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24.1 INTRODUCTION
Modern societies understand the world, manifest different viewpoints, and test their objectiveness by
exchanging information through direct communication or, in more recent years, through online social
networks. On a larger scale, this process may also create consensus and mitigate social friction through
public debate, two essential aspects of a healthy democracy. Information diffusion is often represented
by pieces of information (e.g., news, scientific, or historical facts) that spread through a network. As
for the network, that consists of interacting entities such as individuals, institutions (e.g., governments,
authorities, or other organizations), and private entities (e.g., media, marketing agencies).

The Internet era has offered new means to produce and share information through large-scale
online social networks. The disposition of large amounts of data coming from diffusion traces
has helped scientific research improve our understanding of diffusion processes arising in various
disciplines, including sociology, epidemiology, marketing, and computer system security. However,
the democratization of content creation and sharing has not been adequately coupled with effective
(self-, collective, or automatic) moderation, correction, and filtering mechanisms. Consequently, the
explosive volume of the available content brings forward huge challenges regarding the human capacity
to process that fast-paced and gigantic information stream as well as regarding the technical aspects of
data management.

Our daily information diet tends to promote the variety in the content we consume to the expense of
its precision and detail. During moments of crisis, the scarcity of trustworthy information and lack of
time to analyze it lead to the proliferation of false rumors. There are also various psychological factors
that impact the way we participate in this exchange. For instance, people get influenced by others, but
also tend to search and recall information and facts that align with their already formed belief system
(confirmation bias).

Furthermore, users interact preferably with people of similar profiles and opinions (homophily),
a tendency that greatly reduces the heterogeneity of the user’s perceived public debate. In addition,
members of any online group receive social pressure to conform to a group’s beliefs; that tends to
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radicalize opinions and allow questionable ideas to gain momentum (echo chambers). Then, the relative
isolation of small online communities may lead them to believe in false rumors, even create a false
consensus against what is considered as verifiable by the majority of society. The situation may get
considerably aggravated in periods of political tension where polarization and partisanship grow in
well-segregated groups that reduce significantly their exposure to counterarguments.
Rumor spreading and control. There are many types of misinformation: bad or “yellow” journalism,
fake news, rumors and unverified information, hoaxes, and others (for a discussion on the taxonomy
see [1]). Despite the fact that many studies hardly distinguish these types, there are still notable
differences with regards to the actors propagating unverified or untrue information (e.g., individuals,
media, politicians, or authorities), their motives (e.g., ignorance, desire to be part of a movement,
gaining visibility and revenues, or as part of a speculative communication campaign), and the
way people interact with a new piece of information in each of those cases, especially during its
verification process. As has been pointed out, terms such as “fake news” are just new names for
very old problems. The particular recent concern of public opinion on fake news is, however, due
to the fact that the cascading effects of misinformation gain magnitude and speed in online social
networks, and thus their short-term negative impact is boosted. These effects have been recorded in
numerous major events, such as terrorist attacks, social demonstrations, elections, natural disasters,
and wars.

In this chapter we mainly refer to untrue rumors1 that represent false information and may have
malicious motives. Such rumors are usually proven false shortly after their appearance. However, the
debunking may not propagate fast enough in the social network to prevent a rumor from pursuing its
diffusion (this is also the case, for example, of long-lasting rumors such as conspiracy theories) and
that is exactly the point where computational tools can be beneficial.

There have been many developments in recent decades concerning both information dissemination
and viral epidemics on networks. Despite the particular properties of rumor spreading, it is still a type of
information diffusion for which many generic models and results are therefore relevant. Early models
originated from the Susceptible-Infected-Removed (SIR) epidemic model [2,3] and a detailed related
work is provided in the next section. Worth mentioning though, is the modern family of Information
Cascade Models (ICMs) [4], which considers heterogeneous node-to-node transmission probabilities.
ICM fits well to problems related to information diffusion on social networks and, among others, finds
straightforward applications in digital marketing [5]. Indeed, ICMs were used to fit real information
cascade data and observed node “infection” times in the MemeTracker dataset [6]. In another work, the
aim was to infer the edges of a diffusion network and estimate the transmission rates of each edge that
best fit the observed data [7].

Theoretical studies have given valuable insights on diffusion processes by defining quantities tightly
related with the systemic behavior (e.g., epidemic threshold, extinction time) and describing how a
diffusion unfolds from an initial set of contagious nodes. Most notably, a number of studies highlighted
the crucial role that the network structure plays in how the diffusion process unfolds, which is also the

1According to the Oxford English Dictionary, a rumor is “a currently circulating story or report of uncertain or doubtful
truth.” Thus, a rumor is by definition uncertain and may eventually be true or false. However, what will always be problematic
is the fact that rumors gain disproportional circulation speeds to their level of certainty.
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subject on which this chapter is largely devoted. The relation between the network structure and the
behavior of SIR epidemics has been shown in [8]. Follow-up works verified this relation and broadened
the discussion to other types of diffusion models [9,10]. Similar theoretical results have then been given
for ICM as well [11,12].

The quantification of systemic properties can help on the direction of risk assessment (e.g.,
economic, health, social risks) and, furthermore, enable diffusion process engineering whose aim
could be either to suppress or enhance a spreading. Under ICM, this engineering task is also named
in literature as influence optimization or activity shaping, whereas the maximization has received a
lot of attention for its direct marketing applications. In recent years, the suppression of information
diffusion processes has also become a hot topic because it is related to various security hazards, e.g.,
due to cascades of misinformation such as harmful rumors and fake news. Suppressive scenarios
of the latter type are also possible in the ICM modeling context; the optimization problem would
be the minimization of the spread of a piece of information in the network, e.g., by decreasing the
probability for certain users to share the false content to their contacts. To the best of our knowledge
there is no prior work on this direction and part of the contribution of this chapter is exactly on
covering this gap by developing computational approaches that are able to reduce an undesired spread
under the ICM.
Contribution and summary. The rest of the chapter keeps its focus on information diffusion and is
structured as follows. We commence with the detailed related work (Section 24.2), the technical
background regarding diffusion models (Section 24.3), and their dynamics as stochastic processes
(Section 24.4). The reader may find helpful the Table 24.1 which lists the main notations we use in this
chapter. Then, we discuss one of the interesting tasks arising in diffusion networks: the offline influence
optimization through local intervention actions that affect the information spread (Section 24.5). The
purpose can be either to minimize or maximize the influence by means of suppressive or enhancive
actions, respectively. An efficient strategy should decide where on the network to perform a number
of available actions (limited by a budget of resources) in order to better serve one of those two
opposing aims.

To this end we extend the discussion with the novel approach that first appeared in [13], which
frames this task as a generalized optimization problem under the ICM and enjoys a convex continuous
relaxation. In particular, we present a class of algorithms based on the optimization of the spectral radius
of the Hazard matrix using a projected subgradient method (Section 24.6). For these algorithms, which
can address both the maximization and the minimization problem, we provide theoretical analysis. The
suppressive case is, however, more interesting in the context of this chapter as it is straightforwardly
related to the control of undesired diffusion processes such as the spread of rumors. Hence, we
investigate two standard case-studies of the minimization problem (Section 24.7): the quarantine (e.g.,
see [10,14]) and the node immunization problem (see [15]).

