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The development of better methods for the improvement of airline performance is crucial, but this type
of problem is difficult to solve because of the large number of complex factors involved making this
inherently a multiple criteria decision making (MCDM) problem. In current studies, the factors to be
evaluated are considered based upon a literature review or expert opinions. This study proposes an
integrated model that combines data mining and MCDM to extract the critical factors for the
improvement of airline performance. We apply the dominance-based rough set approach to extract the
essential factors. The decision-making trial and evaluation laboratory method with the concepts of the
analytic network process (DANP) is then used to construct the complex evaluation system. Finally, the
VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje in Serbian, meaning multicriteria opti-
mization and compromise solution) method is applied to select the suitable improvement alternative
goals with the corresponding weights provided by the DANP method. The results show that the current
model can be used as the basis for a benchmark industry improvement index which can be used to
evaluate each airline individually with defined planning goals to achieve financial efficiency by
improving operational efficiency.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The past 10 years have seen large fluctuations and extreme
changes in airline companies' financial and operational perfor-
mance. The reasons for these are numerous, including problems
caused by management and government regulators, as well as
company mergers, restructuring and financial interventions and
changes in the markets. For example, inappropriate financial and
operational management decisions can affect internal costs, lead-
ing to chaotic high-risk situations, which if not dealt with appro-
priately could result in a declaration of bankruptcy or closing of the
airline. Airline managers need a useful tool to identify, diagnose,
and evaluate the company's financial and operational performance
and rank goals for improvement. An airline's business performance
depends upon customer service and internal operations to maxi-
mize financial efficiency. How to improve operational and financial
performance and overcome problems is a particularly critical
).
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challenge for airline managers. The improvement of an airline's
financial and operational performance involves a complex
decision-making process requiring a systematic approach. Making
such decisions entails dealing with a large number of conflicting
criteria, which may not be clearly defined, as well as the consid-
eration of interrelated criteria, mixing quantitative and qualitative
criteria with subjective judgments (Gomes et al., 2014). All of these
factors make airline performance improvement an inherently
multiple criteria decision making (MCDM) problem. These multiple
dimensions and criteria have motivated several scholars to search
other fields to find advanced quantitative methods which can be
adapted to create feasible approaches for performance optimiza-
tion (Fethi and Pasiouras, 2010). Decisions for improving an airline's
operational and financial performance, regardless of whether
problems have been caused by external (e.g., fuel cost and con-
sumption) or internal (e.g., net income) factors, are critical and
unavoidable challenges which must be dealt with by management
in order to survive in the air transportation industry. Any alter-
ations in the criteria (factors) for operational efficiency can cause a
number of reactions which impact financial efficiency especially
because of the interrelationship between the criteria.
ated MCDM model for improving airline operational and financial
org/10.1016/j.jairtraman.2017.06.003
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Only a limited number of studies have appeared in the literature
which are directly or indirectly related to airline efficiency (for
examples see Lu et al., 2014; Lee and Worthington, 2014; Chang
et al., 2014; Wu and Liao, 2014; Tavassoli et al., 2014; Arjomandi
and Seufert, 2014; Chiu et al., 2013; Barros et al., 2013; Barros and
Couto, 2013; Assaf and Josiassen, 2012; Delbari et al., 2016; Min
and Joo, 2016; Duygun et al., 2016; Li et al., 2015b). Some have
used statistical methods while others have applied data envelop-
ment analysis (DEA) based models to deal with the problem. For
example, Mallikarjun (2015) used network DEA (NDEA), Li et al.
(2015a) used slack-based measure (SBM) DEA, and Tavassoli et al.
(2014) combined the SBM and NDEA methods. The major limita-
tion of previous studies has been that they have mainly focused on
past quantitative data alone. Airline performance improvement is a
complex system problem requiring qualitative judgements. How-
ever, depending upon qualitative analysis alone may provide overly
superficial outcomes, while the results of quantitative analysis
alonemay easily lose their authenticity. A combination of these two
approaches is needed to fully integrate various considerations,
objectively based on the laws of science that would provide results
with increased validity and reliability. The objective of this study is
thus to produce an integrated model for improving airline perfor-
mance that combines a data mining technique (quantitative data
analysis) and multiple criteria decision-making (MCDM) models
utilizing managers' qualitative judgements. Most MCDM models
consider evaluating criteria derived from a literature review or
expert opinions, opinions which might be subjective due to the
vagueness of human judgments and preferences. Different experts
will also generate different evaluation criteria. In today's big data
era, interest in systematically exploring historical data with
different methods to find new information has been increasing
worldwide. Data mining techniques can be combined with MCDM
methods to provide an excellent platform for such exploration, in
this case, combining the factors to generate acceptable solutions.
Thus, data mining techniques are used to extract objective evalu-
ation criteria and the MCDM method is used to provide directions
for improvement for airlines.

The integrated MCDM model proposed in this paper is divided
into four stages: (1) the dominance-based rough set approach
(DRSA) is used to identify the critical criteria in each dimension; (2)
an evaluation system is constructed with the decision-making trial
and evaluation laboratory (DEMATEL) method; (3) the influential
weights of the criteria are analyzed through a DEMATEL-based
analytic network process (DANP) method; and (4) the optimal
airline performance and improvement goals for airlines are iden-
tified and ranked using VIKOR (i.e., VlseKriterijumska Optimizacija I
Kompromisno Resenje in Serbian, meaning multicriteria optimi-
zation and compromise solution). The proposedmodel is capable of
a facilitating the financial and operational improvement decision-
making process and minimizing possible biases during the
ranking and goal improvement prioritizing process for each airline.
The usefulness and effectiveness of the proposed method is
demonstrated in an empirical example, using 10 years of historical
data provided by the Office of the Assistant Secretary for Research
and Technology of the US Department of Transportation. This in-
tegrated model for operational and financial performance
improvement can assist airline management to (1) understand the
systematic influential network relation structure among the
criteria, (2) find the essential factors and priorities in all di-
mensions, (3) select the most critical financial and operational
performance factors with precision in a short period of time, and
(4) improve the performance of the financial and operational di-
mensions by ranking and benchmarking the best practices. The
empirical example demonstrates that this managerial tool can
facilitate the decision-making process and the benchmarking
Please cite this article in press as: Gudiel Pineda, P.J., et al., An integr
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ranking accurately, minimizing the time required and consequently
reducing the costs involved in bad decision-making. The method
and the final ranking table may be adapted to multiple cases,
thereby helping airlines to improve their decision-making ability.
Thus, companies can enhance the use of their resources and
improve their financial and operational performance. Managers can
pay more attention to the customer service by controlling the
operational dimensions, minimizing the financial negative effects
of critical operations mismanagement, and consequently,
enhancing their overall competitiveness.

Prior works related to financial and operational performance in
the airline industry have been mainly relied upon quantitative data
and DEA models. However, airline performance improvement in-
volves complex factors and needsmanagers' qualitative judgement.
The evaluating systems constructed with traditional MCDMmodels
might be too subjective due to the uncertainty of expert opinions.
This study contributes to the literature by providing an integrated
model that can objectively extract the essential criteria which can
then be used to build an evaluation system that also consider
managers' qualitative judgements, with the aim of improving
airline performance. The remainder of this paper is structured as
follows: Section 2 offers a brief review of the existing literature
related to this topic. Section 3 describes the proposed decision rule-
based soft computing model. Section 4 demonstrates the effec-
tiveness of this proposed decision rule-based soft computingmodel
by evaluating 10 years of historical data for the US airline industry.
Section 5 presents some conclusions and closing remarks.

2. Literature review

Over the past decades, various methods have been proposed to
address airline performance problems. These can be categorized
into two major types of approaches: (1) DEA and mathematical
programming models, and (2) MCDM approaches.

2.1. DEA and mathematical programming models

DEA and network DEA models have been used in a number of
studies related to the operating and financial efficiency approaches
for airlines. Lu et al. (2014) used a two-stage network DEA method
to examine production and marketing efficiency in 30 US airlines.
Lee and Worthington (2014) performed DEA and simultaneously
estimated scores with a bootstrapped truncated regression model
to explain the efficiency drivers for 42 US and European airlines. A
virtual frontier network SBM was proposed by Li et al. (2015a) to
evaluate the efficiency of 22 airlines from 2008 to 2012. Chang et al.
(2014) analyzed trade-offs between labor and capital measures
among 27 international airlines. The DEA results reported that fuel
consumption and revenue structure are the major causes of in-
efficiency in airlines.

