool, was
proposed to apply CNN to discover the functional activity
of genomic sequences [29]. Zhou et al. applied CNN model
to capture the motif signals from the sequences around the
target residues [30]. DeepSEA is a recently developed algo-
rithm that utilizes CNN for predicting chromatin effects of
sequence alterations with single-nucleotide sensitivity [26].
DanQ, a hybrid framework that combines convolutional and
recurrent neural networks, further improves the performance
of DeepSEA [27]. CNN models have demonstrated their
advantages in automatically learning hierarchical feature rep-
resentations of raw input data in previous studies. Their
successes motivate us to develop novel CNN-based methods
to automatically learn poly(A)-related features, signals, and
patterns for predicting poly(A) sites.

In this paper, we propose a computational method, Deep-
PolyA, based on deep CNN for predicting poly(A) sites
in Arabidopsis species. DeepPolyA automatically combines
the feature extraction and model training stages, and learns
predictive DNA patterns and motifs in a data-driven manner.
In this work, we have made four contributions:

1) We propose a CNN-based model named DeepPolyA
2 to predict poly(A) sites in Arabidopsis. To the best
of our knowledge, this is the first deep learning based
approach to this research issue.

2) We show in this paper that DeepPolyA could automat-
ically learn poly(A)-related motifs without involving
any manual feature engineering. The model first learns
low-layer features from DNA sequences via lower con-
volutional layers, and then forms high-level, sophisti-
cated features through upper nonlinear transformation
layers.

3) DeepPolyA outperforms not only the conventional ma-
chine learning methods including Support Vector Ma-
chine (SVM), Bayesian Networks and Random Forest,

2DeepPolyA is freely available on Github: https://github.com/stella-
gao/DeepPolyA

2 VOLUME 4, 2016



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2825996, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

but also the existing deep learning models including
DanQ [27], DeepSEA [26], and VGG [31] models.

4) We also investigate the performance of alternative deep
learning architectures in predicting poly(A) signals,
including the recurrent neural network (RNN) model
and the combination of CNN and RNN models (CNN-
RNN).

II. METHODS
A. BACKGROUND
Recent studies have demonstrated that deep learning can
solve genomic problems in a more accurate way than tradi-
tional machine learning approaches. Recent works based on
CNN allowed training directly on genomic sequences rather
than extracting features beforehand [24], [26], [29]. In CNN,
the number of model parameters is significantly decreased
compared to fully connected neural networks via convolution
operation and parameter sharing. In addition, convolutional
layers could extract high-level features from the raw se-
quences, which has the similar function to the traditional
position-weight matrices (PWMs) [32]. Neurons in a fully
connected layer have full connections to all activations in the
previous layer, while neurons in a convolutional layer share
parameters in a particular feature map. The most relevant
motifs are automatically inferred by the deeper layers during
model training, and can be visualized and analyzed through
heatmaps and sequence logos [33].

B. CONSTRUCTION OF DEEPPOLYA MODEL
For the poly(A) site prediction problem, we illustrate the
architecture of our DeepPolyA model in Figure 1. It consists
of two convolutional layers and one max-pooling layer to
identify predictive motifs from the context of DNA sequences
and one fully connected hidden layers with a ReLU activation
function to model motif interactions [21]. Techniques, like
dropout [34], batch normalization [35] and early stopping,
are employed to prevent overfitting. Table 1 shows the speci-
fication of each layer. The hyperparameters (e.g., convolution
kernel size, number of layers, dropout rate, etc.) are selected
based on the performance on a validation dataset. As shown
in Figure 1 and Table 1, DeepPolyA takes a 162-nucleotide
(nt) length DNA sequence as input with the position 131 as
the target poly(A) site. The raw DNA sequence is encoded
into a bit matrix using one-hot encoding method. We encode
the entire DNA nucleotides sequentially, where each nu-
cleotide is encoded to a four-element binary vector with only
one element set to one and others set to zero: A=(1,0,0,0),
C=(0,1,0,0), G=(0,0,1,0), and T=(0,0,0,1). A 162-nt DNA
sequence can then be represented as an encoded 4 × 162 bit
matrix, with columns corresponding to A, C, G and T. With
one-hot encoding method, we can preserve the vital position
information of each nucleotide in DNA sequences.