Notably, among the major strengths of this framework is the fact that it can describe complex
strategies that are able to use several immunization options by deploying simultaneously resources
of different types (partial or total immunization of edges and nodes, etc.). We also discuss how such
strategies could find practical application to rumor control scenarios. In a section with experimental
results (Section 24.8), the main presented control algorithm, called NetShape, is compared to standard
baselines and state-of-the-art competitors in synthetic and benchmark network datasets. In the last
section (Section 24.9), we give our conclusions and directions of future research.
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24.2 RELATED WORK
Modeling information and rumor spreading. Phenomena such as rumors are part of an old story that
is adapted to the current technological context. Scientists started studying rumors and stories related
to the two World Wars. Knapp [2], and soon after Allport and Postman [3,16], were among the first to
analyze rumors and pose the question of their control. In the work of the latter two, it was pointed out
that, loosely speaking, the spread of rumors is somewhat proportional to the general interest of the story
and the ambiguity of the related evidence. The similarities between rumor and disease spreading were
also noted in later literature, though Daley and Kendal were the first to connect epidemics and rumors
in mathematical terms [17,18]. However, they noted that their dynamics may be strikingly different due
to the particularly complex rumor-spreading mechanism. Specifically, they introduced a variant of the
Susceptible-Infected-Removed (SIR) epidemic model, where stochastic recoveries are triggered either
when (a) an infected node interacts with an already recovered one, or (b) two infected nodes interact
and both may then recover. A slight modification was proposed in [19] concerning case (b) where only
the infected node that initiates the interaction may recover.

These alterations to the basic epidemic model try to incorporate mechanisms where a person is
probable to lose motivation in continuing to spread a rumor when he realizes that it is no longer novel
and interesting, or has already been debunked. Interesting to note, though, there is no assumed self-
recovery process and the recovery is rather brought about by crowdsourcing. This is in accordance
to follow-up and recent data-driven studies on rumor spreading on twitter, which from one side
observed self-correction to be very weak and slow to take effect while from the other side they observed
an almost 1:1 ratio of users promoting important false rumors and users trying to debunk them [20,21].

Over the course of years, more refined SIR-like epidemic models were proposed for information
diffusion, including rumors, that still have a permanent recovered state (for a survey on compartmental
models see [22,23]). One example is the SEIR model that introduces the (E)xposed state in which the
individual is infected but incubating before getting to (I) and become infectious to others. Another
example is SEI[R]Z [24,25] that introduces competition among adopters at state (I) and those at state
(Z) who, after infection, have become skeptics. Both adopters and skeptics recruit from the susceptible
population; nodes can “exit” the system and change the population size over time. However, the state (S)
also recruits from a general population that is out of the system, and one could assume that previously
departed individuals may later become susceptible again.

Evidently, the most popular epidemic modeling choice for information cascades, including rumors,
are the monotonically increasing stochastic models such as SIR that allow node transitions only toward
more critical states and eventually lead to permanent recovery or removal (i.e., as if the node dies
out). Indeed, such modeling fits to what is observed in high-frequency information circulation with a
short life, a setting that covers the majority of the content reaching users from social networks, news
broadcasts, the entertainment industry, and advertising. Nevertheless, for an information spread that
spans longer time periods and may come and go in current affairs (e.g., political issues, ideas, competing
products, long-lasting rumors), models that allow reinfection are definitely more relevant. In this sense,
the Susceptible-Infected-Susceptible (SIS), or the more information-oriented SEI[R]Z [24,25], could
be fit better and also enable dynamic approaches for suppressing a diffusion, e.g., the priority-planning
[26] or the greedy approach of [27].

More recently, Information Cascade Models (ICMs) were introduced that have higher detail and
can take advantage of the wealth of available social interaction data to fine-tune their parameters.
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First, independent cascades have emerged as a relevant model for viral diffusion of ideas and opinions
[7,28–30]. Similarly to SIR, independent cascades are also increasing stochastic processes. However,
contrary to epidemic models, they capture the precise temporal dependencies between infection events
of neighboring nodes but require larger training datasets to infer them properly. Second, multivariate
Hawkes processes are self-exciting point processes that are considered the gold standard to deal with
sequences of correlated events in many scientific fields, e.g., for earthquake prediction [31] as well
as in biological [32], financial [33,34], and social interactions studies [35]. They were thus naturally
adapted to information diffusion in social networks with the main advantage of allowing multiple events
on a single node (e.g., posts, likes, or shares in the case of a social network) [36,37]. Finally, Linear
Threshold Models were developed to account for more complex diffusion dynamics in which users may
require more than one concordant piece of information to accept it [28].
Influence optimization. The first attempts to put forward computational approaches for assessing the
influence of users in social networks were those in [38,39]. The influence maximization problem under
the ICM was first formulated in [5]. It was proved that it is an NP-hard problem and remains NP-
hard to approximate it within a factor 1 − 1/e. It was also proven that the influence is a submodular
function of the set of initially contagious nodes (referred to as influencers) and the authors proposed
a greedy Monte Carlo-based algorithm as an approximation. A number of subsequent studies were
focused on improving that technique [40,41]. Notably, today’s state-of-the-art techniques on influence
control under the ICM are still based on Monte Carlo simulations and a greedy mechanism to select the
actions sequentially.

Besides the popularity of influence maximization, various questions regarding how one could
apply suppressive interventions have also become a hot topic in recent years. However, to the best
of our knowledge, there is no existing work under the ICM and, as mentioned in the introduction, the
methodological contribution of this chapter is on the development of computational approaches under
the ICM that are able to efficiently reduce an undesired spread (see Section 24.5).
Network structure, information spread, and control approaches. Recent theoretical studies have
highlighted how crucial the structure of the underlying network is for the behavior of a diffusion
process. Specifically, they have studied the way structural characteristics of the network do appear
in quantities that are tightly related with the process behavior, such as the epidemic threshold and the
extinction time.

An early work that drew a line between epidemic spreading and the structural properties of the
underlying network is that in [8]. Under a mean field approximation of an SIR epidemic model on a
graph, they found that the epidemic threshold is proportional to the spectral radius of the adjacency
matrix. Follow-up works verified this relation and broadened the discussion to more types of diffusion
and related models. In [9] the S∗I2V∗ model was presented as a generalization of numerous virus
propagation models of the literature. It was also made possible to generalize the result of [8] to that
of generic virus models. Based on these works, several research studies have been presented on the
epidemic control on networks, mainly focusing on developing immunization strategies (elimination of
nodes) and quarantine strategies (elimination of edges). The eigenvalue perturbation theory was among
the main analytical tools used; see for example [10,14,15].

Similar theoretical results to those discussed above have been given for ICM as well. Under discrete-
or continuous-time ICM, it has been shown that the epidemic threshold depends on the spectral radius
of a matrix built upon the edge transmission probabilities, termed as the Hazard matrix [11,12].
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Table 24.1 Index of Main Notations

Symbol Description

1{<condition>} indicator function

1 vector with all values equal to one

‖X‖� �-norm for a given vector X: e.g., ‖X‖1 = ∑
ij Xij, or generally ‖X‖� = (

∑
ij X�

ij)
1/�

M � M′ the Hadamard product between matrices (i.e., coordinate-wise multiplication)

μπ (1) ≥μπ (2) . . . ordered values of vector μ using the order-to-index bijective mapping π

G,V , n, E , E network G = {V , E} of n = |V| nodes and E = |E| edges

(i, j) edge (i, j) ∈ E of the graph between nodes i and j

A network’s adjacency matrix A ∈ {0, 1}n×n

S state space. Example states: (S)usceptible, (I)nfeted, (R)ecovered

S0, n0 subset S0 ⊂ V of n0 = |S0| influencer nodes from which the IC initiates

F n × n Hazard matrix [Fij]ij of nonnegative integrable Hazard functions over time

F set of feasible Hazard matrices F ⊂ R+ → R
n×n+ , where F is one of its elements

� matrix of the integrated difference of two Hazard matrices: � = ∫ +∞
0 (F̂(t) −F(t))dt

τi time τi ∈ R+ ∪ {+∞} at which the information reached node i during the process

σ (S0) influence: the final number of contagious nodes when diffusion starts from the set S

ρH (F) the largest eigenvalue of the symmetrized and integrated Hazard matrix F
p̂(s) Laplace transform of the function p(t)
X control actions matrix X ∈ [0, 1]n×n with the amount of action taken on each edge

x control actions vector x ∈ [0, 1]n with the amount of action taken on each node

k budget of control actions k ∈ (0, E) for actions on edges, or k ∈ (0, n) for nodes

Related applications. Dealing with information diffusion and rumors gives rise to a series of
computational and inference problems, including: credibility assessment of posts and users [42];
sentimental analysis on how individuals receive a piece of information; stance/role identification of
users toward it; detection of rumors and their spreaders in content streams [43–45]; identification
of influential users that could maximize the reach of a campaign by examining structural properties
of the network alone or in combination with historical data (interaction traces) [5,46,47]; and finally,
the development of countermeasures to suppress a rumor or information cascade [13,48], which is
discussed in the technical part of the chapter.