Arjomandi and Seufert (2014) applied a bootstrapped DEA
method to evaluate performance among 48 international airlines
finding that low-cost carriers are operating under increasing
returns to scale. Choi et al. (2015) analyzed 12 US airlines. They
evaluated service quality as a factor related to service productivity
by applying a service quality-adjusted DEA and ManneWhitney
test to illustrate the tradeoff between quality and productivity.
Barros et al. (2013) proposed a B-convex model which data from 10
US airlines to prove that airline efficiency is influenced by the size
of the airline, mergers, and acquisitions. Barros and Couto (2013)
applied the Luenberger productivity index and Malmquist pro-
ductivity index as they reported on the managerial causes of
technical efficiency and the variations in strategies adopted by 23
European airlines. Moreover, Mallikarjun (2015) developed an
unoriented DEA network method to measure the performance of
ated MCDM model for improving airline operational and financial
.org/10.1016/j.jairtraman.2017.06.003
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US airlines and identify the sources of inefficiency. Chou et al.
(2016) developed an airline performance evaluation model, called
the metadynamic network SBM, which incorporated the concept of
metafrontiers to facilitate comparisons of the performance of
decision-making units, while simultaneously generalizing the SBM,
network SBM, and dynamic SBM.

2.2. MCDM approaches

The use of MCDM approaches for airline industry applications
has been discussed by many authors. For example Hsu and Liou
(2013) combining the Decision Making Trial and Evaluation Labo-
ratory and the Analytical Network Process (DANP) methods to solve
an outsourcing provider decision problem for the airline industry. Li
et al. (2017) proposed a hybrid approach based on a fuzzy analytic
hierarchical process (AHP) and the 2-tuple fuzzy linguistic method
for the evaluation of in-flight service quality, and conducted an
application to study the comprehensive performance of in-flight
service quality in three Chinese airlines. Delbari et al. (2016) used
Delphi and AHP techniques to investigate the key competitiveness
indicators and drivers of full-service airlines. Garg (2016) devel-
oped a robust hybrid decision model for the evaluation and selec-
tion of strategic alliance partners in the airline industry, applying an
AHP for evaluation of the criteria and the fuzzy technique for order
performance by similarity to ideal solution (FTOPSIS) for the se-
lection of a strategic alliance partner, demonstrating the applica-
bility of their technique in a case for an Indian airline. Chen (2016)
proposed a combined MCDM model based on DEMATEL and ANP
for the selection of airline service quality improvement criteria,
basing this study on the Taiwanese airline industry. Lupo (2015)
considered the application of a fuzzy extension of the ServPerf
service conceptual model to estimate quality scores for funda-
mental service criteria. The non-compensative multi-criteria
decision-making ELECTRE III method was employed to point out
the quality ranking of service alternatives in a comparative evalu-
ation of the service quality of international airports in Sicily.
Additionally, Lin and Huang (2015) used ANP to measure the de-
terminants of low cost carriers purchase intentions and performed
a comparison of potential and current customers. Chao and Kao
(2015) proposed a method for the selection of a strategic cargo
alliance by airlines using the Fuzzy Delphi Method (FDM) and
calculating the weights of the selected dimensions and criteria
using the Fuzzy Analytic Hierarchy Process (FAHP).

Few articles have discussed the application of the MCDM
method to airline performance. Barrosa and Wanke (2015) applied
a two-stage TOPSIS and neural network approach to analyze the
efficiency of African airlines. The results revealed that network size-
related variables, such as economies of scale, are most crucial for
explaining efficiency levels in the African airline industry; however,
the impact of fleet mix and public ownership could not be
neglected. Wang (2008) applied gray relational analysis to cluster
financial ratios and find representative indicators. The author also
applied a fuzzy MCDM (FMCDM) method to evaluate the financial
performance of domestic airlines in Taiwan. Their results revealed
that the financial performance of these airlines could easily be
evaluated using the FMCDM method, regardless of the number of
alternatives and the location of financial competition in the airline
market.

There are some limitations to studies found in the literature.
Because both mathematical programming and DEA methods are
extreme point techniques, noise such as measurement error can
cause considerable problems. In addition, although DEA estimates
the “relative” efficiency it very narrowly converges to the “abso-
lute” efficiency. In other words, it can find how well a company is
performing in comparison to its peers but not compared with “the
Please cite this article in press as: Gudiel Pineda, P.J., et al., An integr
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best or ideal theoretical scenario.” Furthermore, the statistical hy-
pothesis tests involved in DEA are difficult because this method is
nonparametric. The MCDMmodels are more flexible tools enabling
the combination of quantitative and qualitative characteristics, for
considering the interrelationship among criteria and weighting the
priorities for the best decisions by considering the weight of each
involved criterion. However, in this method, the derivation of the
assessing criteria or factors usually remains questionable, because
of the lack of an objective evaluation method. Thus, this study ap-
plies DRSA, based on the rough set theory (Pawlak, 1982), to extract
the most essential factors relative to airline performance. The
MCDM methods are then used to investigate the weight of the
criteria and conduct gap analysis for improvement. The proposed
models are discussed in the next section. See Table 1 for a summary
of the afore-mentioned literature.

3. The proposed hybrid MCDM model

A decision-making process involves the interaction of several
factors in logical order, starting with the main goal, which is to
finally choose the best alternative, according to the established
criteria. In this study, the DRSA method is used to derive the
essential criteria based on historical data obtained from the Office
of the Assistant Secretary for Research and Technology, part of the
United States Department of Transportation. The DRSA is a data
mining technique that can generate a set of decision rules. Based on
the decision rules, we can extract the essential criteria that are
more closely correlated to airline performance. The essential
criteria decided on by the DRSA are then refined by the experts'
opinions. The DEMATEL method is then applied to build a relation
structure among the criteria for airline performance improvement.
When the relationships between criteria are decided, the DANP
method can be applied to derive the influential weights for each
criterion. Finally, the VIKOR method can be used to analyze the gap
to the aspired to ideal level, based on the influential weights for
each airline. The procedure is illustrated in Fig. 1.

3.1. DRSA method

The DRSA is an effective data mining technique that can analyze
both quantitative and quantitative datawith preferences. The DRSA
starts with an information table or information system that can be
represented with “objects” placed in rows and “attributes” in col-
umns. The ordinal evaluation of objects and criteria/attributes is
the main difference between DRSA compared with classical rough
set theory. The typical DRSA data table is comprised of four tuples,
which can be identified as an information system (IS) for IS ¼ (U, Q,
V, f), where U is a finite universe set; Q is a finite set of k attributes
(i.e., Q ¼ fq1; q2…; qkg); V is the value domain of the attribute (i.e.,
V ¼ ∪q2QVq); and f denotes a total function (i.e., f : U � Q/V). The
attributes in a typical DRSA model are comprised of condition
attribute H and decision attribute E, and the conditional attributes
are often regarded as the criteria for an MCDM evaluation problem.

Suppose that there are n objects in U. A complete outranking
relation on U can be defined as_ q with respect to a criterion q2Q.
If x3 qy for x; y2U, then it denotes that “x is at least as good as y
with respect to criterion q”. In DRSA, the outranking relation _ q is
generally supposed to be a completely preordered relation with
respect to criterion q. Decision attribute q2E divides U into a finite
number of decision classes (such as m decision classes), i.e.,
Cl ¼ fClt : Cl1;Cl2;…;Clmg for t ¼ 1;2;…;m. For each x2U, object x
belongs to only one class CltðClt2ClÞ. Assuming that Cl has pref-
erential order (i.e., for all r; s ¼ 1;…;m, if r_s, the decision class Clr
is preferred to Cls), a downward union Cl�t and an upward union Cl�t
of the classes can be defined by Eqs. (1) and (2):
ated MCDM model for improving airline operational and financial
org/10.1016/j.jairtraman.2017.06.003



Table 1
Summary table of the mentioned literature.

Author Aims Criteria Method Results

Lu et al. (2014) Examined 30 US
airlines'

Production and
marketing efficiency

Two-stage network
DEA

Allows the performance measurement process to be assessed, thus,
providing a new direction for measuring airline performance.