As shown in Table 1, there are 16 and 64 kernels in
the first and second convolutional layers, respectively. Note
that the architecture parameters (e.g., the kernel size, the
number of layers and the dropout rate) are carefully selected

Convolution

One-hot encoding

1st convolution layer

Fully connected 
layers

Output layer Poly(A)

A C T C G A A T

Convolution + Pooling

2nd convolution layer

Flatten

Non
poly(A)

FIGURE 1: Overview of the neural network architecture of
DeepPolyA.

TABLE 1: DeepPolyA architecture and hyperparameters.
The size column describes the kernel size of the convolu-
tional layer, the window size of the max-pooling layer and
the size of the fully connected layer.

Layer No. Layer Type Size Output

0 INPUT - 4*162
1 CONV 16*4*8 16*157
2 RELU - 16*157
3 DROPOUT - 16*157
4 CONV 64*4*6 64*152
5 RELU - 64*152
6 POOL 4*2 64*76
7 DROPOUT - 64*76
8 FC 64 64
9 DROPOUT - 64
10 FC 1 1
11 SIGMOID 1 1

based on the optimization performance on the validation set.
By applying several convolutional and pooling operations,
CNN could automatically extract high-level features from
high-dimensional input data while making the number of
model weights manageable. Model parameters are randomly
initialized as suggested by Glorot et al. [36]. Model hyper-
parameters (e.g., learning rate and the number of epochs)
are optimized based on the performance of the validation
data. Note that validation loss is measured after each training
epoch to monitor convergence. Dropout (dropout rate 40%;

VOLUME 4, 2016 3



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2825996, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

i.e., randomly drop 40% neurons in each iteration) and batch
normalization [35] are used for additional regularization.
Note that dropout is not suitable to be put in the last fully-
connected layer, because some significant features may be
lost. Thus, we only apply dropout between the hidden layers.

The first convolutional layer operates directly on the en-
coded bit matrix, where the kernels scan for features across
the matrix, compute the activation of multiple kernels at
every position within the DNA sequence window and gen-
erate output matrices. To reduce dimensionality and accel-
erate convergence, max-pooling layer and batch normaliza-
tion layer are applied subsequently, where the pooling size
and stride size are both set to 2 to prevent any overlap. A
second convolutional layer is added to model the interactions
between motifs generated by previous layers and obtain high-
level features and abstractions. The output of the convolu-
tional layers is then flattened into vectors and fed to the
fully connected layer. Finally, the outputs are converted into
probabilities via “sigmoid” function.

The value of the proposed deep learning based method is
two-fold. Firstly, classical machine learning methods require
researchers’ prior knowledge and experience to predefine
and cultivate features by counting or summarizing known
genomic patterns (e.g., regulatory variants, k-mer and struc-
tural elements). In contrast, our method can automatically
learn the problem-related knowledge and extract high-level
features from the raw sequence data. Therefore our approach
could be readily applied to solve the same poly(A) prediction
problem in different species. Secondly, the proposed method
can capture nonlinear dependencies and interactions among
the detected patterns and features at multiple genomic scales.
It is challenging for even experienced researchers to design
a schema of features including all potential interactions of
different sub-signals and low-level features. Thus, it can
yield better performance as demonstrated in the real data
experiments.

III. EXPERIMENTS AND RESULTS
In this section, we describe the experimental environment,
platform settings used for building models as well as the eval-
uation performance of the proposed model compared with
the state-of-the-art approaches. The experiments show that
DeepPolyA yields significantly more accurate predictions
than existing baseline machine learning methods and other
popular deep learning methods.

A. DATA SOURCE AND DATA PREPROCESSING
A large number of training samples are usually required
to train deep neural networks in order to learn informative
features and high-level representations from scratch. As a
general guideline, the number of training samples should
be at least as many as that of model parameters, although
overfitting can be reduced through special architectures and
model regularization techniques [37]. The same Arabidopsis
datasets chosen from the baseline PAC’s literature [8] were
utilized for our experiments. Positive samples are randomly

sampled from 16K dataset, which has over 16,000 Ara-
bidopsis 3’-UTRs plus downstream sequences3. Following
Ji et al [20], we selected the sequences, whose lengths are
longer than 162 nt, for further analysis. As a result, 13427
positive sequences, which are equally distributed among
five chromosomes (chr 1-5), are obtained. Negative samples
are generated by randomly sampling sequences from the
Arabidopsis Information Resources (TAIR) database4, which
consists of unequal-length introns, coding sequences and
5’-UTR sequences. The extracted negative samples contain
3222 introns, 9704 coding sequences and 501 5’-UTRs of
Arabidopsis DNA sequences. Note that it maintains the same
distribution of sequences as in the TAIR dataset and con-
tributes 13427 negative sequences in total. As presented in
[20], each sequence is then trimmed into a sequence of size
162 nt, containing 131 nt upstream and 31 nt downstream of
a poly(A) site. After preprocessing, all experimental samples
are 162nt-long genomic sequences.