24.3 MODELS OF INFORMATION CASCADES
Information cascades describe the dynamics of communication between individuals of a social network
by capturing the way messages are shared and propagated among users. In all generality, an information
cascade on a graph G = (V , E) is a multivariate stochastic process {Xi(t) : i ∈ V , t ≥ 0} where
Xi(t) ∈ S denotes the state of user i at time t, and S is a state space that may be finite, countable, or
uncountable. Depending on the specific model, the state of a user may refer to a binary quantity (e.g.,
S = {Unaware, Informed}), to the number of messages received during [0, t] (in which case S = N), or
something more detailed regarding the message spread (e.g., S = R

d a low-dimensional representation
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of the content of the message). In all the models, we consider that users that did not participate at all
in the cascade are in a default state 0 ∈ S. As a rumor propagates through the network, the number of
individuals participating in the cascade, called influence, will grow and eventually reach a saturation
point. We use this quantity as our main quality metric:

Definition 24.1 (Influence σ (S0, t)). Let S0 = {i ∈ V : Xi(0) �= 0} ⊂ V be the set of influencers,
i.e., users that are initially contagious. The influence of the set S0 at time t is defined as the total number
of messages received by users of the social network before time t:

σ (S0, t) = E

[∑
i∈V

1{Xi(t) �= 0}
]

. (24.1)

�
In the following, we denote as n = |V| the size of the social network, E = |E | the number of

connections, n0 = |S0| the number of initial influencers and the adjacency matrix of G as A ∈ {0, 1}n×n

s.t. Aij = 1 ⇔ (i, j) ∈ E . Moreover, we denote as long-term influence the total number of received
messages after the diffusion σ (S0) = limt→+∞ σ (S0, t).

24.3.1 EARLY MODELS: VIRUSES SPREADING THROUGH SOCIAL NETWORKS
Epidemics are usually modeled using Markov processes [49], i.e., memoryless stochastic processes
entirely defined by their transition matrix. This transition matrix defines the probability for each node
to change state during an infinitesimal time window [t, t + dt] (the simultaneous change of more than
one node’s state is considered improbable). In the following, we thus use the notation:

Xi(t) : Y → Z at rate Ci(t) (24.2)

to denote the stochastic transition rate Ci(t) ≥ 0 of node i ∈ {1, . . . , n} at time t ≥ 0 from state Y to
state Z, with Y, Z ∈ S.

Due to similarities between spreading phenomena, virus models have also been used to describe
information cascades on social networks. We focus on two standard such models: the SI and SIR
models, and we refer the reader to the recent review in [50] for more information on the vast
epidemiology literature.

Susceptible-Infected model
The Susceptible-Infected (SI) model is the simplest epidemic model, in which nodes can be either
(S)usceptible or (I)nfected. An infected node transmits the disease to one of its susceptible neighbor at
a rate β, and once infected a node remains infected and thus contagious.

Model 24.1 (SI model). Let G be a (possibly weighted) graph of n nodes and adjacency matrix A.
The SI model is a continuous-time Markov process X(t) ∈ {S, I}n with the following transition rate:

Xi(t) : S → I at rate β
∑

j

AjiXj(t), (24.3)

where β is the transmission rate of the epidemic. �
Because the nodes remain infected, a connected network will be totally infected at the end of the

diffusion, and hence any set S0 has influence σ (S0) = n.
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Susceptible-Infected-Removed model
The Susceptible-Infected-Removed (SIR) model [51] is a widely used epidemic model designed
for scenarios in which patients present immunity to the disease after their infection and recovery.
A recovered person will not transmit the disease further nor will it be subject to reinfections. An
additional state is thus added to the SI model and each node of the network is either (S)usceptible,
(I)infected, or (R)emoved. At t = 0, a subset S0 of n0 nodes is infected. Then, each infected node will
transmit the disease to its neighbors at rate β, and recover at rate δ.

Model 24.2 (SIR model). Let G be a (possibly weighted) graph of n nodes and adjacency matrix
A. The SIR model is a continuous-time Markov process X(t) ∈ {S, I, R}n with the following transition
rates:

Xi(t) : S → I at rate β
∑

j AjiXj(t)
Xi(t) : I → R at rate δ,

(24.4)

where β is the transmission rate of the epidemic and δ is the recovery rate of nodes. �
Usually, the graph is undirected and all edges have the same rate. More complex scenarios can be

modeled using the inhomogeneous SIR model, in which each edge has its own transmission rate βij and
each node its own recovery rate δi.

An alternative definition for this model is possible using infection times. One may see that each
node gets infected at most once and recovers at most once as well. We can thus define, for each node i,
the time τ I

i at which it gets infected and the time τR
i at which it recovers, with τ I

i , τR
i ∈ R+ ∪ {+∞}.

Then, τ I
i = 0 would indicate that user i is an influencer while τ I

i = +∞ would indicate that node i
never got infected throughout the whole epidemic.

Proposition 24.1. For an SIR epidemic, the infection times τ I
i of not initially infected nodes verify

the following equality:

∀i /∈ S0, τ I
i = min{j∈{1,...,n} : Tji<Dj}

(τ I
j + Tji), (24.5)

where Tji and Dj are independent exponential random variables of expected value 1/β and 1/δ,
respectively, and τ I

i = +∞ if the set {j ∈ {1, . . . , n} : Tji < Dj} is empty. Furthermore, the recovery
time of each node i is:

τR
i = τ I

i + Di. (24.6)

Proof. This result relies on the fact that a node is infected as soon as at least one of its
infected neighbors transmits the infection to him. Because these events are independent, the times
Tij required for infection along the edges of the network are also independent. For more precisions,
see e.g., [11]. �

24.3.2 INDEPENDENT CASCADES
Independent cascades were initially introduced as discrete-time diffusion processes [28], and later
refined to more flexible continuous-time processes [7].

Model 24.3 (Discrete-time independent cascades DTIC(P)). At time t = 0, only a set S0 of
influencers is infected. Given a matrix P = (pij)ij ∈ [0, 1]n×n, each node i that receives the contagion at
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time t may transmit it at time t + 1 along its outgoing edge (i, j) ∈ E with probability pij. Node i cannot
infect its neighbors in subsequent rounds t′ > t + 1. The process terminates when no more infections
are possible. �

The continuous version of independent cascades requires the definition of Hazard functions to
describe the varying transmission rates along each edge of the network.