Lee and Worthington
(2014)

Simultaneously
estimated scores for 42
US and European
airlines

Airline efficiency
drivers

DEA and bootstrapped
truncated regression
model

US and most major European airlines need to scale-down operations.

Li et al. (2015a) Evaluated the efficiency
of 22 airlines from 2008
to 2012.

Airline efficiency
drivers

Virtual frontier
network SBM

The new model can be applied to a new benchmark airline such as
Scandinavian Airlines. Although passenger traffic, cargo traffic and
revenue decreased from 2008 to 2009, the overall efficiency of most
airlines increased in that period.

Chang et al. (2014) Analyzed trade-offs
between labor and
capital measures
among 27 international
airlines

Labor and capital DEA Fuel consumption and revenue structure are the major causes of
inefficiency in airlines.

Arjomandi and Seufert
(2014)

Evaluated performance
of 48 international
airlines

Environmental
performers

Bootstrapped DEA European full-service carriers (FSCs) seem relatively more
environmentally efficient.
Many of the most technically efficient carriers are from China and North
Asia.
Low-cost carriers (LCCs) are found to be more environmentally oriented
than FSCs.
Low-cost carriers are operating under increasing returns to scale.

Choi et al. (2015) Evaluated the service
quality of 12 US airlines

Service productivity Service quality-
adjusted DEA, and
ManneWhitney test

Low-cost airlines were found to benefit by marginal improvements in
service, often unexpected by their clientele. Network carriers, however,
tended to have a harder time meeting service expectations. While there
were short-term tradeoffs between service quality and productivity, in
the long term, a focus on service quality may help increase customer
satisfaction, thus improving service productivity and overall
organizational performance.

Barros et al. (2013) Examined data for 10
US airlines to prove
airline efficiency

Size of the airline,
mergers, and
acquisitions

B-convex model US airline efficiency can be influenced by the size of the airline, mergers
and acquisitions, and by time. Policy implications are derived.

Barros and Couto
(2013)

Reported on the
managerial causes of
technical efficiency and
the variations in the
strategies adopted by
23 European airlines.

Efficiency and
variations in strategies

Luenberger
productivity index and
Malmquist productivity
index.

Productivity decreased for almost all airlines between 2000 and 2011.
Productivity rose for a small group that includes the low cost airlines in
the sample.

Mallikarjun (2015) Measured the
performance of US
airlines and identified
the sources of its
inefficiency

Performance and
efficiency

Unoriented DEA
network

The results provide an insight into process-specific improvements for
airline operational managers.

Chou et al. (2016) Developed an airline
performance
evaluation model

Performance of
decision-making units

Metadynamic network
SBM

Suggested the airlines should put more focus on input resource
reduction for productivity improvement.

Hsu and Liou (2013) Solved an outsourcing
provider decision for
the airline industry.

Airline outsourcing Decision Making Trial
and Evaluation
Laboratory and the
Analytical Network
Process (DANP)

Employees with good knowledge skills contribute to better service
quality; a good relationship between airlines and their partners is the
foundation of a successful outsourcing activity; risk plays a major role in
the outsourcing evaluation system, and has the greatest effect on the
other dimensions.

Li et al. (2017), Evaluation of in-flight
service quality

Comprehensive
examination of in-flight
service quality for three
airlines in China.

Fuzzy AHP and 2-tuple
fuzzy linguistic method

The key factors affecting in-flight service quality were identified.

Delbari et al. (2016) Investigated the key
indicators and drivers
of competitiveness
indicators for full-
service airlines.

Key competitiveness
drivers.

Delphi and AHP The ranking of the key competitiveness drivers with respect to each
indicator differs significantly. The findings of this research provide
important implications for the evaluation and improvement of the
competitiveness of full-service airlines.

Garg (2016) Selection of strategic
alliance partners and
demonstrated the
applicability of this
method in a case study
of an Indian airline.

Integration & Network,
Marketing & Service,
and Logistics &
Resources

Analytic hierarchy
process (AHP) and
fuzzy technique for
order performance by
similarity to ideal
solution (FTOPSIS).

Considered the vagueness/impreciseness of expert opinions in the
evaluation process which makes this method a powerful tool in the
multi criteria decision making process

Chen (2016) Selection of airline
service quality
improvement criteria
based on the Taiwanese
airline industry.

Safety, Service,
Satisfaction and
Management.

Combined MCDM
model based on
DEMATEL and ANP.

Found the most important service quality improvement criteria for
Taiwanese airlines.

Lupo (2015) Pointed out the quality
ranking of service
alternatives in a study

Quality of service
alternatives.

Fuzzy extension of the
ServPerf and ELECTRE
III method

Only a few key service aspects played a focal role in airport service
quality.
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Table 1 (continued )

Author Aims Criteria Method Results

that compared and
evaluated the service
quality of international
airports in Sicily.

Lin and Huang (2015) Measured the
determinants of low
cost carriers purchase
intentions and
performed a
comparison of potential
and current customers.

Generated criteria that
affect customer
intentions to purchase
LCCs.

Analytic network
process (ANP)

Both potential and current customers considered reliability and image
to be the most important criteria.

Chao and Kao (2015) Selection of strategic
cargo alliances by
airlines.

Cargo business benefit Fuzzy Delphi Method
(FDM) and Fuzzy
Analytic Hierarchy
Process (FAHP).

China Airlines achieved greater benefits by choosing SkyTeam Cargo
rather than WOW.
Provided airlines with a useful reference for future strategic cargo
alliance selection.
Business benefit is the most important dimension for airlines selecting a
cargo alliance.

Barrosa and Wanke
(2015)

Analyzed the efficiency
of African airlines

Airline efficiency
Factors.

Two-stage TOPSIS and
neural network
approaches.

The network size-related variables, such as economies of scale, are most
crucial for explaining efficiency levels in the African airline industry.
However, the impact of fleet mix and public ownership cannot be
neglected.

Wang (2008) Evaluated the financial
performance of
domestic airlines in
Taiwan.

Financial Factors. Gray relation analysis
and fuzzy MCDM
(FMCDM)

The financial performance of these airlines can easily be evaluated using
the FMCDM method, regardless of the number of alternatives and the
location of finance competition in the airline market.
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Cl�t ¼ ∪
s�t

Cls; (1)

Cl�t ¼ ∪
s�t

Cls: (2)

The condition attributes (criteria) can be used to classify deci-
sion classes by their dominance relations. Given a set of attributes
F4H and x; y2U, x dominates ywith respect to a set of attributes F
which could be denoted by xDFy to represent that x F-dominates y.
Therefore, a set of objects (instances) dominating x is termed an F-
dominating set as in Eq. (3), and a set of objects dominated by x is
called an F-dominated set as in Eq. (4):

Dþ
F ðxÞ ¼ fy2U : yDFxg; (3)

D�
F ðxÞ ¼ fy2U : xDFyg: (4)

The F-dominating set and F-dominated set can be used to
represent a collection of upward and downward unions of decision
classes, which may represent granules of knowledge. The F-lower,
defined by Eq. (5), and F-upper approximation of an upward union
with respect to F4H can be defined as in Eq. (6):

F
�
Cl�t
�
¼
n
x2U : EþF ðxÞ4Cl�t

o
; (5)

F
�
Cl�t
�
¼
n
x2U : E�F ∩Cl

�
t s∅

o
: (6)

The F-lower approximation FðCl�t Þ denotes all of the objects in
x2U that are sure to be included in the upward union Cl�t , whereas
all objects have at least the same or better evaluationwith regard to
all criteria F4H. With the F-upper approximation and F-lower
approximation of Cl�t , the F-boundary of Cl�t is defined as:

BnF ¼ F
�
Cl�t
�
� F
�
Cl�t
�
: (7)
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The so-called dominance principle requires that if object x
dominates object y on all considered criteria F4H (i.e., in the
conditional part), then object x should also dominate y in the de-
cision attribute. The objects that comply with the dominance
principle are called consistent; otherwise, they are inconsistent.
Moreover, the quality of approximation is defined as the ratio
expressed in Eq. (8). Ratio gFðClÞ can be regarded as a consistency
ratio for all the objects from U and all considered condition attri-
butes F4H.

gFðClÞ ¼

����U �
�

∪
t2f2;:::;ng

BnF
�
Cl�t
������

jUj : (8)