B. MODEL TRAINING AND TESTING
We divide the whole procedure of model training and testing
into three steps: Firstly, we configure and apply different
hyperparameters to train the models. Secondly, during the
training process, we aim to discover the parameters (also
called weights) that can minimize the objective function,
which is challenging due to the high dimensionality and non-
convex. We tune the hyperparameters to find out the weights
with the best performance on the validation set for the model.
Finally, the model is evaluated against other machine learning
models and popular deep learning models on the test set. The
training performance significantly relies on parameter initial-
ization, learning rate, and batch size of stochastic gradient
descent. In our proposed model, model weights are initialized
and sampled from a truncated normal distribution centered on
zero with the square root of the average number of both the
input units and the output units of the input layer [36], [38].
Since the model aims to classify the input into two categories:
sequences with poly(A) sites and sequences without poly(A)
sites, it is a two-class logistic regression problem. Thus, we
prefer to adopt a sigmoid function rather than a softmax func-
tion that is used for a multiclass problem. Advanced adaptive
learning rate methods, such as RMSprop, Adagrad [39], and
Adam [40], are also applied to reduce the effect of initial
and potentially sub-optimal learning rate for model training.
Based on the preliminary experiments, the hyperparameters,
such as a standard stochastic gradient descent optimizer, a
learning rate of 0.001, a batch size of 128 and a momentum
rate of 0.9, are appropriate for our models. Regularization,
ensemble learning and cross-validated evaluation are always
used for reducing overfitting. To reduce overfitting, we adopt
the most common regularization technique – dropout with a
dropout rate of 40%. Another popular method we employed
is “early stopping”, which means the training process will

3http://www.users.miamioh.edu/liq/links.html
4http://www.arabidopsis.org/

4 VOLUME 4, 2016



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2825996, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

be stopped automatically at the best point. Thus, the latest
parameters that perform best on the validation set are chosen
as soon as the training process stopped.

We implement the proposed models with python, Keras
(Version 2.0.8) [41], and Theano (Version 0.9.0) [42]. Keras
[41] is a powerful python library which can run on top of
Theano [42] or TensorFlow [43]. It provides highly modu-
larized APIs for building and training deep learning models.
We configure the experiment environment and run the python
codes on a Linux server with 4 Intel E5-2650 CPUs, 256
GB memory and 4 Nvidia GeForce GTX 1080 GPUs (2560
NVIDIA CUDA cores, 8 GB GDDR5X memory and 10Gbps
memory speed).

C. PREDICTION ASSESSMENT
To evaluate competing methods, we adopt several metrics
including sensitivity (Sn), specificity (Sp), overall accuracy
(ACC), Matthew’s correlation coefficient (MCC), area un-
der the receiver operating characteristic curve (AUC) and
F-score. Let TP, TN, FP and FN represent true positive,
true negative, false positive and false negative, respectively.
As shown in Equation (1)–(6), we consider the sequences
containing poly(A) sites as the positive samples and the
sequences without poly(A) sites as the negative samples, and
compute all the metrics accordingly. Sensitivity (Sn), also
called recall, measures the proportion of the true positives
that are correctly predicted. Specificity (Sp) measures the
proportion of the true negatives that are correctly predicted.
As a common metric in classification, the overall accuracy
(ACC) is used to describe the closeness of a measurement
to the true value and it fails when in the presence of highly
imbalanced classes. MCC can describe the confusion matrix
of TP, TN, FP and FN by a single number. MCC essentially
is a correlation coefficient between the observed and pre-
dicted binary classifications, which could also be seen as a
correlation coefficient between training and testing datasets.
In addition, we adopt AUC and F-score to evaluate the
performance and usability of all the models.