Definition 24.2 (Hazard function Fij(t)). For every edge (i, j) ∈ E of the graph, Fij is a nonnegative
integrable function that describes the time-dependent stochastic transmission rate from node i to node
j, after i’s infection. �

Model 24.4 (Continuous-time independent cascades CTIC(F )). The CTIC(F ) model is a
stochastic diffusion process defined as follows: at time s = 0, only the influencer nodes in S0 are
infected. Then, each node i that receives the contagion at time τi may transmit it at time s ≥ τi along
an outgoing edge (i, j) ∈ E with stochastic rate of occurrence Fij(s − τi). �

The rest of this chapter will mainly focus on the analysis and control of such information cascades.
For notational purposes, we denote as F = [Fij]ij the n × n Hazard matrix containing as elements
the individual Hazard functions and, respectively, as F(t) = [Fij(t)]ij the evaluation of all functions at
a relative time-point t after each infection time τi. Essentially, network edges imply nonzero Hazard
functions:

(i, j) ∈ E ⇔ ∃t ≥ 0 s.t. Fij(t) �= 0. (24.7)

Note that each Hazard function Fij is always evaluated at a relative time-point initialized at the infection
time τi of the source node i.

Similarly to SIR, independent cascades are monotonically increasing stochastic processes, and
each node can only be infected once. We can thus define, for each node i, the time τi of its first
infection, which may be infinite if the node never gets infected during the contagion. Unlike SIR,
no epidemic states are explicitly mentioned in the notations of CTIC (the reader may compare
Eqs. (24.5) and (24.8).

Proposition 24.2. For a Continuous-Time Independent Cascade CTIC(F , T), the infection times τi

of noninfluencer nodes verify the following equality:

∀i /∈ S0, τi = min
j∈{1,...,n}(τj + Tji), (24.8)

where Tij ∈ R+ ∪ {+∞} are independent random variables of subprobability density

pij(t) = Fij(t) exp
(

−
∫ t

0
Fij(s)ds

)
. (24.9)

Proof. This result is similar to Proposition 24.1 and relies on the same observation: a node is active
as soon as at least one of its active neighbors activated him. Because these events are independent
(hence the name of the model), the times Tij required for activation along the edges of the network are
also independent. For more precisions, see for example [52]. �

In general, pij(t) is not a probability density over R+ as it does not integrate to one, and P(Tij =
+∞) = 1 − ∫ +∞

0 pij(t)dt = exp(− ∫ +∞
0 Fij(t)dt). Proposition 24.2 provides a simple mechanism for

simulating CTIC, as one can first draw one independent random variable Tij per edge, and then use a
shortest-path algorithm to compute the infection times τi for each node of the network.
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In what follows, we focus on this model due to its expressiveness and broad use in modern social
network studies. However, the large-scale dynamics of all diffusion models are relatively similar and
exhibit the same threshold behavior.

24.4 LARGE-SCALE DYNAMICS OF INDEPENDENT CASCADES
At the scale of the network, the emergent behavior of information cascades displays several typical
characteristics that are common in most diffusion processes, including epidemics and computer viruses.
For instance, Fig. 24.1 shows the number of identified cases of Ebola during a recent crisis, the number
of queries for “Pokemon go” when the game became viral, and the simulation of an independent cascade
(see Model 24.4 in Section 24.3). All these diffusion processes exhibit similar behavior:

1. Explosive start: The cascade starts with an exponential increase and quickly reaches a
nonnegligible amount.

2. Saturation point: After a sharp increase during the early phase of the diffusion, the process
reaches a saturation point and comes to a halt. Note that, for information cascades, a residual
activity may produce a linear slope after the end of the diffusion. However, we ignore this aspect in
our study.

As a consequence, we focus on four main characteristics of interest to describe the large-scale
dynamics of information cascades:

1. Existence: Is the cascade powerful enough to enter the explosive phase?
2. Saturation point: What is the final reach of the cascade?
3. Time for action: When is the explosion taking place?
4. Explosive rate: How fast is the initial exponential increase of the cascade?

These four characteristics are summarized in a simulated toy example on Fig. 24.1C. In the following
sections, we provide estimates of these quantities depending on the diffusive properties of the process
as well as the structure of the social network.

24.4.1 EXISTENCE OF A SUPERCRITICAL CASCADE
Intuitively, an information cascade may only sustain itself if, on average, people that receive the
message share it to more than one of their neighbors. When the network connectivity is too low, the
cascade cannot reach a large audience before dying out. This is highlighted by the following upper
bound relating a measure of network connectivity introduced in [12], the Hazard radius, to the long-
term influence.

Definition 24.3 (Hazard radius ρH(F )). For a diffusion process CT IC(F ), ρH(F ) is the largest
eigenvalue of the symmetrized and integrated Hazard matrix:

ρH (F ) = ρ

(∫ +∞
0

F (t) + F (t)T

2
dt

)
, (24.10)

where ρ(·) = maxi |λi| and λi are the eigenvalues of the input matrix. �
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FIG. 24.1

Main large-scale characteristics of diffusion processes appearing in real and simulated cascades. (A) Number
of Ebola cases in Ginea, Liberia, and Sierra Leone (source: World Health Organization). (B) Number of
searches for the query “Pokemon go” on the Google search engine (source: Google Trend). (C) Simulation of a
Continuous-Time Independent Cascade (see Model 24.4). The main large-scale characteristics highlighted in
our analysis are also summarized: existence of outbreak, time before the explosion, explosive rate, and
saturation point.
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When all edges of the social network have an identical Hazard function Fij(t), the Hazard radius is
proportional to the spectral radius of the adjacency matrix, which has been shown to drive the spread
of epidemics [9]. The following proposition extends this result to independent cascades.

Proposition 24.3. Let S0 ⊂ V be a set of n0 influencer nodes, and ρH (F ) the Hazard radius of a
CT IC(F ). Then, if ρH (F ) < 1, the influence of S0 in CTIC(F ) is upper bounded by:

σ (S0) ≤ n0 +
√

ρH (F )
1 − ρH (F )

√
n0(n − n0). (24.11)

�
Proof. This result relies on a nontrivial vector inequality between the activation probabilities Zi at

the end of the epidemic, defined as:

Zi = P(τi < +∞). (24.12)

Note that

‖Z‖1 =
∑

i

E[1{τi < +∞}] = σ (S0), (24.13)

and any result on the vector Z will easily translate into a result on the influence. Proposition 24.2 leads
to a relationship between the Zi, as for any vector c, minj∈{1,...,n} cj < +∞ ⇔ ∃j ∈ {1, . . . , n} s.t. cj <

+∞, and thus

1{τi < +∞} = 1{minj∈{1,...,n}(τj + Tji) < +∞}
= 1 − ∏

j
(
1 − 1{τj < +∞}1{Tji < +∞}) .

(24.14)

Taking the expectation and using the Fortuin-Kasteleyn-Ginibre (FKG) inequality [53], a well-known
result of mathematical physics, to prove the positive correlation between the variables 1{τi < +∞},
the following inequality arises after a short calculation:

∀i /∈ S0, Zi ≤ 1 − exp

⎛
⎝−

∑
j

HjiZj

⎞
⎠ . (24.15)

This inequality upper bounds the expected activation of a node with the expected activation of its
neighbors, and can be turned into a bound on the norm of Z using the spectral radius of the matrix H.
The final step of the proof is rather calculatory and relies on Jensen’s inequality and the definition of
the spectral radius for symmetric matrices. The complete derivation is available in [12]. �

Hence, the independent cascade is subcritical when ρH (F ) < 1, and the number of active users
remains negligible compared to the size of the network: σ (S0) = O(

√
n) � n. Note that we assume

that the number of influencer nodes n0 is bounded and does not depend on n.

24.4.2 LONG-TERM BEHAVIOR OF INDEPENDENT CASCADES
When the cascade is efficient enough to propagate to a large proportion of the network, it displays a
sharp increase before saturating to a limit value. Although the precise value of this limit influence is
hard to evaluate, several upper bounds have been provided and proven in the literature [12,54]. We now
provide such a result relating the long-term influence to the Hazard radius of the cascade.
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Upper bound on the saturation point. Function γ defined in Eq. 24.17. When ρH (F ) < 1, the function is equal
to 0, then increases and saturates to γ = 1 as ρH (F ) tends to infinity.