Furthermore, the accuracy of approximation of the ordered
classes Cl�t with regard to a set of criteria F4H is defined as aFðCl�t Þ
in Eq. (9), and j $ j in Eqs. (8) and (9) is the cardinality of a set.

aF

�
Cl�t
�
¼

���F�Cl�t �������F�Cl�t ����: (9)

Each minimal subset F4H that may satisfy gFðClÞ ¼ gHðClÞ is
called a REDUCT of Cl, and the intersections of all REDUCTs repre-
sent the indispensable attributes to maintain the quality of the
approximation, called CORECl. The DRSA decision rules comprise
two types: certain and possible. The certain decision rules provide
conditions for objects belonging to FðCl�t Þ. More details for DRSA
can be found in Greco et al. (2001, 2002) and Błaszczy�nski et al.
(2007, 2013). In this paper, the strength of the rules is used to
select the relevant criteria.
3.2. The DEMATEL method

The DEMATEL methodology can reflect the relationship be-
tween the causes and effects of the criteria in an intelligent struc-
tural model. The final product of this method is a graphic
ated MCDM model for improving airline operational and financial
org/10.1016/j.jairtraman.2017.06.003



Fig. 1. The flow chart of the proposed model.
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representation, by which the respondent organizes its action in the
world. The purpose is to analyze the component structure of each
factor, and the direction and intensity of direct and indirect re-
lationships that flow between the components (Tzeng et al., 2007;
Liou et al., 2016). The obtained influential network relationship
Please cite this article in press as: Gudiel Pineda, P.J., et al., An integr
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map (INRM) can provide managers with directions for improve-
ment. The method's 4 steps are summarized below:

Step 1: Calculation of the initial direct influence matrix A.
ated MCDM model for improving airline operational and financial
.org/10.1016/j.jairtraman.2017.06.003
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For the calculation of matrix A (direct influence matrix) a group
of experts are asked to identify the degree of influence between the
factors or elements (criteria). Based on these scores the calculation
of an average matrix is possible. The scores provided indicate the
degree of influence factor i has over j factors, as indicated by aij. An
integer scale is applied to rank the influence between the elements
ranging from 0 to 4, where 0 ¼ No influence and 4 ¼ Very high
influence. It is possible to derive an average A matrix from any
group of direct matrices that proceed from the responses of the
group of experts, where each element of the average matrix rep-
resents the mean of the responses for the same element provided
by each expert.

Step 2: Calculation of the normalized D matrix.

Matrix D is calculated from the normalized influence matrix D
which is obtained by D ¼ ½dij�n�n. The direct influence matrix A is
normalized were 0 � dij � 1 , known as the “fuzzy cognitive ma-
trix”, in which all the principal diagonal elements are equal to zero.
With matrix D, it is possible to discover the initial effect that each
element exerts and receives from another. As mentioned, the goal
of DEMATEL is to map the interrelationship between all the ele-
ments of a system with the strength of the influence (degree of
influence) represented by a number.

During the calculation of matrix D, the full direct/indirect in-
fluence matrix must continuously decrease because of the indirect
effects of problems with the powers of matrix D, e.g., D2;D3; :::;D∞

so that it will guarantee convergent solutions to the matrix inver-
sion. With the above analysis it is possible to illustrate an infinite
series of direct and indirect effects.

The matrix D can be calculated as follows:

D ¼ s$A; s>0; (10)

where

s ¼ min

"
1

max1�i�n
Pn

j¼1
��aij��;

1
max1�i�n

Pn
i¼1
��aij��

#
; (11)

and

lim
m/∞

Dm ¼ ½0�n�n; D ¼ �dij�n�n; 0 � dij <1:

Step 3: Calculation of the total-influence matrix G.

The total-influence matrix G can be obtained by using Eq. (12)

G ¼ Dþ D2 þ D3 þ :::þ Dm ¼ DðI � DÞ�1 when m � >∞:

(12)

Through Eqs. (13) and (14), it will be possible to define the sum
of the rows and the sum of the columns separately which can be
denoted as vector r and c within the total-influence matrix G.

G ¼
h
gij
i

i; j ¼ 1;2;…;n;

r ¼ ½ri�n�1 ¼
0
@Xn

j¼1

gij

1
A

n�1

;
(13)
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c ¼ ½ci�01�n ¼
 Xn

i¼1

gij

!0

1�n

; (14)

where superscript ’ denotes transport.
Suppose ri denotes the row sum of the ith row in matrix G, then

ri shows the sum of the direct and indirect effects of factor i on the
other factors/criteria. If ci denotes the column sum of the j th col-
umn of matrix G, then ci shows the sum of the direct and indirect
effects that factor i has received from the other factors. Further-
more, when i ¼ j (i.e., the sum of the row and column aggregates)
(ri þ ci) provides an index of the strength of influences given and
received, that is, ðri þ ciÞ, shows the degree of importance that
factor i plays in the problem. If (ri e ci) is positive, then factor i is
affecting other factors and if (ri e ci) is negative, then factor i is
being influenced by other factors (Tzeng et al., 2007).

Step 4: Derivation of the influence network relationship map
(INRM)

Based on matrix G, each element gij of matrix G, provides in-
formation about how element i affects or has influence over
element j. By identifying and choosing the elements in matrix G
with the highest influence level value compared to a threshold
value, it is possible to finally construct the INRM. The threshold
value can be decided through expert opinions obtained during
brainstorming as well as by calculating an average for matrix G. As
long as the threshold value and the relative INRM have been
decided, the final results of the DEMATEL process can be shown in
an INRM.
3.3. The DEMATEL-based analytic network process

In this study, the DEMATEL-based ANP, which was developed by
Lee et al. (2009), combining the original DEMATEL method and
basic concepts of ANP (DANP), is applied to calculate the influential
weights of the criteria. The DANP method can be summarized in 3
steps:

Step 1: Model construction and problem structuring

Using the INRM developed from the DEMATEL method, we can
construct the interrelationships for the evaluation system. Based on
the derived structure, the formation of a supermatrix can be
decided.

Step 2: Integration of the DEMATEL and ANP to develop an un-
weighted supermatrix

The ANP method uses a “supermatrix”. Pairwise comparisons
are obtained by asking a group of experts questions like “Howmuch
importance (priority) does one criterion have compared to another
criterion, with respect to our interests or preferences?” Through
this process it is possible to identify the difference in importance
between criteria. In this study, we adopt the results of DEMATEL,
which indicate the degrees of influence between criteria, to
transform the influence degrees into priority vectors between
criteria. Eq. (15) shows the standard form of the DANP supermatrix
developed based on the DEMATEL technique, using the previously
mentioned matrix G, normalized to GN

C as in Eq. (15).
ated MCDM model for improving airline operational and financial
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After the normalization of the total-influence matrix G, the un-
weighted supermatrix can be obtained by transposing GN

C , by
setting W ¼ ðGN

C Þ0. In addition, to adjust the weights among di-
mensions, the dimensional matrix GD is normalized to become GN

D
as follows:

GD ¼
2
4 g11D / g1nD

« 1 «
gn1D / gnnD

3
5; (16)

GN
D ¼

2
4 g11D

.
d1 / g1nD

.
d1

« 1 «

gn1D
.
dn / gnnD

	
dn

3
5 ¼

2
4 gN11D / gN1nD

« 1 «
gNn1D / gNnnD

3
5: (17)

The adjusted supermatrix can be obtained by multiplying GN
D by

the un-weighted supermatrix W; and the limiting supermatrix can
be derived by multiplying itself by itself multiple times until the
weights become stable and converge as a weighted supermatrix
WN ¼ GN

DW . For a more detailed explanation of the calculation
procedure please see Liou et al. (2016).

Step 3: Calculation of the influential weights of the criteria

As a final step to calculate the influential weights of each cri-
terion, the weighted supermatrix can be raised to limiting powers,
as in Eq. (18). In general, the process of raising power z can be
stopped when the limiting supermatrix becomes stable. The final
product of the DANP will give us the platform to make better de-
cisions based on the weights. These are then used with the VIKOR
method for weighted gap analysis and finally to make decision
proposals.

limz/∞ ¼
�
WN

�z
: (18)

3.4. Using the modified VIKOR method to find the gaps to the
aspiration level

Themodified VIKORmethod applied in the present study differs
from the traditional method derived by Opricovic (1998) and
Opricovic and Tzeng (2004, 2007). The traditional VIKOR method is
used to produce a multiple-criteria ranking index, which is based
on ameasure of proximity to the ideal solution, a concept of relative
good. The modified VIKOR method replaces the relative good with
aspiration levels reflecting the real world situation.