Sn =
TP

TP + FN
(1)

Sp =
TN

TN + FP
(2)

Accuracy =
TP + TN

TN + FP + TP + FN
(3)

MCC =
TP × TN − FP × FN√

(TP + FP )(TN + FN)(TN + FP )(TP + FN)
(4)

AUC =
1

2
(Sn + Sp) (5)

Fscore =
2TP

2TP + FP + FN
(6)

D. EXPERIMENTS ON MODEL COMPARISON
We compare the proposed method with state-of-the-art
methods including Support Vector Machine (PAC.SVM),
Bayesian Networks (PAC.BN), Random Forest (PAC.RF)
[20] as well as other deep neural network models such
as recurrent neural network (RNN), hybrid convolutional
and recurrent neural network (CNN-RNN). Note that the
architecture and parameters for RNN and CNN-RNN are
tuned via validation set, which is exactly the same as for our
proposed method. Figure 2(a) shows a graphical illustration
of the RNN model, including two Long Short-Term Memory
(LSTM) layers and one fully connected layer. Both LSTM
layers contain 16 neurons and the fully connected layer
contains 64 neurons. The dropout rate of each LSTM is set
to 0.2. Figure 2(b) shows a graphical illustration of the CNN-
RNN model, which is built with two convolutional layers,
one max-pooling layer, one LSTM layer followed by one
fully connected layer. To build a CNN-RNN model, we add
one LSTM layer to DeepPolyA model between its second
convolutional layer and the final fully connected layer. We
also consider some other popular deep learning models (e.g.,
DeepSEA [26], DanQ [27], VGG [31]), fit them into our
poly(A) problem, and compare them with our newly pro-
posed CNN architecture (DeepPolyA).

For the traditional machine learning approaches (PAC.SVM,
PSC.NB and PAC.RF), we follow Ji et al. and extract features
from DNA sequences, including 1) the frequency of some
nearby nucleotides; 2) Hexamer weight of NUE region;
3) PSSM-based CIS score of NUE region or CS region;
4) components of Z-curve [20]. After feature extraction,
we train the model based on different algorithms with the
default parameter settings in Weka [44]. It should be noted
that, as shown by the preliminary experiments, reasonable
choices of the parameters (e.g. different type of kernels for
Support Vector Machine, different number of decision trees
for Random Forest) yield similar prediction results.

We divide the entire dataset into training, validation and
testing sets. The training set is utilized to learn weights
and parameters of the models, which are then evaluated on
the validation set. The best model is selected and tested
on the testing set to evaluate the model performance. Note
that the data are partitioned on chromosome level and there
is no overlap between training and testing data (i.e., three
chromosomes for training, one for validation and one for
testing). In each run, we randomly pick one chromosome as
validation set and one chromosome as testing set, and leave
the rest three chromosomes as the training set. We repeat
the experiments several times to demonstrate that our model
could achieve better performance, and it is not obtained by
chance. All the hyperparameters of above-mentioned com-
peting methods were selected based on the performance on
the validation data. The model performance is then evaluated
on the testing set.

As shown in Figure 3, we repeat the experiment 5 times
and show the prediction performance based on testing data.
DeepPolyA achieves remarkable and stable performance in

VOLUME 4, 2016 5



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2825996, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

One-hot encoding

A
C

T
C

G
A

A
T 1st recurrent layer 2nd recurrent layer

Fully connected 
layers

Output layer

 Poly(A)

Non
poly(A)

(a) RNN model

Convolution

One-hot encoding

1st convolution layer

Convolution 
+ Pooling

2nd convolution layer Recurrent layer

Fully connected 
layers

Output layer

 Poly(A)

Non
poly(A)

A
C

T
C

G
A

A
T

(b) CNN-RNN model

FIGURE 2: RNN and CNN-RNN model architectures.

classification on the testing set with an accuracy of 91.28%,
a recall of 93.01%, a specificity of 89.51%, a Matthews
correlation coefficient of 82.60%, an area under a receiver
operating characteristic (ROC) curve of 97.06% and an F-
measure of 91.51%, which outperforms all other methods
among all metrics. The two methods next to DeepPolyA are
DanQ and DeepSEA.

The RNN method can get a high performance sometimes,
but the result fluctuates according to different training and
testing set. We can also discover that the performance of
three baseline machine learning methods is always worse
than deep learning methods. Overall, the results indicate that
DeepPolyA can automatically learn high-level features from
the DNA sequences and yields more accurate predictions
than classical approaches and other popular deep learning
models. A major advantage of our model compared to pre-
vious methods is its convolutional architecture, which allows
for discovering predictive motifs in larger DNA sequence
contexts, as well as for capturing complex patterns around
poly(A) sites.