Proposition 24.4. Let S0 ⊂ V be a set of n0 influencer nodes, and ρH (F ) the Hazard radius of a
CTIC(F ). Then, if ρH (F ) > 1, the long-term influence of S0 in CTIC(F ) is upper bounded by:

σ (S0) ≤ n0 + γ (n − n0) + cn
√

n0(n − n0), (24.16)

where cn =
√

η
1−η

, η = (1 − γ )ρH (F ) and γ ∈ [0, 1] is the unique positive solution of the equation:

γ = 1 − exp
(−ρH (F )γ

)
. (24.17)

Proof. This result is also a consequence of Eq. (24.15) relating the expected activations Zi. See [12].
�

In essence, the proportion of active nodes after the cascade is negligible when ρH (F ) < 1, and
at most γ when ρH (F ) > 1, where γ is defined by the implicit equation γ = 1 − exp

(−ρH (F )γ
)
.

Fig. 24.2 shows the proportion γ of Proposition 24.4 with respect to the Hazard radius ρH (F ).

24.4.3 EXPLOSIVE DYNAMICS IN THE SUPERCRITICAL REGIME
Finally, the intermediate regime when the cascade grows exponentially can be analyzed using a
modified version of the Hazard radius, known as the Laplace Hazard radius.

Definition 24.4 (Laplace Hazard matrix L(s)). Let pij be the edge transmission probabilities
defined in Eq. (24.9). For s ≥ 0, let L(s) be the n × n matrix, called Laplace Hazard matrix, whose
coefficients are:

Lij(s) =
{

−p̂ij(s)
(∫ +∞

0 pij(t)dt
)−1

ln
(

1 − ∫ +∞
0 pij(t)dt

)
if (i, j) ∈ E ,

0 otherwise,
(24.18)

where p̂ij(s) denotes the Laplace transform of pij defined for every s ≥ 0 by p̂ij(s) = ∫ +∞
0 pij(t)e−stdt.

�
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Definition 24.5 (Laplace Hazard radius ρL (s)). For a diffusion process CTIC(F ) and s ≥ 0,
ρL (s) is the largest eigenvalue of the symmetrized Laplace Hazard matrix:

ρL (s) = ρ

(
L(s) + L(s)T

2

)
, (24.19)

where ρ(·) = maxi |λi| and λi are the eigenvalues of the input matrix. �
This concept is slightly more complicated than the Hazard radius. When s = 0, the Laplace Hazard

radius coincides with the Hazard radius: ρL (0) = ρH (F ). However, when s is large, the Laplace Hazard
radius captures the short-term behavior of the hazard function by reducing the impact of long times
through the Laplace transform. Quite surprisingly, the explosive rate of the cascade is upper bounded
by the inverse value ρ−1

L (1). This is discussed by the following proposition.
Proposition 24.5. Let t ≥ 0, S0 ⊂ V be a set of n0 influencer nodes, and ρL the Laplace Hazard

radius. Then, the short-term influence of S0 in CTIC(F ) at time t is upper bounded by:

σ (S0, t) ≤ n0 + (2n0)1/3(n − n0)2/3 exp
(
ρ−1
L (1)t

)
. (24.20)

Proof. This result relies on a similar equation to Eq. (24.15) describing the dynamics of the cascade
instead of its long-term stable regime. More specifically, Proposition 24.2 shows that, for any t ≥ 0, the
variables 1{τi < t} are related according to:

1{τi < t} = 1 −
∏

j

(
1 − 1{τj + Tji < t}) . (24.21)

Now, denoting as Zi(t) = P(τi < t) the probability that node i is active at time t, one may show the
following vectorial inequality relating the variables Zi(t):

Zi(t) ≤ 1 − exp

⎛
⎝−

∑
j

(Fji ∗ Zj)(t)

⎞
⎠ , (24.22)

where (f ∗ g)(t) = ∫
R

f (s)g(t − s)ds is the convolution product. From this inequality, one may prove an

upper bound on the Laplace transform of the influence σ̂ (s) = ∫ +∞
0 σ (S0, t)e−stdt, directly translating

into an upper bound on the exponential increase of the influence. Again, the complete derivation is
available in [11]. �

This result has two implications (for more precise results see [11]):

• First, the influence is at most increasing at an exponential rate of ρ−1
L (1).

• Second, this also provides a characteristic time under which the cascade is still in its early phase.
More precisely, before the critical time

t ≤ ln n

3ρ−1
L (1)

, (24.23)

the cascade is subcritical and the influence is negligible: σ (S0, t) = O(n2/3).
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24.5 MONITORING INFORMATION CASCADES
Having presented the fundamental theoretical properties of diffusion processes related to information
propagation over networks, we now discuss an efficient approach to the generic problem of optimizing
influence (maximizing or minimizing) using actions that can shape, i.e., modify, the activity of single
users. For instance, a marketing campaign may have a certain advertisement budget that can be used
on targeted users of a social network. While these targeted resources are usually represented as new
influencer nodes that will spread the piece of information, we rather consider the more refined and
general case in which each resource will essentially alter the Hazard functions Fij associated to a target
node i, thus increasing, or decreasing, the probability for i to propagate by sharing the information with
its neighbors.

Our generic framework assumes that a set of feasible Hazard matrices F ⊂ R+ → R
n×n+ is available

to the administrator. This set virtually contains all admissible policies that one could apply to the
network. Then, the concern is to find the Hazard matrix F ∈ F that minimizes, or maximizes depending
on the task of interest, the influence. In Section 24.7 we show that two problems that have been a
major focus of the literature so far, namely the edge-deletion problem [14] and the node-immunization
problem [15] are particular instances of this framework. Note that this framework is generic enough to
describe complex strategies that may use several immunization options by deploying simultaneously
resources of different types (removal of edges, nodes, partial immunization, etc.).

Problem 24.1 (Determining the optimal feasible policy). Given a graph G, a number of
influencers n0, and a set of admissible policies F, find the optimal policy:

F∗ = argmin
F∈F

σ∗
n0

(F ), (24.24)

where σ ∗
n0

(F ) = max{σ (S0) : S0 ⊂ V and |S0| = n0} is the optimal influence (according to Eq. (24.24)
this is the minimum) over any possible set of n0 influencer nodes. �

Problem 24.1 cannot be solved exactly in polynomial time. The exact computation of the maximum
influence σ ∗

n0
(F ) is already a hard problem on its own, and minimizing this quantity adds an additional

layer of complexity due to the nonconvexity of the maximum influence w.r.t. the Hazard matrix (note:
F �→ σ ∗

n0
(F ) is positive, upper bounded by n and not constant).

Proposition 24.6. For any size of the set of influencers n0, the computation of σ ∗
n0

(F ) is #P-hard.
Proof. We prove the theorem by reduction from a known #P-hard function: the computation of the

influence σ (S0) given a set of influencers S0 of size n0 (see Theorem 1 of [55]). Indeed, let CTIC(F ) be
an independent cascade defined on G = (V , E). We can construct a new graph G′ = (V ′, E ′) as follows:
for each influencer node i ∈ S0, add a directed chain of n nodes {vi,1, . . . , vi,n} ⊂ V ′ and connect vi,n
to i by letting the transmission probabilities along the edges be all equal to one. Then, the maximum
influence σ ∗

n0
is achieved with the nodes S′

0 = {vi,1 : i ∈ S0} as influencer, and σ ∗
n0

= n n0 + σ (S0).
The result follows from the #P-hardness of computing σ (S0) given S0. �

The standard way to approximate the maximum influence is to employ incremental methods where
the quality of each potential influencer is assessed using a Monte Carlo approach. In the following, we
assume that the feasible set F is convex and included in a ball of radius R. Also, the requirement of
Eq. (24.7), that network edges correspond to nonzero Hazard functions, holds for every feasible policy
F ∈ F. Therefore, the number of edges E upper bounds the number of nonzero Hazard functions for
any F ∈ F.
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Remark 24.1. Although Problem 24.1 focuses on the minimization of the maximum influence, the
algorithm presented in this paper is also applicable to the opposite task of influence maximization.
Having a common ground for solving these opposite problems can be useful for applications where
both opposing aims can interest different actors, e.g., in market competition. For the maximization,
our algorithm would use a gradient ascent instead of a gradient descent optimization scheme. While the
performance of the algorithm in that case may be competitive to state-of-the-art influence maximization
algorithms, the nonconvexity of this problem prevents us from providing any theoretical guarantees
regarding the quality of the final solution.