The VIKORmethod (Opricovic, 1998; Opricovic and Tzeng, 2004,
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2007; Liou et al., 2011; Saketa et al., 2015; Hsu et al., 2017) is
explained as follows:

Step 1: An aggregation function is carried out to form a
compromise ranking

According to Yu (1973), it is necessary to begin with an Lp metric
which is used as an aggregation function to form the compromise
ranking. The Lp metric can be represented by

LPk ¼
8<
:
Xn
j¼1

h
wj

����f *j � fkj
����.����f *j � f�j

����iP
9=
;

1=P

; 1 � p � ∞; k

¼ 1;…;m

(19)

Step 2: The indexes Sk and Rk

In this step, it is necessary to calculate the indexes Sk formulated
as in Eq. (20) and Rk formulated in Eq. (21), while p ¼ 1 and p ¼ ∞,
respectively.

Sk ¼ LP¼1
k ¼

Xn
j¼1

h
wj

����f *j � fkj
����.����f *j � f�j

����i; (20)

Rk ¼ LP¼∞
k ¼ maxj

n
wj

����f *j � fkj
����.����f *j � f�j

����jj ¼ 1;2;…;n
o
:

(21)

In Eqs. 20 and 21, the best value is denoted by f *j , defined as the
aspiration level on the j th criterion; f�j denotes the tolerable value
on the j th criterion. The results of indexes Sk and Rk form the
compromise ranking index Qk based on the weighted group utility
(i.e., weight ¼ v) and individual regret (i.e., weight ¼ 1� v) as
follows:

Qk ¼ v�


Sk � S*

�

S� � S*

�þ ð1� vÞ �


Rk � R*

�

R� � R*

� : (22)

Traditionally, this approach uses S* ¼ minkfSkjk ¼ 1;2;…;mg
and S� ¼ maxkfSkjk ¼ 1;2;…;mg; as well as
Q* ¼ minkfQkjk ¼ 1;2;…;mg and Q� ¼ maxkfQkjk ¼ 1;2;…;mg in
Eq. (22). Setting f *j as the aspiration level and f�j as the tolerable
value, thenwe can get S* ¼ Q* ¼ 0 and S� ¼ Q� ¼ 1. Therefore, Eq.
(22) can be re-written as Eq. (23).
ated MCDM model for improving airline operational and financial
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Table 2
Attributes used in the DRSA method.

Attribute (Criterion) Domain values Value set Dimension

Decision attribute
Operative profit or loss/net income (d1) d1 � 0; 0 < d1 � 1; 1 < d1 {0, 1, 2} Finance
On time performance (d2) d2 � 80%; 80% < d2 {1, 2} Operation

Condition attribute
Net income In thousand dollars Continue Finance
Operative profit/loss In thousand dollars Continue Finance
Operative revenue In thousand dollars Continue Finance
Baggage fees In thousand dollars Continue Finance
Reservation charges fees In thousand dollars Continue Finance
Operative expenses In thousand dollars Continue Finance
Stock's price Dollars in NYSE/NASDA Continue Finance
Fuel cost and consumption In thousand dollars Continue Finance
Labor Number of people Continue Finance
Available Seat-miles Number of seats and the distance flown in thousands Continue Operation
Load factor Passenger-miles as a proportion of available seat-miles in percent Continue Operation
Flights Units Continue Operation
Freight In Thousands of Dollars $000 Continue Operation
Mishandled Baggage Per 1000 passengers Continue Operation
Passengers Number of people Continue Operation
Air Carrier delays as domino effect Percentage (%) Continue Operation
Weather delays Percentage (%) Continue Operation
Security delays Percentage (%) Continue Operation
Aircraft arriving late Percentage (%) Continue Operation
Canceled flights Percentage (%) Continue Operation
National aviation system delays Percentage (%) Continue Operation

Table 3
Financial and operational efficiency quality approximation.

Financial efficiency
Quality of approximation:
0.975

Operational efficiency
Quality of approximation:
1.00

Union names Accuracy Cardinality Accuracy Cardinality

At most 0 0.833 17 1.000 5
At least 1 0.971 102 1.000 115
At most 1 0.889 26 1.000 83
At least 2 0.968 93 1.000 37
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Qk ¼ v� Sk þ ð1� vÞ � Rk: (23)

4. Empirical example from a real-world case of financial and
operational performance

To illustrate the effectiveness and usefulness of the proposed
model, it is applied to a real-world case.

4.1. Background and problem description

There has been considerable fluctuation in the finances and
operations of airlines in the last ten years because of fuel price
fluctuations, global financial crises, and a reduction in the number
of passengers caused by terrorism. Improper financial and opera-
tional management decisions might also affect internal costs,
resulting in high-risk situations. Airline managers need a useful
tool to help them identify, diagnose, and rank the factors affecting
decisions and make plans for improvement of financial and oper-
ational performance. The MCDM data mining technique provides a
useful for this purpose because it can combine all the factors of
concern to generate acceptable solutions. The solution method can
be divided into four stages: (1) In the first state, the DRSAmethod is
applied to explore historical data and to identify essential factors
(criteria) related to airlines' operation and financial performance;
(2) the DEMATEL method is then applied to determine the inter-
relationship among the essential criteria by applying the responses
of a survey of a group of experts asked to evaluate the influences
among the criteria; (3) the influential weights of the essential
criteria are derived by the DANP method; and (4) a modified VIKOR
method is applied to help managers identify the priorities of
weighted gaps for improvement.

4.2. Extracting essential decision variables using the DRSA method

The proposed model developed in this study was tested using
over 10 years (2005e2014) of real data provided by the Office of the
Please cite this article in press as: Gudiel Pineda, P.J., et al., An integr
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Assistant Secretary for Research and Technology of the United
States Department of Transportation (2016). The raw data were
obtained from the monthly released reports for the top 12 airlines
in the United States, which are currently transporting passengers
and cargo. The data set included two types of variablesdfinancial
and operational. Because the inclusion of all variables in the anal-
ysis is not practical, we first applied DRSA to extract the most
essential variables of both types. Among financial variables, oper-
ating profit or loss/net income was set as the decision variable,
whereas the remaining were considered condition variables; three
levels of the decision value were considered: good (>1), medium
(0e1), and poor (<0). Among operational variables, on-time per-
formance percentage was set as the decision variable with two
levels: good (�80%) and poor (<80%). The attributes and their
domain values are presented in Table 2.

Through DRSA analysis, we derived a set of rules having the
most relevant factors/criteria for the airlines' financial and opera-
tional performance. Table 3 lists the financial and operational ef-
ficiency quality approximations. The results showed a very good
quality of approximation with minimum accuracy (0.833) at union
of at most 0. The derived set of rules having at least medium or
good support are presented in Table 4. These rules present higher
correction with good airline performance. From Table 4, 11 criteria
for the rules with high support rates were extracted for the next
stage of analysis. The DRSA method enabled the identification of
the critical factors (criteria) to be considered by ascertaining the
presence or frequency of these in the decision rules and excluding
ated MCDM model for improving airline operational and financial
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Table 4
Minimum cover rules for a decision, which is at least medium or good.