Figure 4 shows the area under receiver operating character-
istics (ROC curve) and the area under precision-recall curve
(PR curve) for deep neural network based methods. We can
find from the curves that DeepPolyA demonstrates the best
performance. The following methods are DanQ, DeepSEA,
CNN-RNN, VGG and RNN.

We further investigate the impacts of the length of input

sequences by varying the input DNA sequence length from
54 nt to 216 nt. As shown in Figure 5, the performance of the
proposed model increases when sequence length increases
from 54 nt to 162 nt, and it keeps the same from 162 nt to
216 nt. Note that the performance will not increase if we fur-
ther improve the input sequence length. These observations
suggest that the sequences around poly(A) sites do contain
the poly(A) signals and thus an appropriate input sequence
length is critical for predicting the poly(A) sites (i.e., shorter
sequence will miss some signals and longer sequences will
include lots of noise).

We also evaluate the performance of our model in different
genomic contexts. As shown in Figure 6, the model yields
the best performance in CDS, and the worst performance in
intron, suggesting that poly(A) sites located in introns may
have less conserved signals and therefore are harder to detect.

E. VISUALIZATION OF LEARNED MOTIFS

Model visualization is critical in computational biology. Sev-
eral approaches have been proposed to interpret the param-
eters of neural networks and to obtain insights into learned
features. Similar to conventional position weight matrices
(PWMs), gene sequence motifs can be recognized by the
filters of the first convolutional layer in DeepPolyA and
visualized as sequence logos. Traditional approaches for
visualizing convolutional filters could be generally classi-
fied into alignment-based and optimization-based methods.

6 VOLUME 4, 2016



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2825996, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Sn Sp F1

AUC MCC ACC
D

ee
pP

ol
yA

R
N

N
C

N
N

−
R

N
N

D
an

Q
D

ee
pS

E
A

V
G

G
PA

C
.S

V
M

PA
C

.B
N

PA
C

.R
F

D
ee

pP
ol

yA
R

N
N

C
N

N
−

R
N

N
D

an
Q

D
ee

pS
E

A
V

G
G

PA
C

.S
V

M
PA

C
.B

N
PA

C
.R

F

D
ee

pP
ol

yA
R

N
N

C
N

N
−

R
N

N
D

an
Q

D
ee

pS
E

A
V

G
G

PA
C

.S
V

M
PA

C
.B

N
PA

C
.R

F

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Methods

V
al

ue
s

FIGURE 3: Prediction performance of DeepPolyA com-
paring with other methods. Performance is measured using
boxplot by six evaluation metrics, including the area under
the receiver-operating characteristic curve (AUC), accuracy
(ACC), recall (Sn), specificity (Sp), Matthew’s correlation
coefficient (MCC), and F-score (F1). Three constructed deep
neural network methods (including DeepPolyA), three re-
ferred popular deep learning methods and three baseline
methods are considered. The lower and upper hinges are the
25 and 75 quartiles, respectively.

Alignment-based approaches [24], [27], [29] align DNA se-
quence fragments that maximize the activation of a certain
convolutional filter and visualize the outcome alignments as
sequence logos using WebLogo [45]. Optimization-based ap-
proaches [46] optimize the input gene sequence to maximize
the activation of a certain convolutional filter by gradient
descent. Following the alignment-based method, we accu-
mulate the motifs for the total 16 filters in DeepPolyA and
assess them through comparing against JASPAR database
[47], which has abundant known motifs and is widely ap-
plied as standard representation of transcription factor DNA-
binding preferences. We utilize a tool named TOMTOM with
predefined statistical measure of motif-motif similarity [48],
[49] to compare the motifs detected by DeepPolyA with those
in JASPAR database and present an alignment for each pair of
considerable matches. Our visualization results of extracted
motifs and comparison with JASPAR are shown in Figure 7.
The second motif among them has the similar format with
“AATAAA”, which is a significant upstream element signal
for poly(A) sites. Moreover, Figure 8 illustrates the saliency

map [50] visualization of the entire testing DNA sequence.
We can discover that the signal is strong around the poly(A)
site. As shown in Figure 8, the strongest signal is at position
131 nt, which is exactly the position of the target poly(A)
sites in positive samples.