24.6 AN ALGORITHM FOR REDUCING INFORMATION CASCADES
As has been mentioned, solving exactly the influence optimization problem is computational in-
tractable. Here, we propose to exploit the upper bound given in Proposition 24.4 as a heuristic for
approximating the maximum influence. This approach can be seen as a convex relaxation of the original
NP-Hard problem, and allows the use of convex optimization algorithms for this particular problem.
The relaxed optimization problem thus becomes:

F∗ = argmin
F∈F

ρH (F ). (24.25)

When the feasible set F is convex, this optimization problem is also convex and our proposed
method called NetShape uses a simple projected subgradient descent (see e.g. [56]) in order to find its
minimum and make sure that the solution lays in F. However, special care should be taken to perform
the gradient step because although the objective function ρH (F ) admits a derivative w.r.t. the norm

‖F‖ =
√√√√∑

i,j

(∫ +∞
0

∣∣Fij(t)
∣∣ dt

)2

, (24.26)

the space of matrix functions equipped with this norm is only a Banach space in the sense that the
norm ‖F‖ cannot be derived from a well-chosen scalar product. Because gradients only exist in Hilbert
spaces, gradient-based optimization methods are not directly applicable.

In the NetShape algorithm, the gradient and projection steps are performed on the integral of the
Hazard functions

∫ +∞
0 Fij(t)dt by solving the optimization problem bellow:

F∗ = argmin
F̂∈F

∥∥∥∥
∫ +∞

0

(
F̂ (t) − F (t)

)
dt + η uFuT

F

∥∥∥∥
2

, (24.27)

where η > 0 is a positive gradient step, uF is the eigenvector associated to the largest eigenvalue of

the matrix
∫ +∞

0
F (t)+F (t)T

2 dt, and uFuT
F is a subgradient of the objective function, as provided by the

following proposition.
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Proposition 24.7. A subgradient of the objective function f (M) = ρ
( M+MT

2

)
in the space of

integrated Hazard functions, where M is a matrix, is given by the matrix:

∇f (M) = uMuT
M , (24.28)

where uM is the eigenvector associated to the largest eigenvalue of the matrix M+MT

2 .

Proof. For any matrix M, let f (M) = ρ
( M+MT

2

) = maxx : ‖x‖2=1 xTMx, and uM be such an optimal
vector. Then, we have f (M + ε) = uT

M + ε(M + ε)uM+ε ≥ uT
M(M+ε)uM = f (M)+uT

MεuM , and, because
uT

M ε uM = 〈
uMuT

M , ε
〉
, uMuT

M is indeed a subgradient for f (M). �

Algorithm 24.1 NETSHAPE METAALGORITHM
Input: feasible set F ⊂ R+ → Rn×n+ , radius R > 0 of F, initial Hazard matrix F ∈ F, approx. parameter ε > 0
Output: Hazard matrix F∗ ∈ F

1: F∗ ← F
2: T ← � R2

ε2 �
3: for i = 1 to T − 1 do
4: uF ← compute the eigenvector associated to the spectral radius ρH (F )
5: η ← R√

i

6: F ← argmin
F̂∈F

∥∥∥∫ +∞
0

(
F̂ (t) − F (t)

)
dt + η uF uT

F
∥∥∥

2

7: F∗ ← F∗ + F
8: end for
9: return 1

T F∗

The projection step of line 6 in Algorithm 24.1 is an optimization problem on its own, and the
NetShape algorithm is practical if and only if this optimization problem is simple enough to be solved.
In the next sections we will see that, in many cases, this optimization problem can be solved in near
linear time w.r.t. the number of edges of the network (i.e., O(E ln E)), and is equivalent to a projection
on a simplex.

24.6.1 CONVERGENCE AND SCALABILITY
Due to the convexity of the optimization problem in Eq. (24.25), NetShape finds the global minimum of
the objective function and, as such, may be a good candidate to solve Problem 24.1. The complexity of
the NetShape algorithm depends on the complexity of the projection step in Eq. (24.27). Each step
of the gradient descent requires the computation of the first eigenvector of an n × n matrix, which
can be computed in O(E ln E), where E is the number of edges of the underlying graph. In most real
applications, the underlying graph on which the information is diffusing is sparse, in the sense that its
number of edges E is small compared to n2.

Proposition 24.8. Assume that F is a convex set of Hazard matrices included in a ball of radius
R > 0 w.r.t. the norm in Eq. (24.26), and that the projection step in Eq. (24.27) has complexity at most
O(E ln E). Then, the NetShape algorithm described in Algorithm 24.1 converges to the minimum of

Eq. (24.25). Moreover, the complexity of the algorithm is O( R2

ε2 E ln E).
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Proof. This is a direct application of the projected subgradient descent to the problem:

H∗ = argmin
H∈H

ρ

(
H + HT

2

)
, (24.29)

where H =
{∫ +∞

0 F(t)dt ∈ R
n×n : F ∈ F

}
is the set of feasible Hazard matrices. The convergence

rate of such an algorithm can be found in [56]. �
Remark 24.2. The corresponding maximization problem is not convex anymore and only conver-

gence to a local maximum can be expected. However, when the changes in the Hazard functions are
relatively small (e.g., inefficient control actions, or only a limited number of treatments available to
distribute), then NetShape achieves fairly good performance.

24.7 CASE STUDIES
In this section, we illustrate the generality of our framework by reframing well-known diffusion
suppression problems that can find application in rumor control that has been discussed extensively
in this chapter. Using Problem 24.1 we derive the corresponding variants of the NetShape algorithm.

For simplicity, we denote as M � M′ the Hadamard product between the two matrices (i.e.,

coordinate-wise multiplication), as � = ∫ +∞
0

(
F̂(t) − F(t)

)
dt the matrix with the integrated

coordinate-wise difference of two Hazard matrices in time, and as 1 ∈ R
n the all-one vector (see

notations in Table 24.1).

24.7.1 PARTIAL QUARANTINE
The quarantine approach aims to remove a small number of edges in order to minimize the spread of
the contagion. This strategy is highly interventional in the sense that it totally removes edges, but in
order to be practical it has to remain at low scale and affect a small amount of edges. This is the reason
why it is mostly appropriate for dealing with the initial very few infections. The partial quarantine
setting is a relaxation where one is interested in decreasing the transmission probability along a set of
targeted edges by using local and expensive actions.

Definition 24.6 (Partial quarantine). Consider that a marketing campaign has k control actions
to distribute in a network G = (V , E). For each edge (i, j) ∈ E , let Fij and F̂ij be the Hazard matrices
before and after applying control actions, respectively. If X ∈ [0, 1]n×n is the control actions matrix and
Xij represents the amount of suppressive action taken on edge (i, j), then the set of feasible policies can
be expressed as:

F =
{

(1 − X) �F + X � F̂ : X ∈ [0, 1]n×n, ‖X‖1≤k
}

. (24.30)

�
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Example. For a nonnegative scalar ε ≥ 0, we may consider F̂ = (1 − ε)F in order to model the
suppression of selected transmission rates; formally:

F = {
(1 − εX) � F : X ∈ [0, 1]n×n, ‖X‖1 ≤ k

}
. (24.31)

Importantly, for the special case where ε = 1, this problem becomes equivalent to the setting discussed
in [10,14].