No. Conditions Decision Support

Financial dimension
1 (Labor � 3067.0) d1 � 2 8
2 (Baggage fees � 862909.0) d1 � 2 4
3 (Operative revenue � 3.8287134E7) d1 � 2 3
4 (Net income � 87468.0) & (Labor � 47286.0) d1 � 2 37
5 (Operative profit or loss � 14248.0) & (Stock's price � 35.65) d1 � 2 17
6 (Baggage fees � 64078.0) & (Fuel cost and consumption � 1663606.0) d1 � 2 17
7 (Baggage fees � 14316.0) & (Stock's price � 38.74) d1 � 2 12
8 (Net income � 10984.0) & (Labor � 3635.0) d1 � 2 8
9 (Net income � 13525.0) & (Operative profit or loss � 43780.0) & (Labor � 12638.0) d1 � 2 45
10 (Baggage fees � 13555.0) & (Labor � 9269.0) d1 � 2 23
11 (Operative revenue � 1131705.0) & (Labor � 4034.0) d1 � 2 8
12 (Baggage fees � 475184.0) & (Fuel cost and consumption � 4857093.0) d1 � 2 2
13 (Operative revenue � 2.3957565E7) & (Fuel cost and consumption � 7153077.0) d1 � 2 2
Operational dimension
1 (Freight � 922630.0) d2 � 2 1
2 (Freight � 6041.0) & (Weather delays � 0.21) d2 � 2 11
3 (Freight � 6857.0) & (Diverted delays � 0.09) d2 � 2 11
4 (Cancelled flights � 0.33) & (National aviation system delays � 6.14) d2 � 2 14
5 (Security delays � 0.08) & (National aviation system delays � 2.78) d2 � 2 18
6 (Aircraft arriving late � 4.61) & (National aviation system delays � 6.56) d2 � 2 20
7 (Air Carrier delays as domino effect � 4.31) & (Aircraft arriving late � 6.46) d2 � 2 15
8 (Cancelled flights � 0.33) & (National aviation system delays � 6.14) d2 � 2 9
9 (Air Carrier delays as domino effect � 4.96) & (National aviation system delays � 4.92) d2 � 2 21

Table 5
Dimensions and criteria for airline performance improvement.

Goal Dimensions Criteria

Establish performance improvement planning goals per airline Internal financial factors (D1) Net income (C11)
Operative profit (C12)
Operative revenue (C13)
Operative expenses (C14)

External financial factors (D2) Stock's price (C21)
Fuel cost and consumption (C22)

Internal operational factors (D3) Available Seat-miles (C31)
Freight (C32)
Air Carrier delays as domino effect (C33)

External operational factors (D4) Aircraft arriving late (C41)
Diverted delays (C42)
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non-relevant criteria. The 11 extracted criteria were further divided
by internal and external dimensions as shown in Table 5.

4.3. Using the DEMATEL method to measure the relationships
among criteria

After defining the criteria, we invited aviation experts to survey
and explore the interrelationship among the criteria and the di-
rection of influence. We surveyed 20 experts from eight airlines,
namely United Airlines, American Airlines, US Airways, Delta Air
Table 6
Initial influence matrix A.

A C11 C12 C13 C14 C21 C22 C31 C32 C33 C41 C42

C11 0.00 0.00 0.00 0.00 3.25 0.00 2.75 2.00 0.00 0.00 0.00
C12 3.25 0.00 0.00 0.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00
C13 3.75 3.00 0.00 2.75 2.88 2.00 2.38 0.00 0.00 0.00 0.00
C14 3.13 3.00 0.00 0.00 2.25 0.00 2.63 0.00 0.00 0.00 0.00
C21 2.50 2.00 0.00 2.13 0.00 1.88 0.00 0.00 0.00 0.00 0.00
C22 3.13 3.38 0.00 3.50 2.38 0.00 2.25 3.00 2.25 2.25 1.75
C31 2.75 2.88 2.38 2.50 2.63 2.13 0.00 2.25 2.25 2.00 2.13
C32 2.88 2.63 2.75 2.88 2.13 2.25 0.00 0.00 2.00 2.13 2.13
C33 3.25 3.00 2.75 2.50 2.50 2.25 2.13 2.63 0.00 3.00 1.75
C41 2.63 2.88 2.50 3.13 2.13 2.13 1.88 2.25 2.63 0.00 0.00
C42 2.38 2.75 2.50 3.00 2.13 2.50 2.38 2.50 3.13 2.63 0.00
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Lines, Spirt Airlines, Emirates, Copa Airlines, and Avianca. The ex-
perts were or had worked as airline station managers, station su-
pervisors, operations supervisors, or hub or headquarter
administrative personnel. The experts were asked to determine the
level of influence among the criteria based onwhich we established
matrix A by calculating the average number produced from the
DEMATEL survey. The average initial direct-relation 11� 11 matrix
Awas obtained by pairwise comparisons in terms of the influences
and directions of influence among criteria (Table 6).

From Table 6, the normalized direct-relation Dwas calculated by
Table 7
Total influence matrix G.

G C11 C12 C13 C14 C21 C22 C31 C32 C33 C41 C42

C11 0.05 0.04 0.02 0.04 0.15 0.03 0.11 0.09 0.02 0.02 0.02
C12 0.13 0.01 0.00 0.01 0.10 0.01 0.01 0.01 0.00 0.00 0.00
C13 0.21 0.16 0.02 0.14 0.17 0.10 0.13 0.04 0.02 0.02 0.02
C14 0.15 0.13 0.01 0.03 0.12 0.02 0.11 0.02 0.01 0.01 0.01
C21 0.12 0.10 0.01 0.09 0.04 0.07 0.03 0.02 0.01 0.01 0.01
C22 0.25 0.22 0.06 0.21 0.20 0.07 0.15 0.16 0.12 0.12 0.09
C31 0.24 0.21 0.13 0.18 0.21 0.14 0.08 0.14 0.12 0.12 0.10
C32 0.23 0.19 0.13 0.18 0.19 0.13 0.08 0.06 0.11 0.11 0.10
C33 0.26 0.22 0.15 0.19 0.22 0.15 0.16 0.16 0.06 0.15 0.09
C41 0.22 0.20 0.13 0.19 0.19 0.13 0.13 0.13 0.12 0.04 0.03
C42 0.24 0.23 0.14 0.21 0.21 0.16 0.17 0.16 0.16 0.14 0.04
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Table 8
Sum of influences given and received on criteria.

G C11 C12 C13 C14 C21 C22 C31 C32 C33 C41 C42

r 0.58 0.30 1.03 0.65 0.51 1.66 1.68 1.50 1.80 1.52 1.86
c 2.10 1.73 0.80 1.47 1.81 0.99 1.16 0.99 0.77 0.75 0.52

r þ c 2.68 2.03 1.82 2.12 2.32 2.65 2.84 2.50 2.57 2.27 2.38
r-c �1.52 �1.42 0.23 �0.82 �1.30 0.67 0.52 0.51 1.03 0.76 1.34

Fig. 2. INRM of the evaluation system.

Table 9
Weighted supermatrix.

C11 C12 C13 C14 C21 C22 C31 C32 C33 C41 C42

C11 0.33 0.82 0.39 0.47 0.39 0.33 0.31 0.31 0.32 0.30 0.30
C12 0.28 0.08 0.31 0.40 0.30 0.31 0.28 0.26 0.27 0.27 0.27
C13 0.14 0.02 0.04 0.04 0.02 0.08 0.17 0.18 0.18 0.17 0.17
C14 0.25 0.08 0.26 0.09 0.29 0.28 0.24 0.25 0.23 0.26 0.26
C21 0.83 0.92 0.64 0.85 0.36 0.75 0.61 0.59 0.60 0.60 0.57
C22 0.17 0.08 0.36 0.15 0.64 0.25 0.39 0.41 0.40 0.40 0.43
C31 0.51 0.50 0.67 0.74 0.47 0.34 0.24 0.32 0.42 0.34 0.35
C32 0.40 0.39 0.21 0.16 0.34 0.37 0.40 0.24 0.42 0.34 0.33
C33 0.09 0.11 0.13 0.09 0.18 0.28 0.36 0.43 0.15 0.32 0.33
C41 0.53 0.54 0.55 0.53 0.56 0.57 0.53 0.54 0.61 0.56 0.77
C42 0.47 0.46 0.45 0.47 0.44 0.43 0.47 0.46 0.39 0.44 0.23
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applying Eqs. (10) and (11). We then derived the total influence
matrix G by using Eq. (12) (Table 7). The sum of the influence given
and received by each dimension was calculated with Eqs. (13) and
(14) (Table 8). The influence network relation map (INRM) plotted
using the total influence matrix G and Table 8 is illustrated in Fig. 2.
From the INRM, the direction of influence between dimensions and
criteria can be visualized. The INRM indicates that the external
operational dimension (D4) is marked by an arrow pointing toward
the internal operational dimension (D3). This shows how external
criteria (uncontrollable factors in managerial terms) can directly
affect the internal criteria (controllable factors). Furthermore, the
arrow pointing from the external financial dimension (D2) toward
the internal financial dimension (D1) indicates that all actions and
dimensions directly affect the costs, expenses, and profitability. The
network relationship within dimension (D1) indicates that all
criteria directly or indirectly affect the net income (C11), which is
located in the extreme lower part of the graph, with all arrows
pointing toward it. This result indicates that all actions or influen-
tial factors in an airline consequently involve some type of cost or
expense. In addition, external factors affect internal factors, indi-
cating that minimizing the negative impact of any external opera-
tional factors (D4) can improve the internal operational factors (D3).
The INRM results also indicates that fuel cost (C22) is the causative
factor within subsystem D2 and that the influence of D2 on D1 im-
plies that fuel cost is the key factor affecting the airlines' financial
performance.
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4.4. Using the DANP method to obtain influential weights of criteria