IV. CONCLUSION AND FUTURE WORKS
In this paper, we proposed DeepPolyA, a deep convolutional
neural network approach, to automatically and accurately
modeling the poly(A) signals. Using the plant Arabidop-
sis thaliana gene sequences datasets with one-hot encoding
method, we trained several competing deep learning mod-
els with various architectures and compared the classifica-
tion performance with baseline machine learning methods
through several significant metrics. The evaluation results
show that DeepPolyA outperforms all the competing meth-
ods without involving extensive manual feature engineering.
We visualized the learned motifs of the first convolutional
layer using TOMTOM against the JASPAR motif datasets
to demonstrate that DeepPolyA can automatically extract
poly(A) signals and features from the raw sequence data.

REFERENCES
[1] D. Xing and Q. Q. Li, “Alternative polyadenylation and gene expression

regulation in plants,” Wiley Interdisciplinary Reviews: RNA, vol. 2, no. 3,
pp. 445–458, 2011.

[2] R. Elkon, A. P. Ugalde, and R. Agami, “Alternative cleavage and
polyadenylation: extent, regulation and function,” Nature Reviews Genet-
ics, vol. 14, no. 7, pp. 496–506, 2013.

[3] B. Tian and J. L. Manley, “Alternative polyadenylation of mrna precur-
sors,” Nature Reviews Molecular Cell Biology, 2016.

[4] X. Liu, M. Hoque, M. Larochelle, J.-F. Lemay, N. Yurko, J. L. Manley,
F. Bachand, and B. Tian, “Comparative analysis of alternative polyadeny-
lation in s. cerevisiae and s. pombe,” Genome research, vol. 27, no. 10, pp.
1685–1695, 2017.

[5] S. Zhang, J. Han, J. Liu, J. Zheng, and R. Liu, “An improved poly(a)
motifs recognition method based on decision level fusion,” Computational
biology and chemistry, vol. 54, pp. 49–56, 2015.

[6] Y. Liu, P. Wu, J. Zhou, T. L. Johnson-Pais, Z. Lai, W. H. Chowdhury,
R. Rodriguez, and Y. Chen, “Xbseq2: a fast and accurate quantification of
differential expression and differential polyadenylation,” BMC bioinfor-
matics, vol. 18, no. 11, p. 384, 2017.

[7] G. Ji, J. Zheng, Y. Shen, X. Wu, R. Jiang, Y. Lin, J. C. Loke, K. M. Davis,
G. J. Reese, and Q. Q. Li, “Predictive modeling of plant messenger rna
polyadenylation sites,” BMC bioinformatics, vol. 8, no. 1, p. 43, 2007.

[8] J. C. Loke, E. A. Stahlberg, D. G. Strenski, B. J. Haas, P. C. Wood, and
Q. Q. Li, “Compilation of mrna polyadenylation signals in arabidopsis
revealed a new signal element and potential secondary structures,” Plant
physiology, vol. 138, no. 3, pp. 1457–1468, 2005.

[9] Q. Li and A. G. Hunt, “A near-upstream element in a plant polyadenylation
signal consists of more than six nucleotides,” Plant molecular biology,
vol. 28, no. 5, pp. 927–934, 1995.

[10] J. Hu, C. S. Lutz, J. Wilusz, and B. Tian, “Bioinformatic identification of
candidate cis-regulatory elements involved in human mrna polyadenyla-
tion,” Rna, vol. 11, no. 10, pp. 1485–1493, 2005.

[11] X. Wu, M. Liu, B. Downie, C. Liang, G. Ji, Q. Q. Li, and A. G.
Hunt, “Genome-wide landscape of polyadenylation in arabidopsis pro-
vides evidence for extensive alternative polyadenylation,” Proceedings of
the National Academy of Sciences, vol. 108, no. 30, pp. 12 533–12 538,
2011.

[12] V. Solovyev and R. Umarov, “Prediction of prokaryotic and eukaryotic
promoters using convolutional deep learning neural networks,” arXiv
preprint arXiv:1610.00121, 2016.

[13] M. N. Akhtar, S. A. Bukhari, Z. Fazal, R. Qamar, and I. A. Shahmuradov,
“Polyar, a new computer program for prediction of poly(a) sites in human
sequences,” Bmc Genomics, vol. 11, no. 1, p. 646, 2010.

VOLUME 4, 2016 7



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2825996, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) ROC curves (b) Precision-Recall curves

FIGURE 4: ROC curves and Precision-Recall curves of the prediction performance among all the deep learning methods.