A straightforward adaptation of Algorithm 24.1 to this setting leads to the NetShape algorithm for
partial quarantine described in Algorithm 24.2. The projection step is performed by Algorithm 24.3 on
the flattened versions x′, δ, y ∈ R

E of the matrices X′, �, and Y , and the parameter R is chosen to upper
bound maxF ′∈F ‖F ′ − F‖2 = maxX∈[0,1]n×n,‖X‖1≤k ‖X � �‖2. �

Lemma 24.1. The projection step of Algorithm 24.1 for the partial quarantine setting of Defini-
tion 24.6 is:

X∗ = arg minx′∈[0,1]E , ‖x′‖1≤k
∥∥x′ � δ − y

∥∥
2 , (24.32)

where δ and y are flattened version of, respectively, � and Y = X��−ηuFuT
F . Moreover, this problem

can be solved in time O(E ln E) with Algorithm 24.3, where E is the number of edges of the network.
Proof. Eq. (24.32) directly follows from Eq. (24.27) and the definition of F. Algorithm 24.3 is an

extended version of the L1-ball projection algorithm of [57]. Karush-Kuhn-Tucker (KKT) conditions
for the optimization problem of Eq. (24.32) imply that ∃z > 0 s.t. ∀i, x′

i = max{0, min{ 2δiyi−z
2δ2

i
, 1}}.

The algorithm is a simple linear search for this value. Finally, the sorting step (Algorithm 24.3, line 5)
has the highest complexity O(E ln E), and the loops perform at most 2E iterations, hence an overall
complexity O(E ln E). �

Algorithm 24.2 NETSHAPE PARTIAL QUARANTINE PROBLEM
Input: graph G = (V ,E), matrices of Hazard functions before and after treatment F , F̂ ∈ F, approximation parameter

ε > 0, number of treatments k
Output: matrix of Hazard functions F∗ ∈ F

1: X ← 0, X∗ ← 0
2: F ← ∫ +∞

0 F (t)dt

3: � ← ∫ +∞
0 (F̂ (t)dt − F (t))dt

4: R ← √
k maxij �ij

5: T ← � R2

ε2 �
6: for i = 1 to T − 1 do
7: M ← F + X � �

8: u ← the largest eigenvector of 1
2 (M + MT)

9: Y ← X � � − R√
i
uuT

10: X ← argminX′∈[0,1]n×n,‖X′‖1≤k
∥∥X′ � � − Y

∥∥
2 // projection step (Algorithm 24.3)

11: X∗ ← X∗ + X
12: end for
13: return F∗ = (1 − 1

T X∗) � F + 1
T X∗ � F̂
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Algorithm 24.3 PROJECTION STEP FOR THE PARTIAL QUARANTINE PROBLEM
Input: δ, y ∈ RE , budget k ∈ (0, E)
Output: control actions vector x′

1: for i = 1 to E do
2: μi ← 2δiyi
3: μE+i ← 2δi(yi − δi)
4: end for
5: sort μ into μπ (1) ≥ μπ (2) ≥ · · · ≥ μπ (2E)
6: d ← 0
7: s ← 0
8: i ← 1
9: while s < k and μπ (i) ≥ 0 do

10: d ← d + 1{π (i) ≤ E} 1
2δ2

π (i)
− 1{π (i) > E} 1

2δ2
σ (i)−E

11: s ← s + d(μπ (i) − μπ (i+1))
12: i ← i + 1
13: end while
14: z ← max{0, μσ (i) + s−k

d }
15: return x′ s.t. x′

i = max{0, min{ 2δiyi−z
2δ2

i
, 1}}

24.7.2 PARTIAL NODE IMMUNIZATION
More often, control actions can only be performed on the nodes rather than the network edges that was
the case of the previous section. For example, imagine advertising campaigns that aim to enhance the
diffusion of a product or, more relevant to the suppressive scenario, decision-makers that debunk false
information targeting specific influencer nodes. In that case, the effect of the control actions must be
aggregated over nodes in the following way.

Definition 24.7 (Partial node immunization). Consider that a control campaign has k control
actions to distribute in a network G = (V , E). For each edge (i, j) ∈ E , let Fij and F̂ij be the Hazard
matrices before and after applying control actions, respectively. If x ∈ [0, 1]n is the control actions
vector and xi represents the amount of suppressive action taken on node i, then we express the set of
feasible policies as:

F =
{

(1 − x1T) �F + x1T � F̂ : x ∈ [0, 1]n, ‖x‖1 ≤k
}

. (24.33)
�

This setting corresponds to partial quarantine in which all outgoing edges of a node are impacted
by a single control action. When F̂ = 0, this problem corresponds to the node removal problem (or
vaccination), that consists in removing k nodes from the graph in advance in order to minimize a future
contagion (see [15]).

Given a vector x, the projection problem to solve is:

x∗ = argmin
x′∈[0,1]n,‖x′‖1≤k

∥∥∥(x′1T) � � − Y
∥∥∥

2

= argmin
x′∈[0,1]n,‖x′‖1≤k

∑
i

x2
i

(∑
j

�2
ij

)
− 2xi

(∑
j

�ijYij

)

= argmin
x′∈[0,1]n,‖x′‖1≤k

∥∥x′ � δ′ − y′∥∥
2 , (24.34)
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where δ′
i =

√∑
j �

2
ij and y′

i =
∑

j �ijYij√∑
j �

2
ij

. Hence we can apply the projection step of Algorithm 24.3 for

the partial node immunization problem using δ′ and y′, and its complexity is O(n ln n).
Remark 24.3. Because the upper bound of Proposition 24.4 holds as well for SIR epidemics [51]

(see also [11]), this setting may also be used to reduce the spread of a disease using, for example,
medical treatments or vaccines. More specifically, the Hazard matrix for an SIR epidemic is the
following:

H = ln
(

1 + β

δ

)
A, (24.35)

where δ is the recovery (or removal) rate and β is the transmission rate along edges of the network, and
A the adjacency matrix. Then, a medical treatment may increase the recovery rate δ for targeted nodes,
thus decreasing all Hazard functions on its outgoing edges, and the partial node immunization setting
is applicable.

24.8 EXPERIMENTS
24.8.1 EXPERIMENTAL SETUP AND EVALUATION
In this section, we provide empirical evidence for the discussion of this chapter on controlling
independent cascades under the ICM. We set the focus of this empirical evaluation in the offline partial
node immunization problem under the ICM, as described in Section 24.7.2, and we are interested to
see in practice the performance gains of the NetShape algorithm when compared to other baseline and
state-of-the-art alternative policies.

Compared policies. We provide comparative experimental results against several strategies, namely:

(i) Rand: random selection of nodes;
(ii) Degree: selection of k nodes with highest out-degree;

(iii) WeightedDegree: selection of k nodes with highest sum of outgoing edge weight
wij = ∫ +∞

0 Fij(t)dt. This strategy can also be seen as the optimization of the first influence lower
bound LB1 of [54].

(iv) NetShield algorithm [15]. Given the adjacency matrix of a graph, this outputs the best k-nodes to
totally immunize so as to decrease the vulnerability of the graph. This is done by assigning to
each node a shield value that is high for nodes with high eigenscore and no edges connecting
them. Note that, despite the fact that NetShield is tailored for immunization on unweighted
graphs, it is not general enough to account for weighted edges and partial immunization as in our
experimental setting.