After the DEMATEL analysis, the relationship structure between
all criteria was derived and the structure of the supermatrix was
confirmed. The DANP method was used to obtain the influential
weights of the criteria. Based on the DEMATEL results, we adjusted
the weight vectors to create dimension matrixes GD and GN

D by
using Eqs. (16) and (17) followed by a weighted supermatrix
(Table 9). Eq. (18) was applied to calculate the limiting power of the
weighted supermatrix as indicated in Table 10; the final influential
weights produced for each criterion and dimension are shown in
ated MCDM model for improving airline operational and financial
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Table 10
Limiting supermatrix.

C11 C12 C13 C14 C21 C22 C31 C32 C33 C41 C42

C11 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
C12 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
C13 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
C14 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
C21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
C22 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
C31 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
C32 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
C33 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
C41 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
C42 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

P.J. Gudiel Pineda et al. / Journal of Air Transport Management xxx (2017) 1e1512
Table 11. The calculated influential weights reflect the importance
of each factor (criterion) involved in the decision-making process.
According to Table 11, the top priority criteria in global weights is
the stock price (global rank priority #1) and net income (global
rank priority #2), indicating how carefully managers must manage
overall operational performance to achieve the best financial per-
formance as a primary goal.

4.5. Using the VIKOR method to explore the gaps to the aspiration
levels

After obtaining the criterion weights (Table 11), we asked the
same group of domain experts to analyze the 10 years of historical
data, considering each dimension of financial and operational
performance. The results of the evaluation of all the criteria and
determination of the evaluation score of each alternative and his-
torical performance are summarized in Table 12. The experts were
asked to evaluate 12 US airlines (alternatives), considering different
Table 11
Influential weights on criteria and dimensions.

Dimension Local weight Ranking Criteria

D1 0.34 1 C11
C12
C13
C14

D2 0.32 2 C21
C22

D3 0.22 3 C31
C32
C33

D4 0.13 4 C41
C42

Table 12
Original evaluation score of alternatives.

Dimension/
criteria

A1 A2 A3 A4 A5 A6

D1 C11 6.15 5.54 5.46 8.31 6.46 7.08
C12 7.31 6.92 6.46 7.31 6.23 6.92
C13 8.54 7.69 6.69 8.38 6.77 6.92
C14 6.62 6.38 6.62 5.62 6.54 6.85

D2 C21 8.00 7.15 7.77 6.69 5.62 7.31
C22 6.62 6.54 6.46 6.23 5.69 6.46

D3 C31 7.77 8.23 6.69 7.69 6.38 6.31
C32 8.15 6.92 6.62 7.85 6.23 5.77
C33 7.15 6.00 5.85 5.85 5.77 7.00

D4 C41 8.38 6.92 6.08 4.69 6.00 7.31
C42 7.62 7.08 5.23 7.08 6.77 6.69
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geographical location hubs, fleet sizes, number of employees, and
market segments. The experts evaluated historical data and were
asked to rate performance as “excellent”, “very good”, “good”,
“considerable”, “poor”, or “bad” based on the data. They also ranked
performance on a scale of 1e10, where 1 indicated bad perfor-
mance and 10 excellent performance. After obtaining the average
score from the experts' responses (Table 12) and applying Eqs.
(20)e(23), the final ranking of the airlines with the best financial
and operational performance was determined on the basis of the
DANP weights and VIKOR method results, as presented in Table 13.
5. Results and discussion

Some crucial management implications can be derived from our
analysis. As can be seen in Table 11, the dimension of internal
financial factor (D1) had the highest weight (34%), followed by
external financial factors (D2; 32%), indicating that managers
should consider financial criteria to be more critical than other
operational criteria. The INRM results (Fig. 2) indicated a logical
path for strategic planning to reach the main goals for improve-
ment. We observe that operational criteria (in D3 and D4) are the
cause and financial criteria (in D1 and D2) are the effect. In other
words, the order of improvement should begin with operational
factors which would influence the financial performance. Our case
study results show that controllable factors should have the highest
priority among managerial tasks because of the capacity to rapidly
correct controllable actions. Managers must take action in relation
to controllable factors in order to reach optimization goals and
minimize the negative impact of the uncontrollable factors.

Among the criteria, stock price (C21) had the top priority (21%) in
the global ranking weights (see Table 11) and was located at the
center of the INRM (see Fig. 2), because it is affected by operational
factors and can influence other internal financial criteria. The
Local weight Ranking Global weight Ranking

0.39 1 0.13 2
0.28 2 0.09 5
0.10 4 0.03 11
0.23 3 0.08 6
0.67 1 0.21 1
0.33 2 0.10 3
0.44 1 0.10 4
0.34 2 0.07 7
0.22 3 0.05 10
0.56 1 0.07 8
0.44 2 0.06 9

A7 A8 A9 A10 A11 A12

6.38 7.69 5.38 5.77 5.54 6.00
6.62 7.54 6.08 5.92 4.85 3.92
7.85 7.31 6.54 6.69 5.69 5.69
6.62 6.08 6.54 6.15 6.23 6.31
6.23 7.69 5.31 4.15 6.54 6.62
5.92 6.00 6.31 5.77 4.77 5.08
7.08 6.62 7.23 6.54 6.15 6.46
5.85 5.85 7.46 6.00 5.15 6.92
6.46 6.08 6.54 6.46 6.38 6.00
7.00 5.23 4.69 5.54 4.92 4.38
7.69 5.85 5.54 6.85 5.85 5.77

ated MCDM model for improving airline operational and financial
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Table 13
Overall synthesized priorities for alternatives.

Dimension/criterion Local weight Global weight VIKOR

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

D1 0.34 e 0.32 0.37 0.39 0.26 0.36 0.30 0.34 0.28 0.40 0.40 0.45 0.45
C11 0.39 0.13 0.38 0.45 0.45 0.17 0.35 0.29 0.36 0.23 0.46 0.42 0.45 0.40
C12 0.28 0.09 0.27 0.31 0.35 0.27 0.38 0.31 0.34 0.25 0.39 0.41 0.52 0.61
C13 0.10 0.03 0.15 0.23 0.33 0.16 0.32 0.31 0.22 0.27 0.35 0.33 0.43 0.43
C14 0.23 0.08 0.34 0.36 0.34 0.44 0.35 0.32 0.34 0.39 0.35 0.38 0.38 0.37

D2 0.32 e 0.25 0.30 0.27 0.35 0.44 0.30 0.39 0.29 0.44 0.53 0.40 0.39
C21 0.67 0.21 0.20 0.28 0.22 0.33 0.44 0.27 0.38 0.23 0.47 0.58 0.35 0.34
C22 0.33 0.10 0.34 0.35 0.35 0.38 0.43 0.35 0.41 0.40 0.37 0.42 0.52 0.49

D3 0.22 e 0.22 0.27 0.35 0.27 0.38 0.37 0.35 0.38 0.28 0.37 0.41 0.35
C31 0.44 0.10 0.22 0.18 0.33 0.23 0.36 0.37 0.29 0.34 0.28 0.35 0.38 0.35
C32 0.34 0.07 0.18 0.31 0.34 0.22 0.38 0.42 0.42 0.42 0.25 0.40 0.48 0.31
C33 0.22 0.05 0.28 0.40 0.42 0.42 0.42 0.30 0.35 0.39 0.35 0.35 0.36 0.40

D4 0.13 e 0.20 0.30 0.43 0.43 0.37 0.30 0.27 0.45 0.49 0.39 0.47 0.50
C41 0.56 0.07 0.16 0.31 0.39 0.53 0.40 0.27 0.30 0.48 0.53 0.45 0.51 0.56
C42 0.44 0.06 0.24 0.29 0.48 0.29 0.32 0.33 0.23 0.42 0.45 0.32 0.42 0.42