0.900

0.925

0.950

0.975

1.000

54 nt 108 nt 162 nt 216 nt
Sequence Lengths

A
U

C

FIGURE 5: Prediction performance of DeepPolyA for DNA
sequence windows of length 54 nt to 216 nt.

[14] Y. Cheng, R. M. Miura, and B. Tian, “Prediction of mrna polyadenylation
sites by support vector machine,” Bioinformatics, vol. 22, no. 19, pp.
2320–2325, 2006.

[15] T.-H. Chang, L.-C. Wu, Y.-T. Chen, H.-D. Huang, B.-J. Liu, K.-F. Cheng,
and J.-T. Horng, “Characterization and prediction of mrna polyadenylation
sites in human genes,” Medical & biological engineering & computing,
vol. 49, no. 4, pp. 463–472, 2011.

[16] J. Y. Lee, I. Yeh, J. Y. Park, and B. Tian, “Polya_db 2: mrna polyadenyla-
tion sites in vertebrate genes,” Nucleic acids research, vol. 35, no. suppl 1,
pp. D165–D168, 2007.

[17] B. Xie, B. R. Jankovic, V. B. Bajic, L. Song, and X. Gao, “poly(a)
motif prediction using spectral latent features from human dna sequences,”
Bioinformatics, vol. 29, no. 13, pp. i316–i325, 2013.

[18] J. H. Graber, G. D. McAllister, and T. F. Smith, “Probabilistic prediction
of saccharomyces cerevisiae mrna 3’-processing sites,” Nucleic acids
research, vol. 30, no. 8, pp. 1851–1858, 2002.

[19] Y. Shen, G. Ji, B. J. Haas, X. Wu, J. Zheng, G. J. Reese, and Q. Q.
Li, “Genome level analysis of rice mrna 3’-end processing signals and
alternative polyadenylation,” Nucleic acids research, vol. 36, no. 9, pp.

0.900

0.925

0.950

0.975

1.000

cds intron 5'utr
Genomic contexts of negative DNA sequence samples

A
U

C

FIGURE 6: Prediction performance of DeepPolyA for alter-
native genomic contexts of negative DNA sequence samples.

3150–3161, 2008.
[20] G. Ji, X. Wu, Y. Shen, J. Huang, and Q. Q. Li, “A classification-based

prediction model of messenger rna polyadenylation sites,” Journal of
theoretical biology, vol. 265, no. 3, pp. 287–296, 2010.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural informa-
tion processing systems, 2012, pp. 1097–1105.

[23] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
networks, vol. 61, pp. 85–117, 2015.

[24] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning,”
Nature biotechnology, vol. 33, no. 8, pp. 831–838, 2015.

[25] Y. S. Vang and X. Xie, “Hla class i binding prediction via convolutional
neural networks,” Bioinformatics, p. btx264, 2017.

[26] J. Zhou and O. G. Troyanskaya, “Predicting effects of noncoding variants
with deep learning-based sequence model,” Nature methods, vol. 12,
no. 10, pp. 931–934, 2015.

8 VOLUME 4, 2016



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2825996, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7: Three convolution kernels visualized from JASPAR using TOMTOM.

FIGURE 8: Saliency map visualization of an entire sequence with a zoom-in view of the sites around poly(A) sites.

VOLUME 4, 2016 9



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2825996, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[27] D. Quang and X. Xie, “Danq: a hybrid convolutional and recurrent deep
neural network for quantifying the function of dna sequences,” Nucleic
acids research, vol. 44, no. 11, pp. e107–e107, 2016.

[28] H. Zeng, M. D. Edwards, G. Liu, and D. K. Gifford, “Convolutional neural
network architectures for predicting dna–protein binding,” Bioinformatics,
vol. 32, no. 12, pp. i121–i127, 2016.

[29] D. R. Kelley, J. Snoek, and J. L. Rinn, “Basset: learning the regulatory
code of the accessible genome with deep convolutional neural networks,”
Genome research, vol. 26, no. 7, pp. 990–999, 2016.

[30] J. Zhou, Q. Lu, R. Xu, L. Gui, and H. Wang, “Cnnsite: Prediction of
dna-binding residues in proteins using convolutional neural network with
sequence features,” in Bioinformatics and Biomedicine (BIBM), 2016
IEEE International Conference on. IEEE, 2016, pp. 78–85.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[32] G. D. Stormo, T. D. Schneider, L. Gold, and A. Ehrenfeucht, “Use of
the ‘perceptron’ algorithm to distinguish translational initiation sites in e.
coli,” Nucleic acids research, vol. 10, no. 9, pp. 2997–3011, 1982.