Network datasets. The evaluation is performed on three benchmark real datasets (see Table 24.2) and
the results are presented in subfigures of Fig. 24.4:

(a) a network of “friends lists” from Facebook [58];
(b) the Gnutella peer-to-peer file sharing network [58],
(c) the who-trust-whom online review site Epinions.com;
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Table 24.2 Datasets: Details of the Benchmark Real Networks

Network Nodes Edges Nodes in Largest SCC

SBD10ER 500 2704 500 :: 100.0%

Facebook 4039 88,234 4039 :: 100.0%

Gnutella 62,586 147,892 14,149 :: 22.6%

Epinions 75,879 508,837 32,223 :: 42.5%

The last column is the size of the strongly connected component.

(d) a synthetic random network of n = 500 nodes forming group structure (stochastic block-diagonal)
that has been generated as follows. First, 10 equally-sized Erdös-Rényi clusters were
independently formed with intracluster edge creation probability pinter = 0.1. Then, their
adjacency matrices were used to compose a block-diagonal structure with uniform intercluster
rewiring probability pintra = 0.001. Fig. 24.3A shows the structure of the final adjacency matrix
(as having binary edge weights).

Note that the above networks only provide an unweighted adjacency matrix, thus only the existence,
or not, of an edge between a pair of nodes is known. NetShape and the analysis of Section 24.5
is generally covering time-variable propagation functions between nodes. However, without loss of
generality and for the sake of simplifying the experimental setup, we decided to use a simple class of
propagation functions. For the generation of the matrix of edge-transmission probability rates {pij} we
use a trivalency model, according to which, the pij values are drawn chosen uniformly at random from
a small set of constants. In our case that is set to {plow, pmed, phigh} and the specific used values are
mentioned explicitly for each dataset at the figures’ captions.

Each treatment unit of the budget can be assigned to a single node and, here, we assume that it can
cause a fixed decrease to the node’s transmission probability rates along all its outgoing edges (70% for
the SBD10ER and 50% for the real networks).

In the experiments we evaluate the efficiency of the immunization policies on the basis of two
measures, for both of which lower values are better:

• Spectral radius decrease. We examine the extend of the decrease of the spectral radius of the
Hazard matrix F and, hence, the decrease of the bound of the max influence as described in
Proposition 24.4.

• Expected influence decrease. We compare the performance of policies in terms of Problem 24.1.
To this end, for each Hazard matrix F , the influence is computed as the average number of infected
nodes at the end of more than 1000 runs of the independent cascade CT IC while applying that
specific Hazard matrix F . Each time a single initial influencer is selected by the influence
maximization algorithm Pruned Monte Carlo [40] by generating 1000 vertex-weighted directed
acyclic graphs (DAGs).

In the empirical study, we focus on the scenario where the spectral radius of the original network
is approximately one, which is the setting in which decreasing the spectral radius has the most impact
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FIG. 24.3

Comparison of policies on a synthetic network. Comparison of NetShape’s performance against competitors on
the synthetic network SBD10ER, which is a composition of 10 Erdös-Rényi clusters (see details in
Section 24.8.1). The values used for the trivalency model to generate edge weights are p ∈ {0.1, 0.2, 0.5}. The
tested budget values are k ∈ {5, 10, 20, 50, 100}. (A) The structure of the generated nonsymmetric,
block-diagonal adjacency matrix (here plotted as a binary matrix); (B) Spectral radius ρH (F ) versus budget k;
(C) Influence: the expected proportion of infected nodes σ

n versus k. Lower values are better.

on the upper bounds in Proposition 24.4 and [12]. We believe that this intermediate regime is the most
meaningful and interesting in order to test the different algorithms.

24.8.2 RESULTS
The results on the synthetic network are shown in Fig. 24.3 and those on the three real network datasets
in subfigures of Fig. 24.4. The subfigures correspond to the two evaluation measures that we use for a
wide range of budget size k in proportion to the number of nodes of that network.
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FIG. 24.4

Comparison of policies on real networks. The evaluation is conducted on benchmark real networks in terms of
two evaluation measures, namely the spectral radius and the expected influence reduction. For each network,
at the top row is plotted the ρH (F ) versus budget k, and at the bottom row the expected proportion of infected
nodes σ

n versus k. (A) Facebook network, by generating infection rates p ∈ {0.0001, 0.001, 0.01}; (B) Gnutella
network with p ∈ {0.1, 0.3, 0.6}; (C) Epinions network with p ∈ {0.005, 0.005, 0.05}. Lower values are better. (A)
Facebook; (B) Gnutella; (C) Epinions.

First, we should note that the influence and spectral radius measures correlate generally well across
all reported experiments; they present similar decrease w.r.t. budget increase and hence “agree” in the
order of effectiveness of each policy when examined individually. As expected, all policies perform
more comparably when very few or too many resources are available. In the former case, the very
“central” nodes are highly prioritized by all methods while in the latter the significance of node selection
diminishes. Even simple approaches perform well in all but Gnutella network where we get the
most interesting results. NetShape achieves a sharp drop of the spectral radius early (i.e., for small
budget k) in Gnutella and Epinions networks, which drives a large influence reduction. With regards
to influence minimization, the difference to competitors is bigger, though, in Gnutella which is the
most sparse and has the smallest strongly connected component (see Table 24.2). In Facebook, the
reduction of the spectral radius is slower and seems less closely related with the influence, in the sense
that the upper bound that we optimize is probably less tight to the behavior of the process.

Overall, the performance of the proposed NetShape algorithm is mostly as good or superior to that of
the competitors, achieving up to a 50% decrease of the influence on the Gnutella network compared
to its best competitor. Similar findings can be claimed for the experiments on the synthetic network
SBD10ER.
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24.9 CONCLUSION
The future of the diffusion networks field is full of interesting problems and potential applications. It
will continue to enrich our understanding of diffusive phenomena and, at a second level, is expected to
also change how information is circulated in online social networks.

The subject of this chapter was first to analyze the way information diffusion takes place in modern
large-scale online social networks and the challenges regarding the control of certain types of undesired
diffusion such as rumors, fake news, and others. We have presented an overview of the complex context
in which these information-related diffusive phenomena appear and how individuals participate in the
process acting as users of online social platforms.

To present the background of related problems, we went through various approaches for modeling
information cascades, including the early used virus models and the more recent independent cascades
model. Specifically for the latter model, we spoke about its large-scale dynamics and how that relates
to the network properties, the existence of a threshold value that defines the point of transition between
subcritical and supercritical behavior, and the connection of that threshold value to the spectral radius
of the Hazard matrix of the network.

Subsequently, we discussed a framework that we proposed recently for spectral activity shaping
under the Continuous-Time Independent Cascades Model [13] that allows the administrator for local
control actions by allocating targeted resources, which can alter locally the spread of the process. The
activity shaping is achieved via the optimization of the spectral radius of the Hazard matrix, which
enjoys a simple convex relaxation when used to minimize the influence of the cascade. In addition, by
reframing a number of use cases, we explained that the proposed framework is general and includes
tasks such as partial quarantine that acts on edges and partial node immunization that acts on nodes.
Notably, this generic framework can describe complex strategies that may use several immunization
options by deploying simultaneously resources of different types (removal of edges, nodes, partial
immunization, etc.). Specifically for the influence minimization that is the one directly related to rumor
spreading control, we presented the NetShape method, which was compared favorably to baseline and
a state-of-the-art method on real benchmark network datasets.

Among the interesting and challenging future work directions, on the same line to the presented
framework, there can be the introduction of an “aging” feature to each piece of information that would
model its loss of relevance and attraction through time, and the theoretical study and experimental
validation of the maximization counterpart of Netshape method.
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