Total performance/gap 0.26 0.32 0.35 0.31 0.39 0.32 0.35 0.32 0.40 0.43 0.43 0.42
Ranking 1 4 7 2 8 3 6 5 9 12 11 10
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higher priority of stock price (C21) should be reflected in the
managers' priority to maximize profit. Another reason for the
higher priority is that some airlines allow its employees to buy or
are awarded company stocks as a bonus. Moreover, in terms of the
criteriawithin internal financial factors, our results showed that net
income (C11) has the second highest priority (13%), whereas oper-
ating revenue (C13) has the lowest priority among the airline per-
formance criteria. According to these results, operational factors
have a direct effect on financial factors, with internal financial
factors (D1) deemed essential because all other criteria involved in
the performance analysis directly or indirectly influence net in-
come (C11), indicating that any action or decision has direct effects
in monetary terms. This result can also be observed by looking at
the INRM (Fig. 2) (lower part of the dimension (D1)). C11 is influ-
enced by all other criteria with the largest (r þ c) value. Notably,
although diverted delays (C42) has the lowest priority in the eval-
uation system, it has the highest net influence (r e c) value
(Table 8). This indicates that external operational factors are the
root cause, directly or indirectly influencing other criteria.

Furthermore, as per the INRM (Fig. 2), the external operational
and financial dimensions can influence the internal financial
criteria. However, the external operational and financial conditions
are subject to uncertainty (e.g., weather or runway conditions, in
the case of external operational factors, international incidents,
regional economic and financial situations, politics, and stock
market speculation, on the external financial side). Results indicate
that internal operations should be adjusted on the basis of the
external conditions in order to improve the company's internal
financial performance. However, managers should first check to see
if the internal operational factors are performing efficiently to
minimize the adversities of the external conditions, and then
consider other criteria.

Table 13 shows the overall synthesized gap for each alternative
(airline). Delta Air Lines (A1) is the best performing airline with the
lowest gap of 0.26, followed by Southwest Airlines (A4; 0.31), Alaska
Airlines (A6; 0.32), and United Airlines (A2; 0.32). Table 13 presents
the strengths and weaknesses of these companies in detail. Based
on the strengths, weaknesses, and derived INRM, airline managers
can develop a strategy to improve their performance. For example,
Delta Airlines (A1) had strong efficiency in operating revenue (C13;
gap rate, 0.15), aircraft arriving late (C41; gap rate, 0.16), and freight
management (C32; gap rate, 0.18); in contrast, its weaknesses
included net income (C11), with a high gap rate of 0.38, followed by
operating expenses (C14; gap rate, 0.34), and fuel cost and
Please cite this article in press as: Gudiel Pineda, P.J., et al., An integr
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consumption (C22; gap rate, 0.34). According to the INRM (Fig. 2),
the priority for improvement should be air carrier delays which has
a domino effect (C33), because this has the highest gap rate (0.28)
among the operational factors.

The internal operational factors influence the internal financial
factors. It is thus logical to start from these internal operational
factors. From this viewpoint, an internal change can influence
external financial factors, for example, stock prices. Moreover,
improved internal efficiency can mitigate the impact of uncon-
trollable external negative factors, whether operational or financial.
For example, bad weather, which is an uncontrollable external
factor, can reduce the percentage of on-time performance but, if we
have efficient internal operational and financial performance, the
negative impact of this or any other external factor can gradually be
mitigated. By managing, planning, and using more effective tools to
improve schedule alterations caused by air carrier delays (the
domino effect) (C33), the different factors involved in handling the
available seat-miles (C31) and freight (C32) may be improved.
Improvement of these aforementioned factors can influence the
amount of operating revenue (C13) and improvement in terms of
appropriately managing and minimizing operating expenses (C14)
can increase operating profit (C12), ultimately reaching the goal of
maximizing net income (C11). Logically, internal controllable factors
may also affect external financial factors. In the INRM (in Fig. 2), an
upper position indicates an influence on internal financial opera-
tional factors. Internal improvement can aid in influencing external
factors, as in case of stock price (C21), possibly minimizing the
negative effects of fuel price increases and fluctuations. Fuel cost
and consumption (C22) is also an uncontrollable factor, but its
negative effects can be reduced if internal improvements reach a
significant level. In the case of external operational factors, the
diverted delays (C42) criterion influences late aircraft arrival (C41).
Both of these are mapped in the top section of the INRM indicating
that they influence all other factors. Internal limitations are influ-
enced by physical factors, such as wind conditions and flight plans
for established international routes. In both cases, any negative
effect can impact all other dimensions; however, if improvement is
made in the handling of controllable factors, this may mitigate the
negative impact of external factors.

The results obtained using our hybrid model should help airline
managers make better decisions. The proposed model is efficient
and useful because it relies upon real databases as well as the
consensus of judgement from a diverse group of highly experienced
airline staff, in this case, from eight full-service airlines, including
ated MCDM model for improving airline operational and financial
org/10.1016/j.jairtraman.2017.06.003
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some of the top US airlines. In general, according to the results in
Table 8 and the INRM, it can be seen that diverted delays (C42) and
air carrier delays have a domino effect (C33) and are critical criteria
within causative factors (larger r e c value), whereas available seat-
miles (C31) and net income (C11) are critical criteria in the category
of effect factors (larger r þ c value). The results of gap analysis
(Table 12) indicate that improvement in controllable operational
criteria should improve financial performance. This practical and
flexible tool can help airline managers make decisions and set
priorities to focus on customer service and maintain control over
operational costs in order to improve company competitiveness
and profitability within the industry. The results demonstrate that
the proposedmodel is suitable tomake these decisions, saving time
by predefining priority weights and, in combinationwith the VIKOR
method, allowing flexibility. Airline managers can realize their
weaknesses and strengths from historical data and understand the
gaps to the aspiration levels. The most feasible changes and
improvement alternatives can be managed with versatility ac-
cording to external and internal operational conditions and avail-
able sources depending on the individual airline.

6. Conclusions

In this study, we proposed an integrated soft computing model
to solve the airline financial and operational performance problem.
Our hybrid model combined DRSA, DEMATEL, DANP, and VIKOR
methods to rank and identify the financial and operational critical
factors. The model also explored the interrelationship and influ-
ence among the critical factors, the priority weights between them,
which was the best performing airline, and the gap rates for each
airline performance, in order to identify strengths and weaknesses
in performance and directions for improvement. The DRSA method
was used to extract 11 essential criteria from the original database
with 22 criteria. DEMATEL analysis was carried out to show that
financial factors are directly influenced by external and internal
operational and external financial factors. In other words, control-
lable factors, both internal operational and financial, comprise the
starting point for improvement. The DANP method enabled the
discovery that the internal financial factor (D1) is the most critical
with the highest weight within dimensions; stock price (C21) has
the top global weight priority, followed by net income (C11) within
the criteria. The INRM confirmed that all remaining criteria influ-
enced stock price (C21) and net income (C11) and that diverted de-
lays (C42) and air carrier delays are most critical to the domino
effect (C33). The VIKOR method was used to ranking the best per-
forming companies and the gaps to the aspiration levels for each
airline. This provided each airline with a benchmark reference and
an indication of directions for improvement based on the gap pri-
ority within the operational criteria. Thus, our proposed model is a
useful and effective tool for airlines to understand their strengths,
weaknesses, and priorities for improvement.

This study contributes to the airline transportation industry
literature, but it does have some limitations. Conclusions are based
only on data from the United States, and other markets might have
different characteristics. This issue can be circumvented by using
other market data for validating the results. Another limitation is
that some quality data are lacking, such as managerial capability,
labor union, and leadership data, which might be critical factors
influencing airline performance. Furthermore, future studies can be
performed using other data mining techniques or MCDM methods,
such as the random forest method, support vector machine, tech-
nique for order performance by similarity to ideal solution (TOPSIS)
method, gray relations, AHP, or some combination with fuzzy
theory for comparison. In summary, this study provides a new
systematic approach for ensuring continuous improvement of
Please cite this article in press as: Gudiel Pineda, P.J., et al., An integr
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financial and operational airline performance.
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