[33] T. D. Schneider and R. M. Stephens, “Sequence logos: a new way to
display consensus sequences,” Nucleic acids research, vol. 18, no. 20, pp.
6097–6100, 1990.

[34] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference
on Machine Learning, 2015, pp. 448–456.

[36] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, 2010, pp. 249–
256.

[37] Y. Bengio, “Practical recommendations for gradient-based training of deep
architectures,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 437–478.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp. 1026–
1034.

[39] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learning
Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[40] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[41] F. Chollet et al., “Keras,” 2015.
[42] Theano Development Team, “Theano: A Python framework

for fast computation of mathematical expressions,” arXiv e-
prints, vol. abs/1605.02688, May 2016. [Online]. Available:
http://arxiv.org/abs/1605.02688

[43] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[44] G. Holmes, A. Donkin, and I. H. Witten, “Weka: A machine learning
workbench,” in Intelligent Information Systems, 1994. Proceedings of the
1994 Second Australian and New Zealand Conference on. IEEE, 1994,
pp. 357–361.

[45] G. E. Crooks, G. Hon, J.-M. Chandonia, and S. E. Brenner, “Weblogo: a
sequence logo generator,” Genome research, vol. 14, no. 6, pp. 1188–1190,
2004.

[46] J. Lanchantin, R. Singh, B. Wang, and Y. Qi, “Deep motif dashboard:
Visualizing and understanding genomic sequences using deep neural net-
works,” arXiv preprint arXiv:1608.03644, 2016.

[47] A. Mathelier, O. Fornes, D. J. Arenillas, C.-y. Chen, G. Denay, J. Lee,
W. Shi, C. Shyr, G. Tan, R. Worsley-Hunt et al., “Jaspar 2016: a major
expansion and update of the open-access database of transcription factor
binding profiles,” Nucleic acids research, vol. 44, no. D1, pp. D110–D115,
2016.

[48] T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi,
J. Ren, W. W. Li, and W. S. Noble, “Meme suite: tools for motif discovery

and searching,” Nucleic acids research, vol. 37, no. suppl_2, pp. W202–
W208, 2009.

[49] S. Gupta, J. A. Stamatoyannopoulos, T. L. Bailey, and W. S. Noble,
“Quantifying similarity between motifs,” Genome biology, vol. 8, no. 2,
p. R24, 2007.

[50] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

XIN GAO (S’14) received her B.E. degree in
Information Security and LL.B. degree in Law
from Nankai University, Tianjin, China in 2012.
Currently she is a Ph.D. candidate at the Depart-
ment of Computer Science, New Jersey Institute
of Technology, Newark, NJ in 2017. Her research
interests include deep learning, machine learning,
bioinformatics and data mining.

JIE ZHANG (S’15) received his B.E. degree in
Software Engineering from Nanjing University,
Nanjing, China in 2012, and Ph.D. degree in Com-
puter Science from New Jersey Institute of Tech-
nology, Newark, NJ in 2017. Currently, he is a data
scientist at Adobe. His research interests include
data mining, bioinformatics, statistical modeling
and machine learning.

ZHI WEI (SM’17) received B.S. degree in Com-
puter Science from Wuhan University, China, and
Ph.D. degree in Bioinformatics from the Univer-
sity of Pennsylvania, Philadelphia, PA in 2008.
Currently he is an associate professor at the De-
partment of Computer Science, New Jersey Insti-
tute of Technology. His research interests include
statistical modelling, machine learning and big
data analytics. His works have been published
in prestigious journals including Nature, Nature

Medicine, JASA, Biometrika, AOAS, AJHG, PLoS Genetics, Bioinformat-
ics, and Biostatistics. He is an associate editor of BMC Bioinformatics, BMC
Genomics, IEEE Transactions on Computational Social Systems, and PLoS
ONE.

HAKON HAKONARSON received his M.D.
and Ph.D. from University of Iceland School of
Medicine 1986 and 2002, respectively. Currently
he is a professor of Pediatrics at University of
Pennsylvania School of Medicine, with research
focused on human genetics. He has published
numerous high-impact papers on genomic discov-
eries and their translations in some of the most
prestigious scientific medical journals, including
Nature, Nature Genetics and The New England

Journal of Medicine.

10 VOLUME 4, 2016


